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Abstract

In this article, we have tackled the multi-objective optimization problem of hybrid AC–DC networks using a metaheuristic method called 

particle swarm optimization (PSO). The approach of our work answers the following questions: how to model and integrate a direct 

current (DC) system, including VSC lines and converter stations, into the power optimization computation (OPF) process. To do this, 

the entire DC system (lines and VSC stations) is converted into a notional AC equivalent system using appropriate modeling, enabling 

the application of traditional AC OPF methods. Within the framework of multi-objective optimization, the Pareto technique is used 

to select the optimal solution from among those satisfying the defined objectives. The algorithm developed was implemented in the 

Matlab environment and tested on a modified IEEE-30 bus test network. The results obtained were compared with those of similar work 

published previously. The contribution of our research in the field of AC-DC hybrid power system optimization lies in the modeling of 

VSC stations integrated in an AC network, aiming to perform multi-objective optimization using tools developed for AC networks.
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1 Introduction
Power optimization in modern power grids is an essen-
tial pillar in meeting today's energy supply challenges. 
It  not only maximizes the operational and energy effi-
ciency of power infrastructures, but also enables the har-
monious integration of variable renewable energies such 
as solar and wind power [1]. By minimizing losses during 
long-distance electricity transmission, this optimization 
contributes to a more sustainable use of available energy 
resources, thus reducing the overall carbon footprint [2]. 
In addition, improved power flow management enhances 
the resilience and stability of networks in the face of 
demand fluctuations and unforeseen events, ensuring 
a reliable and continuous power supply [3]. By integrating 
advanced network control and management technologies, 
such as energy storage systems and smart grids, power 
optimization paves the way for a more flexible energy 
infrastructure, adaptable to the evolving needs of electric-
ity consumers and producers.

The move towards mixed AC-DC grids represents 
an innovative response to the growing challenges posed by 
the modernization of the world’s energy infrastructures. 

This transition is driven by the need to efficiently integrate 
intermittent renewable energy sources into the existing 
power grid [4]. Direct current (DC) lines offer several key 
advantages over alternating current (AC) lines, including 
increased transmission efficiency over long  distances and 
better management of power flows across national and 
regional borders [5]. In addition, AC-DC and DC-AC con-
version technologies enable greater operational flexibil-
ity and cost optimization, facilitating the seamless inte-
gration of microgrids and energy storage systems into the 
overall grid [6].

The use of metaheuristic methods to solve the Optimal 
Power Flow (OPF) problem in power grids offers sig-
nificant advantages in terms of the ability to handle the 
complexity and non-linearity inherent in modern power 
systems. These methods, such as genetic algorithms, par-
ticle swarms and ant colony algorithms, are well suited 
to efficiently exploring the vast and often complex search 
space of the OPF [7]. By enabling a thorough exploration 
of potential solutions, metaheuristics are able to find solu-
tions close to optimality, even under conditions where 
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traditional methods may fail due to the non-convexity of 
the problem [8]. Moreover, their flexibility enables them to 
adapt to the different physical and operational constraints 
of power networks, such as voltage limits and equipment 
capacities, while effectively integrating network cost and 
performance objectives [9]. This robust and fast approach 
makes metaheuristic methods a valuable tool for power 
system engineers and planners, contributing to optimal 
sustainable management of modern networks.

2 AC–DC OPF problem formulation
AC–DC or hybrid networks have a complex architecture 
Fig. 1 shows the integration of a DC network with two AC 
networks.

The solution of the economic and environmental operat-
ing problem is a power flow solution that provides optimal 
values of control variables for a particular load situation 
by optimizing specific objective functions while respect-
ing the constraints of operational variables. In formulat-
ing the OPF problem, various objectives can be addressed, 
such as minimizing fuel costs, reducing environmental 
emissions from generating plants, reducing active power 
losses in AC and DC system lines, reducing active power 
losses in VSC stations, etc., while maintaining equality 
and inequality constraints. The selection of these multiple 
objectives to solve the proposed problem is very important 
as it offers several advantages.

Minimizing fuel costs represents an economic dimen-
sion, while reducing emissions from generating plants rep-
resents an environmental dimension, and reducing active 
power losses on AC, DC and VSC systems represents a tech-
nical dimension. On this basis, the proposed problem is con-
sidered a multi-objective optimization, as it involves the 
simultaneous optimization of several objective functions.

The general form of the PFEO problem can be obtained 
as follows:

min , , , , , , ,F F F F� � � � � � � �� �1 2
x y x y x yN 	 (1)

where F is a vector of N objectives functions, with x and 
y representing the dependent variables. The solution of 
vector F is conditioned by equality constraints g(x,y) and 
inequality constraints h(x,y).
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2.1 Objective function
The OPF problem is a non-linear, non-convex, multi-ob-
jective optimization problem. The first objective consid-
ered is the fuel generation cost ( F1 ). Since steam admis-
sion to generating units is always subject to continuous 
changes in the steam valves, known as the valve point load 
effect, this effect leads to fluctuations in the fuel cost [10]. 
Consequently, the fuel cost function in this paper is for-
mulated by adding a therme rectifying the standard qua-
dratic form of the cost [11]:
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In Eq. (4) Pgi  representing the power injected by gen-
erator i, ai , bi and ci are the associated cost coefficients, 
ei and fi are the valve point load coefficients.

Fossil fuel turbines are the main cause of air pollution 
in power systems, where SOX, NOX and CO2 are emitted. 
Total emissions in tons per hour ( F2 ) of pollutants are for-
mulated as follows [12]:
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In Eq. (5), αi , βi , γi , δi and λi are the air pollution coeffi-
cients for production unit i. 

Total power loss (TPL) ( F3 ) in AC-DC networks is 
a combination of transmission losses in the AC network, 
transmission losses in the DC network, and losses in VSC 
stations, as shown in [13, 14]:

F
3
� � �P P PLoss Loss LossAC DC VSC

, 	 (6)

where PLossAC  is the total loss of active power in the AC 
network, PLossDC  is the total active power loss in the DC 

Fig. 1 Basic AC–DC grid configuration
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network, PLossVSC  is the total loss of active power in the net-
work's VSC stations.

The power loss in the AC and DC network is given by:

P G V V VVLoss
i j

ij i j i j ijAC
� � �� ��
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cos ,
2 2

2 � 	 (7)
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where Vi and Vj represent the voltage at bus i, j respec-
tively; Gij is the conductance of the line between bus i and 
bus j, θij is the angle between voltages Vi and Vj , Rij is the 
resistance of the DC line connecting bus i with bus j and Iij 
is the electric current in line ij.

Loss modeling in VSC converters can be treated in its 
general form as a quadratic function of the converter cur-
rent [15, 16]:
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where ψ
1i
,  ψ 2i

 and ψ 3i
 represents the quadratic coeffi-

cients of active power loss in VSC stations.

2.2 Control variables
In AC-DC networks, the control devices for AC and DC 
power systems are interdependent. Traditionally, control 
variables for AC systems include generator output power, 
voltage, transformer tap settings and reactive power injec-
tion sources, as described in [17]:
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The power transmitted through VSC converters can be 
controlled according to the strategy imposed by the power 
grid operator, and this is achievable with advanced control 
of VSC stations. In this context, four types of control strat-
egy can be distinguished [18]:

•	  VDC–QC constant: this mode ensures constant volt-
age on the DC side with constant reactive power con-
sumption on the AC side.

•	  VDC–VC constant: this mode ensures a constant volt-
age on both the DC and AC sides.

•	 Constant PDC–QC : this mode ensures constant active 
power transferred to the DC line with constant reac-
tive power consumption on the AC side.

•	 Constant PDC–VC : this mode ensures constant active 
power transferred to the DC line with constant AC 
voltage.

In this article, the control mode of VSCs will not be dis-
cussed, but a detailed modeling of VSC stations will be pre-
sented in Section 3. The aim, through proper modeling of 
VSC stations, is to be able to transform the DC network 
(DC-operated lines and VSC stations) into a notional AC net-
work, and to use the standard formulas of the OPF problem.

2.3 Dependent variables
The dependent variables of AC networks are generally 
voltages at load nodes, reactive powers injected by gener-
ators, and transmission line loads [19]:
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2.4 Equality constraints
The active and reactive power injected into the AC net-
work are formulated by [20]:
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where: i = 0, 1, 2, …, (NPQ).
For DC transmission, the active power transmitted 

between bus i and bus j is determined by Eq. (14) [21]:
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2.5 Inequality constraints
Eqs. (15)–(21) represent inequality constraints for the AC 
network only, while Eqs. (22) and (23) define inequality 
constraints for VSC stations:
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3 AC–DC hybrid network modeling
To model a hybrid network, we consider a VSCi station 
linking an AC network with a DC network (see Fig. 2). 
The impedance Z R jXS S Si i i

� �  represents the line and 
the coupling transformer of the VSC station. The approach 
used to model the hybrid AC–DC network is based on the 
transformation of the OPF AC–DC problem into an OPF 
AC–AC problem. The computational algorithm proposed 
in this article will enable us to simultaneously process the 
AC and DC networks by converting the DC network into 
a notional AC network [22–24].

The exchange of active power between the AC and DC 
network is determined by:

P P P
i i iLossAC DC VSC
� � � 0. 	 (24)

The active power loss PLoss iVSC
 in the VSCi can be calcu-

lated using Eq. (9), the voltages at the VSCi terminals are 
linked by the modulation index mi Eq. (25):
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The max value of the modulation index in the per unit 
system [25, 26] is given by:
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where V VBase BaseDC AC
and  are the base voltages for the DC 

and AC systems.
The VSCi station is modeled as a complex tap-chang-

ing transformer and the DC network is represented as 
a notional AC network (i.e., with resistive AC lines), 
as shown in Fig. 3. The power loss in each VSCi station is 
represented by a bypass conductance GSWi  [27].
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An additional susceptance Beqi  is used to guaran-
tee zero reactive power injection into the DC network. 
The  constraint ensuring that Q

iDC
= 0  for each VSCi is 

given by [27]:
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The power transmitted by a line in a DC system is 
a  special case of transmission in an AC system. This is 
true if the reactive power is zero. Consequently, the fol-
lowing similarity can be established (see Fig. 4).

Then we can write:
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And so, the solution of the OPF AC–DC problem is 
transformed into an OPF AC–AC problem, and the basic 
equations from Eq. (1) to Eq. (9) can be used. Now it's 
time to choose the optimization tool. In this article, 
the  choice is made for a metaheuristic method called 

Fig. 2 VSCi station

Fig. 3 Modeling VSCi station

Fig. 4 Transmission line
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"Particle Swarm". Section 4 presents the principle and 
algorithm of the AC–DC OPF.

4 Basic concepts of PSO
The PSO method is an innovative optimization method 
developed by Kennedy and Eberhart [28, 29]. Inspired by 
behavioral processes observed in the societies of flying 
birds, it is an integral part of evolutionary computation 
techniques. The method involves a set of particles forming 
a swarm, each exploring the search space in search of the 
global minimum (or maximum).

In a PSO system, particles navigate through a multi-di-
mensional search space. Each particle adjusts its posi-
tion according to its own experience (  pbest ) and that of 
its neighbors (  gbest ). The swarm, or group of particles, 
is  guided by these historical optimal positions. Specific 
formulas for calculating the velocity and new position of 
each particle are established according to [25, 26]:

v k
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where xj and vj represent respectively the current posi-
tion and velocity of the particle at j-th generation, ω is the 
inertia weight factor, c1 and c2 are acceleration constants, 
rand(  ) represents a random number between 0 and  1, 
pbest is the best previous experience of the i-th particle 
that is recorded, gbest is the best particle among the whole 
population, nS is the number of swarms (or groups), k is 
a contraction factor derived from the stability analysis of 
Eq. (33) to ensure that the system converges without pre-
cipitation, and can be represented by a function [26] of c1 
and c2 in Eq. (35):

k �
� � �

2

2 4
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, 	 (35)

with: φ = c1 + c2.
PSO uses pbest and gbest to adjust the current search 

point, preventing the particles from moving uniformly, 
but rather converging gradually towards pbest and gbest. 
The right choice of inertia weight ω balances global and 
local exploration. Usually, ω can be dynamically adjusted 
using the following equation [29–31]:

� �
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,
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where imax is the maximum number of iterations, imin is the 
minimum number of iterations, i is the current iteration, ωmax 
and ωmin are the upper and lower limits of the inertia weight.

Particle velocity is limited by a maximum value Vmax. 
The Vmax parameter determines the quality of problem solv-
ing, with which the regions between the current position 
and the target position are explored. This limit reinforces 
local exploration of the problem space and realistically 
simulates the incremental changes of human learning.

If Vmax is too high, particles may exceed good solutions. 
On the other hand, if Vmax is too low, particles may not 
explore sufficiently beyond local solutions. Based on expe-
rience with PSO methods, Vmax is often adjusted between 
10% and 20% of the dynamic range of the variable on each 
dimension. In this paper, a Vmax limit equivalent to 15% of 
the dynamic range of the variable is adopted [31].

In conclusion, this work addresses a constrained 
multi-objective optimization problem for hybrid AC–DC 
networks, solved using the particle swarm method (PSO). 
The algorithm used in this paper was developed in the 
MATLAB environment, based on the following steps:

1.	 Step 1: Initialization:
•	 Enter AC–AC network data.
•	 Convert the OPF AC–DC problem into OPF  

AC–AC (Eqs. (25) to (30)).
•	 Initialize a population of N particles. For each 

particle i, assign random values to position xi and 
velocity Vi :
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•	 Assign the best position pbesti of each particle i 
by its initial position.

pbest xi i= 	

•	 Initialize the archive of best non-dominated posi-
tions to empty.

2.	Step 2 : Evaluation:
•	 For each particle i, evaluate the values of the 

objective functions (F1 , F2 , F3 ): Eqs. (4)–(6). 
For Eq. (6), Eqs. (7)–(9) are used.
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•	 Calculation of AC power flow using the Newton-
Raphson method.

3.	Step 3: Stress verification: Eq. (12) to Eqs. (23), (31) 
and (32)
•	 If all constraints are met, proceed to Step 4.
•	 If not, adjust the particles. In this article, we've 

used a correction method that adjusts the particles 
to the limit values imposed by the constraints.

4.	 Step 4: Updating the archive by Pareto front: 
•	 Add the new valid particle positions to archive A 

if they are not dominated by other solutions in the 
archive.

•	 Eliminate dominated solutions from archive A.
5.	 Step 5: Finding the best overall solution:

•	 Identify the best particle among the elements in 
archive A.

6.	 Step 6: Update speeds and positions:
•	 For each particle i, update the velocity Vi and posi-

tion xi (Eqs. (33) and (34)).
7.	 Step 7: Update some personal best positions:

•	 For each particle i, if particle xi is better than:

pbest xi i= . 	

•	 If not, pbesti keeps its value.
8.	 Step 8: End:

•	 Repeat steps 2 to 7 until the stopping criterion is 
reached (in this article, the stopping criterion is 
a max number of iterations, itemax = 95). 

5 Simulation and results
In Section 5, the algorithm proposed in this article is pro-
grammed in the MATLAB environment and applied to 
the modified IEEE 30-bus network to solve the multi-ob-
jective optimization problem of the AC–DC hybrid power 
system. The standard IEEE 30-bus system consists of 
30 buses, 41 lines, 6 generators, 4 tap-changing transform-
ers and 9 capacitive sources in parallel. Fig. 5 shows the 
modified network with two DC systems [32]. The VSC sta-
tions are characterized by a maximum power of 100 MW, 
with voltage limits ranging from 0.9 to 1.1 pu.

Reactive power compensators can inject a maximum of 
5 Mvar of reactive power into the grid. VSC stations oper-
ate as follows:

•	 VSC 1 and 4 have a VDC–QC control mode;
•	 VSC 2, 3, 5 and 6 have constant PDC–VC control.

Generator and load bus voltages must be in the range 
[1.1–0.95] pu. Cost and emission coefficients are taken 
from [33].

To validate our approach (PSO-OPF AC-DC), we pro-
ceeded as follows:

•	 First: cost optimization (function F1). In Section 5, 
a Matlab program is developed to optimize the total 
cost of production for the AC-DC hybrid system. 
The results obtained are then compared with those 
of other similar studies.

•	 Second: a multi-objective approach aims to mini-
mize total production cost ( F1 ), CO2 emissions ( F2 ) 
and total active power losses ( F3 ) in AC, DC and 
VSC stations. The results obtained are compared 
with those of other work and then discussed.

•	 Case 1: Table 1 shows all the optimized parameters, 
and the numerical values of the results obtained do 
not differ from those in [17, 34]. The cost optimized 
by our approach is equal to 837.0018 $/h, whereas 
in [34] it is equal to 840.08 $/h and in [17] it is equal 
to 840.3 $/h.
Fig. 6 illustrates the evolution of the cost as a func-
tion of iteration. Convergence to the optimal solution 
is reached as early as 57th iterations, which testifies 
to the rapid convergence of the PSO approach.
Fig. 7 shows the initial voltages of the problem, the 
voltages taken from [17, 34] and the voltages obtained 
by our optimized network bus approach. The voltage 
constraints Vmin and Vmax are respected.
The results obtained, compared with those of refer-
ences [17, 34], validate our optimization approach for 

Fig. 5 Modified IEEE 30-bus system
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a single-objective problem in hybrid AC-DC networks 
and pave the way for multi-objective optimization.

•	 Case 2: in this case, our objectives is to simultane-
ously minimize total production cost, CO2 emissions 

and active power losses in AC transmission lines, 
DC transmission lines and VSC converters, while 
respecting the equalities and inequalities constraints 
described in Section 2. The results obtained are pre-
sented in Table 2.
Figs. 8, 9 and 10 show the evolution of total cost, CO2 
emissions and total active power losses as a function 
of calculation iterations. The algorithm proposed in 
this article converges on an optimal solution as early 
as 73th iterations, with values of F1 = 874.7523 $/h, 
F2 = 0.2432 ton/h and F3 = 10.0543 MW.
Fig. 11 compares the voltages obtained by our algo-
rithm with those taken from references [17, 34] for 
the AC system. It can be seen that the voltage con-
straints are well respected.
Fig. 12 shows the DC system voltages obtained by 
our OPF AC–DC approach using PSO, comparing 
them with the IEEE-30 bus reference network volt-
ages and those taken from references [17, 34].
Fig. 13 shows well-distributed Pareto alternatives so- 
lutions, the best compromise as the overall optimum 
solution, with F1 = 874;7523 $/h, F2 = 0.2432  ton/h 
and F3 = 10.0543 Mw.

Table 1 Results of Case 1

Variables Initial Propoced PSO Ref. [34] Ref [17]

Vg1 1.05 1.0952 1.1 1.079

Vg2 1.04 1.0803 1.079 1.061

Vg5 1.01 1.0401 1.063 1.040

Vg8 1.01 1.0719 1.068 1.045

Vg11 1.05 1.0740 1.075 1.007

Vg13 1.05 1.0481 1.03 1.054

Tp6–9 1.078 1.0962 1.1 1.024

Tp6–10 1.069 1.0010 0.9688 1.071

Tp4–12 1.032 1.0080 1.014 1.038

Tp27–28 1.068 1.0344 1.064 1.026

Qvar10 19 7.7601 0 13.996

Qvar12 0 3.7695 2.438 1.765

Qvar15 0 15.0163 21.93 6.480

Qvar17 0 3.0032 1.403 5.723

Qvar20 0 2.1600 4.149 2.670

Qvar21 0 8.4965 2.479 12.793

Qvar23 0 5.3101 6.296 3.047

Qvar24 4.3 5.2276 11.09 6.527

Qvar29 0 0.8724 5.549 1.198

Pg1 105.3237 197.871 200.0135 200

Pg2 80 44.9700 45.97 44.835

Pg5 50 18.6667 18.03 18.601

Pg8 20 11.7401 10.24 10.323

Pg11 20 11.5912 10.03 10.660

Pg13 20 11.5651 12.16 12.007

QS1 17.31 −15.0076 −32.33 0.431

QS4 −17.45 7.2609 29.05 −19.485

VC2 1 1.0810 1.072 1.051

VC3 1 1.0381 1.025 0.999

VC5 1 1.0510 1.039 1.041

VC6 1 1.0340 1.025 1.041

PS2 25.74 15.8732 16.53 14.067

PS3 52.53 26.9987 33.67 31.285

PS5 40.44 35.6301 36.57 36.818

PS6 18.45 17.9041 16.03 18.374

VDC1 1.06 1.0917 1.1 1.083

VDC4 1.06 1.0965 1.1 1.072

F1 [$/h] 975.64 837.0018 840.08 840.3

PACLoss 1.8956 5.0012 4.58 –

PDCLoss 2.4972 1.0167 1.2287 –

PVSCLoss 7.5309 6.0001 7.2348 –

Fig. 6 Cost over iteration Case 1

Fig. 7 Voltage in AC system, Case 1
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6 Conclusion
The integration of high-voltage direct current (HVDC) 
networks into alternating current (HVAC) networks rep-
resents a major challenge for power system operators. 
Indeed, this integration modifies the voltage profile and the 

Table 2 Results of Case 2

Variables Initial Propoced PSO Ref. [34] Ref. [17]

Vg1 1.05 1.0967 1.0313 1.0955

Vg2 1.04 1.0943 1.0263 1.0729

Vg5 1.01 1.0121 1.0057 1.0517

Vg8 1.01 1.0451 1.0196 1.062

Vg11 1.05 1.0298 0.9953 1.0529

Vg13 1.05 1.0784 1.009 1.081

Tp6–9 1.078 1.0086 1.0079 1.0585

Tp6–10 1.069 1.0056 1.0011 1.0314

Tp4–12 1.032 1.0043 1.0057 1.0126

Tp27–28 1.068 1.0021 1.0025 1.0198

Qvar10 19 15.7634 18.3016 6.7464

Qvar12 0 16.2343 12.5042 19.0608

Qvar15 0 13.7602 19.062 15.0916

Qvar17 0 10.5423 4.3011 20.0593

Qvar20 0 3.2131 7.8544 5.2101

Qvar21 0 6.0053 4.5984 5.3426

Qvar23 0 7.3472 6.0811 4.3013

Qvar24 4.3 6.8274 7.2819 5.316

Qvar29 0 6.9062 6.0811 8.8216

Pg1 105.3237 132.5621 125.845 129.3655

Pg2 80 66.7688 64.0449 66.2022

Pg5 50 21.5456 29.3297 22.6008

Pg8 20 26.0097 24.7692 32.8303

Pg11 20 24.5501 23.4756 22.9121

Pg13 20 22.6753 26.5573 20.3413

QS1 17.31 −30.7648 8.9691 −43.7106

QS4 −17.45 −10.7623 −7.0387 3.0458

VC2 1 1.0308 1.0178 1.0688

VC3 1 1.0781 1.0153 1.0457

VC5 1 1.0098 1.01 1.0785

VC6 1 1.0654 1.0154 1.0821

PS2 25.74 12.0675 10.3418 16.1855

PS3 52.53 22.0021 21.8713 21.0756

PS5 40.44 21.9043 19.7401 26.2714

PS6 18.45 13.7659 15.337 12.7149

VDC1 1.06 1.0687 1.0579 1.078

VDC4 1.06 1.0206 0.9927 1.0156

F1 ($/h) 975.64 874.7523 896.55 882.5743

F2 (ton/h) 0.2417 0.2532 0.25698 0.264915

F3 (Mw) 11.9237 10.0543 10.622 10.85332

Fig. 8 Objectif F1 Cost over iterations, Case 2

Fig. 9 Objectif F2 CO2 emission over iterations, Case 2

Fig. 10 Objectif F3 Total loss over iterations, Case 2

Fig. 11 Voltage in AC system, Case 2
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transmitted power, calling into question conventional opti-
mization methods due to their inability to account for the 
specificities of DC lines and VSC stations. Several stud-
ies are focusing on the global reformulation of the problem 
and the development of new AC-DC OPF calculation tools. 
This poses a significant technical challenge for network 
operators, equivalent to a radical transformation of current 
processes. The main idea is to find solutions for integrat-
ing DC operation into conventional OPF calculation tools.

We conducted hybrid AC–DC network modeling based 
on the operating principle of VSC stations, allowing us to 
convert the DC part of the network into a notional AC net-
work. This conversion enabled us to use classical meth-
ods to solve the AC–DC OPF problem. Our AC–DC OPF 
approach, utilizing the PSO metaheuristic method, has 

been validated through two trials. The first trial involved 
a single-objective optimization applied to the overall cost 
of production, the results of which, compared with those of 
previous work, validate and confirm our approach. The sec-
ond trial focused on multi-objective optimization, simulta-
neously addressing overall cost, CO2 emissions, and total 
losses. The results obtained are particularly significant 
compared to other work carried out in the same context.

The contribution of our research in the field of optimi-
zation relies on a robust approach that provides more opti-
mized results than those of previously presented works, 
with a very acceptable computation time. Furthermore, 
our approach can handle multi-objective optimization 
problems with equality and inequality constraints for 
hybrid AC–DC networks, without modifying the method 
of calculating power distribution in AC networks.

References
[1]	 Cao, G., Shi, H., Dang, J., Jia, R., Guo, Z., Xue, C. "A bi-level coop-

erating optimization for AC/DC power systems considering renew-
able energy integration", Energy Reports, 11, pp. 5556–5574, 2024.

	 https://doi.org/10.1016/j.egyr.2024.05.027
[2]	 Wang, Z., Anderson, C. L. "A Progressive Period Optimal Power 

Flow for Systems with High Penetration of Variable Renewable 
Energy Sources", Energies, 14(10), 2815, 2021.

	 https://doi.org/10.3390/en14102815
[3]	 Akbari, B.,  Sansavini, G. "Adaptive robust AC optimal power 

flow considering intrahour uncertainties", Electric Power Systems 
Research, 216, 109082, 2023.

	 https://doi.org/10.1016/j.epsr.2022.109082
[4]	 Siano, P. "Demand response and smart grids - A survey", Renewable 

and Sustainable Energy Reviews, 30, pp. 461–478, 2014.
	 https://doi.org/10.1016/j.rser.2013.10.022
[5]	 Mezhoud, N. "Multi-objective Optimal Power Flow and Emission 

Index Based Firefly Algorithm", Periodica Polytechnica Electrical 
Engineering and Computer Science, 67(2), pp. 172–180, 2023. 

	 https://doi.org/10.3311/PPee.20922

[6]	 Zeinalzadeh, A., Mohammadi, Y., Moradi, M. H. "Optimal multi 
objective placement and sizing of multiple DGs and shunt capaci-
tor banks simultaneously considering load uncertainty via MOPSO 
approach", International Journal of Electrical Power & Energy 
Systems, 67, pp. 336–349, 2015.

	 https://doi.org/10.1016/j.ijepes.2014.12.010
[7]	 Jebaraj, L., Sakthivel, S. "A new swarm intelligence optimization 

approach to solve power flow optimization problem incorporat-
ing conflicting and fuel cost based objective functions", e-Prime 
- Advances in Electrical Engineering, Electronics and Energy, 2, 
100031, 2022.

	 https://doi.org/10.1016/j.prime.2022.100031
[8]	 Mohan, T. M., Nireekshana, T. "A Genetic Algorithm for Solving 

Optimal Power Flow Problem",  In: 2019 IEEE 3rd International 
conference on Electronics, Communication and Aerospace 
Technology (ICECA), Coimbatore, India, 2019, pp. 1438–1440. 
ISBN 978-1-7281-0167-5

	 https://doi.org/10.1109/ICECA.2019.8822090

Fig. 12 Voltage in DC system, Case 2
Fig. 13 Pareto solution for AC–DC grid, Case 2

https://doi.org/10.1016/j.egyr.2024.05.027
https://doi.org/10.3390/en14102815
https://doi.org/10.1016/j.epsr.2022.109082
https://doi.org/10.1016/j.rser.2013.10.022
https://doi.org/10.3311/PPee.20922
https://doi.org/10.1016/j.ijepes.2014.12.010
https://doi.org/10.1016/j.prime.2022.100031
https://doi.org/10.1109/ICECA.2019.8822090


146|Ghanemi and Labed
Period. Polytech. Elec. Eng. Comp. Sci., 69(2), pp. 137–147, 2025

[9]	 Oumarou, I., Jiang, D., Yijia, C. "Particle Swarm Optimization 
Applied to Optimal Power Flow Solution", In: 2009 IEEE Fifth 
International Conference on Natural Computation, Tianjian, 
China, 2009, pp. 284–288. ISBN 978-0-7695-3736-8

	 https://doi.org/10.1109/ICNC.2009.477
[10]	 Shaheen, A. M., El-Sehiemy, R. A., Elattar, E. E., Abd-Elrazek, 

A. S. "A Modified Crow Search Optimizer for Solving Non-linear 
Optimal Power Flow Problem with Emissions", IEEE Access, 9, 
pp. 43107–43120, 2021.

	 https://doi.org/10.1109/ACCESS.2021.3060710
[11]	 Shaheen, A. M., El-Sehiemy, R. A., Farrag, S. M. "A reactive 

power planning procedure considering iterative identification of 
VAR candidate buses", Neural Computing and Applications, 31(3), 
pp. 653–674, 2019.

	 https://doi.org/10.1007/s00521-017-3098-1
[12]	 Shaheen, A. M., El Sehiemy, R., Farrag, S. M. "A novel adequate 

bi-level reactive power planning strategy", International Journal of 
Electrical Power & Energy System, 78, pp. 897–909, 2016.

	 https://doi.org/10.1016/j.ijepes.2015.12.004
[13]	 Beerten, J., Van Hertem, D., Belmans, R. "Modeling of Multi-

Terminal VSC HVDC Systems with Distributed DC Voltage 
Control", IEEE Transactions on Power Systems, 29(1), pp. 34–42, 
2014.

	 https://doi.org/10.1109/TPWRS.2013.2279268
[14]	 Feng, W., Tuan, A. L., Tjernberg, L. B., Mannikoff, A., Bergman, 

A. "A new approach for benefit evaluation of multiterminal VSC-
HVDC using a proposed mixed AC/DC optimal power flow", IEEE 
Transactions on Power Systems, 29(1), pp. 432–443, 2014.

	 https://doi.org/10.1109/TPWRD.2013.2267056
[15]	 Hotz, M., Utschick, W. "An Optimal Power Flow Framework for 

Hybrid AC/DC Power Systems", IEEE Transactions on Power 
Systems, 35(2), pp. 1036–1047, 2020.

	 https://doi.org/10.1109/TPWRS.2019.2942988
[16]	 Bahrami, S., Therrien, F., Wong, V. W. S., Jatskevich, J. 

"Semidefinite relaxation of optimal power flow for AC–DC grids", 
IEEE Transactions on Power Systems, 32(1), pp. 289–304, 2017.

	 https://doi.org/10.1109/TPWRS.2016.2543726
[17]	 Elattar, E. E., Shaheen, A. M., Elsayed, A. M., El-Sehiemy, R. A. 

"Optimal Power Flow With Emerged Technologies of Voltage 
Source Converter Stations in Meshed Power Systems", IEEE 
Access, 8, pp. 166963–166979, 2020.

	 https://doi.org/10.1109/ACCESS.2020.3022919
[18]	 De Boeck, S., Tielens, P., Leterme W., Van Hertem, D. 

"Configurations and earthing of HVDC grids",  In: 2013 IEEE 
Power & Energy Society General Meeting, Vancouver, BC, 
Canada, 2013, pp. 1–5. ISBN: 978-1-4799-1303-9

	 https://doi.org/10.1109/PESMG.2013.6672808
[19]	 Bentouati, B., Khelifi, A., Shaheen, A. M., El-Sehiemy, R. A. "An 

enhanced moth-swarm algorithm for efficient energy manage-
ment based multi dimensions OPF problem", Journal of Ambient 
Intelligence and Humanized Computing, 12(10), pp. 9499–9519, 
2020.

	 https://doi.org/10.1007/s12652-020-02692-7

[20]	 El Sehiemy, R., Abou El Ela, A. A. A., Shaheen, A. "A Multi-
Objective Fuzzy-Based Procedure for Reactive Power-Based 
Preventive Emergency Strategy", International Journal of 
Engineering Research in Africa, 13, pp. 91–102, 2014.

	 https://doi.org/10.4028/www.scientific.net/JERA.13.91
[21]	 Renedo, J., Ibrahim, A. A., Kazemtabrizi, B., García-Cerrada, A., 

Rouco, L., Zhao, Q., García-González, J. "A simplified algorithm to 
solve optimal power flows in hybrid VSC-based AC/DC systems", 
International Journal of Electrical Power & Energy Systems, 110, 
pp. 781–794, 2019.

	 https://doi.org/10.1016/j.ijepes.2019.03.044
[22]	 Ibrahim, A. A., Kazemtabrizi, B., Dent, C. "Operational planning 

and optimisation in active distribution networks using modern 
intelligent power flow controllers", In: 2016 IEEE/PES innovative 
smart grid technologies conference Europe (ISGT), Ljubljana, 
Slovenia, 2016, pp. 1–6. ISBN 978-1-5090-3358-4

	 https://doi.org/10.1109/ISGTEurope.2016.7856196
[23]	 Acha, E., Kazemtabrizi, B., Castro, L. M. "A New VSC-HVDC 

Model for Power Flows Using the Newton-Raphson Method", 
IEEE Transactions on Power Systems, 28(3), pp. 2602–2612, 2013. 

	 https://doi.org/10.1109/TPWRS.2012.2236109
[24]	 Kazemtabrizi, B., Acha, E. "An advanced STATCOM model for 

optimal power flows using Newton's method", IEEE Transactions 
on Power Systems, 29(2), pp. 514–525, 2014.

	 https://doi.org/10.1109/TPWRS.2013.2287914
[25]	 Bai, Q. "Analysis Of Particle Swarm Optimization Algorithm", 

Computer and Information Science, 3(1), pp. 180–184, 2010.
	 https://doi.org/10.5539/cis.v3n1p180
[26]	 Anitha, M., Subramanian, S., Gnanadass, R. "A Novel PSO 

Algorithm for Optimal Production Cost of the Power Producers 
with Transient Stability Constraints", Journal of Electromagnetic 
Analysis and Applications, 1(4), pp. 265–274, 2009.

	 https://doi.org/10.4236/jemaa.2009.14041
[27]	 Daelemans, G., Srivastava, K., Reza, M., Cole, S., Belmans,  R. 

"Minimization of steady-state losses in meshed networks 
using VSC HVDC", In: 2009 IEEE Power & Energy Society 
General Meeting, Calgary, AB, Canada, 2009, pp. 1–5. ISBN 
978-1-4244-4241-6

	 https://doi.org/10.1109/PES.2009.5275450
[28]	 Verdejo, H., Pino, V., Kliemann, W., Becker, C., Delpiano, J. 

"Implementation of Particle Swarm Optimization (PSO) Algorithm 
for Tuning of Power System Stabilizers in Multimachine Electric 
Power Systems", Energies, 13(8), 2093, 2019.

	 https://doi.org/10.3390/en13082093
[29]	 Naderi, E., Pourakbari-Kasmaei, M., Abdi, H. "An efficient particle 

swarm optimization algorithm to solve optimal power flow prob-
lem integrated with FACTS devices", Applied Soft Computing, 80, 
pp. 243–262, 2019.

	 https://doi.org/10.1016/j.asoc.2019.04.012

https://doi.org/10.1109/ICNC.2009.477
https://doi.org/10.1109/ACCESS.2021.3060710
https://doi.org/10.1007/s00521-017-3098-1
https://doi.org/10.1016/j.ijepes.2015.12.004
https://doi.org/10.1109/TPWRS.2013.2279268
https://doi.org/10.1109/TPWRD.2013.2267056
https://doi.org/10.1109/TPWRS.2019.2942988
https://doi.org/10.1109/TPWRS.2016.2543726
https://doi.org/10.1109/ACCESS.2020.3022919
https://doi.org/10.1109/PESMG.2013.6672808
https://doi.org/10.1007/s12652-020-02692-7
https://doi.org/10.4028/www.scientific.net/JERA.13.91
https://doi.org/10.1016/j.ijepes.2019.03.044
https://doi.org/10.1109/ISGTEurope.2016.7856196
https://doi.org/10.1109/TPWRS.2012.2236109
https://doi.org/10.1109/TPWRS.2013.2287914
https://doi.org/10.5539/cis.v3n1p180
https://doi.org/10.4236/jemaa.2009.14041
https://doi.org/10.1109/PES.2009.5275450
https://doi.org/10.3390/en13082093
https://doi.org/10.1016/j.asoc.2019.04.012


Ghanemi and Labed
Period. Polytech. Elec. Eng. Comp. Sci., 69(2), pp. 137–147, 2025|147

[30]	 Monteiro Pereira R. M., Pereira, A. J. C., Machado Ferreira, C. M., 
Maciel Barbosa, F. P. "FACTS performance in the dynamic voltage 
stability of an electric power system", In: 2017 52nd International 
Universities Power Engineering Conference (UPEC), Heraklion, 
Greece, 2017, pp. 1–5. ISBN 978-1-5386-2344-2

	 https://doi.org/10.1109/UPEC.2017.8231898
[31]	 Choudhury, D., Patra, S. "Multi objective optimal power flow using 

particle swarm optimization technique", In:   2016 International 
Conference on Signal Processing, Communication, Power and 
Embedded System (SCOPES), Paralakhemundi, India, 2016, 
pp. 1261–1266. ISBN 978-1-5090-4620-1

	 https://doi.org/10.1109/SCOPES.2016.7955644
[32]	 Alvarez-Bustos, A., Kazemtabrizi, B., Shahbazi, M., Acha-

Daza,  E. "Universal branch model for the solution of optimal 
power flows in hybrid AC/DC grids", International Journal of 
Electrical Power & Energy Systems, 126, 106543, 2021. 

	 https://doi.org/10.1016/j.ijepes.2020.106543

[33]	 Mohamed, A. A. A., Mohamed, Y. S., El-Gaafary, A. A. M., 
Hemeida, A. M. "Optimal power flow using moth swarm algo-
rithm", Electric Power Systems Research, 142, pp. 190–206, 2017.

	 https://doi.org/10.1016/j.epsr.2016.09.025
[34]	 Elsayed, A. M., Shaheen, A. M., Alharthi, M.M., Ghoneim, S. 

S. M., El-Sehiemy, R. A. "Adequate Operation of Hybrid AC/
MT-HVDC Power Systems Using an Improved Multi-Objective 
Marine Predators Optimizer", IEEE Access, 9, pp. 51065–51087, 
2021.

	 https://doi.org/10.1109/ACCESS.2021.3069456

https://doi.org/10.1109/UPEC.2017.8231898
https://doi.org/10.1109/SCOPES.2016.7955644
https://doi.org/10.1016/j.ijepes.2020.106543
https://doi.org/10.1016/j.epsr.2016.09.025
https://doi.org/10.1109/ACCESS.2021.3069456

	1 Introduction
	2 AC-DC OPF problem formulation
	2.1 Objective function
	2.2 Control variables
	2.3 Dependent variables
	2.4 Equality constraints
	2.5 Inequality constraints

	3 AC-DC hybrid network modeling
	4 Basic concepts of PSO
	5 Simulation and results
	6 Conclusion
	References

