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Abstract

Driven by the "dual-carbon" goals, the large-scale integration of wind power into distribution networks poses challenges to voltage
stability due to its inherent volatility and uncertainty. To address it, this paper proposes a probabilistic assessment method based on
the total probability formula that incorporates wind speed correlation to effectively evaluate voltage deviation. Firstly, the probability
model of wind power is established according to the uncertainty of wind speed considering the correlation. Secondly, the wind power
outputis discretized and aggregated to ensure that the resulting random variables in the combined state approximately follow a normal
distribution. Spatial correlations in wind speed are accounted for using the Nataf transformation. Furthermore, the probability of
each aggregated wind power state determines its weight. These weights are then used to accumulate and integrate the probabilistic
power flow (PPF) results. The total PPF calculation accounts for wind power uncertainty, following the Total Probability Formula (TPF)
framework. Finally, considering the indexes with the probability and severity of voltage deviation, the comprehensive risk indicator
for voltage exceeding limits is constructed. Based on the IEEE-33 bus test system, the proposed TPF method is compared with Monte
Carlo Simulation (MCS) and the Two-Point Estimation Method (2PEM). The comparison demonstrates its superior computational

accuracy and efficiency, establishing it as an effective tool for assessing the impact of wind power integration on distribution networks.
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1 Introduction

1.1 Background

Under the promotion of the "dual-carbon" strategic objec-
tives, distributed and centralized wind power generation,
as crucial components of clean energy, play significant
roles in constructing new power systems [1]. By the end
of 2024, China's installed wind power capacity reached
approximately 510 million kilowatts, with photovoltaic
capacity around 840 million kilowatts, maintaining a uti-
lization rate above 95% [2]. The increasing integration of
wind power into distribution networks, particularly under
the "Thousand Townships and Ten Thousand Villages
Wind Utilization Initiative", has rendered the interaction
between distributed wind power and distribution networks
increasingly complex [3]. During wind turbine operation,
wind speed fluctuations are transformed into power varia-
tions through a cubic relationship, thereby inducing voltage
fluctuations. Influenced by multiple factors including wind

speed and meteorological conditions, wind power exhib-
its marked uncertainty [4, 5]. When wind power output
exceeds local load demand, it alters the voltage distribution
and power flow direction in distribution networks [6]. This
phenomenon not only expands the voltage fluctuation range
but also triggers voltage quality issues such as voltage devi-
ation exceedance [7]. Therefore, voltage risk assessment for
wind-integrated distribution networks constitutes a critical
link in ensuring secure and stable system operation.

1.2 Literature review

Traditional methods for voltage risk analysis and assess-
ment in distribution networks include sensitivity analy-
sis [8], continuation power flow method [9], and modal
analysis [10]. These deterministic approaches, based on
fixed operational scenarios, offer advantages such as
computational simplicity, high efficiency, and intuitive
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results, enabling the evaluation of system security mar-
gins [11, 12]. However, wind power output exhibits inher-
ent uncertainty and randomness, with operational scenar-
ios being non-unique. The extreme scenario assumptions
in deterministic methods may lead to assessment results
deviating from actual operating conditions [13]. Notably,
adjacent wind turbines demonstrate significant spatial
correlations in wind speed exposure and power gener-
ation [14]. Neglecting such spatial correlations could
severely compromise the accuracy of voltage risk assess-
ments [15]. For voltage quality analysis in wind-inte-
grated distribution networks considering uncertainty,
probabilistic risk assessment based on probabilistic
power flow (PPF) calculation proves effective. Common
PPF computation methods fall into three categories [16]:
Monte Carlo Simulation (MCS), analytical approaches,
and approximation methods [17]. While MCS achieves
the highest accuracy, it requires extensive random sam-
pling and iterative computations, resulting in low effi-
ciency [18]. Analytical approaches generate significant
errors when input variables exhibit large fluctuations,
whereas approximation methods face scalability limita-
tions due to constrained sampling sizes [19].

Singh et al. [20] proposed a Cornish-Fisher expan-
sion-based risk assessment method for distribution net-
works. However, in wind-integrated distribution networks,
non-Gaussian distributions of input variables may induce
computational deviations, and the spatial correlations
among wind turbines remain unaddressed. Table 1 shows
a comparison between existing research and the current
study. Ma et al. [21] employed multi-order semi-invari-
ants combined with Gram-Charlier series expansion for
probabilistic static voltage stability assessment in wind-in-
tegrated systems. Nevertheless, its limited capability to
model non-Gaussian distributions introduces significant
errors in voltage risk evaluation. Yu et al. [22] developed

a time-segmented Monte Carlo sampling method to assess
voltage risks from distributed wind and photovoltaic inte-
gration, addressing their intermittency. However, this
approach suffers from high computational costs and ineffi-
ciency. Nejadfard-jahromi et al. [23] introduced a preven-
tive control-based method for rapid voltage stability margin
evaluation in distribution networks with electric vehicles
and wind power, yet the exclusion of wind power cor-
relations compromises assessment completeness. Canudo
et al. [24] proposed an improved point estimate method
incorporating local voltage stability indices, but its neglect
of wind farm spatial correlations leads to non-negligible
errors in system voltage stability assessment. In contrast, the
Total Probability Formula (TPF) inherently avoids distribu-
tion-fitting assumptions (e.g., normality deviations) while
strictly adhering to the probability conservation principle
(summing to unity) [25]. By integrating probabilistic distri-
butions from PPF calculations, TPF demonstrates superior
computational accuracy for voltage risk quantification.

1.3 Contribution
In light of these considerations, this paper innovatively
integrates wind speed spatial correlations with the TPF
to propose a voltage deviation risk assessment framework
for wind-integrated distribution networks. The framework
combines TPF and Nataf transformation-based PPF cal-
culations, establishing a spatially correlated wind speed
probability model. By leveraging voltage deviation prob-
abilities and severity indices, it constructs a comprehen-
sive risk assessment framework to quantitatively evaluate
the impact of wind speed correlations on voltage deviation
risks. The key contributions are summarized as follows:
1. A data-driven wind speed parameter modeling
method incorporating spatial correlations is devel-
oped to accurately characterize the operational
uncertainty of wind turbines.

Table 1 Comparison between existing research and this study

Research direction Research contents

Research methods

Methods of this paper

Probability power

Probabilistic R
flow result distribution

P Fl . . . S
(lflzgrcal(:::lation considering the simulation [17], approximation
methods randomness of wind power methods (such as Cornish

(voltage, power, etc.) [20].

Statistical evaluation of the
probability of bus voltage
exceeding the limit [14],
standard deviation and
average value of voltage
amplitude [15].

Voltage deviation
risk assessment

Analysis methods (such as
convolution) [9], Monte Carlo

Fisher expansion) [19].

Probability density function
fitting [11], risk indicators [12].

The proposed PPF method, based on TPF combined with the
Nataf transformation, efficiently computes PPF in distribution
networks with correlated wind power. This approach
improves computational accuracy while maintaining low
computational costs.

Based on the PPF method combining TPF and Nataf
transformation, the comprehensive risk index is formed by
considering the probability and severity of voltage deviation.
The comprehensive risk of voltage deviation has been
evaluated. Comprehensively reflect the impact of wind power
on the distribution network.




2. A piecewise linearization technique is introduced to
discretize wind power outputs, coupled with a PPF
computation method based on TPF and Nataf trans-
formation, significantly enhancing computational
efficiency.

3. A composite voltage risk index integrating deviation
probability and severity is formulated, establishing
a TPF-based PPF framework for voltage deviation
risk assessment to improve result accuracy.

4. The proposed TPF-Nataf probabilistic risk assess-
ment method provides practical case studies and
analytical tools for evaluating the grid integra-
tion impacts of the "Thousand Townships and Ten
Thousand Villages Wind Utilization Initiative".

The rest of this paper is organized as follows:

* Section 2 introduces the wind speed probability
model and the correlation characterization of ran-
dom variables.

* In Section 3 introduces the PPF calculation method
based on TPF and proposes a comprehensive voltage
risk method and calculation evaluation process.

» Section 4 verifies the framework through case anal-
ysis and discussion.

 Finally, Section 5 is the conclusion.

2 Probability model and correlation of input random
variables

2.1 Probabilistic modeling of wind power

Due to the deterministic models not reflecting the random-
ness and volatility of wind power [26], the commonly uti-
lized Weibull distribution is used to describe the probabil-
ity model of wind speed, as shown in Eq. (1). Equation (2)
represents the cumulative distribution function (CDF)
of wind speed [27]. The relationship between the active
power output of wind turbines and wind speed can be
expressed as a piecewise function in Eq. (3).

k(v
_rfy -(v/a)* Q)
v)= e
r)=4(%)
F(v)=1-¢®" @
0, Osv<vorvzv,
P.=1P,. VTh v, <v<v, A3)
TV,
Pogowo v, Sv<y,
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Where v is the wind speed; 4 and k are respectively the
scale parameter and shape parameter of the Weibull dis-
tribution; f{") is the probability density function (PDF); v ,
v, and v, are the cut-in wind speed, rated wind speed, and
cut-out wind speed, respectively; P, and P, are respec-
tively represent the actual output and rated output of the
wind turbines.

For doubly-fed induction generators (DFIGs), optimiza-
tion algorithms are employed to enhance operational perfor-
mance [28-30]. Under the constant power factor control strat-
egy, the proportional relationship between active power P
and reactive power O, at the stator side follows Eq. (4) [31].

0, = B tan(p) “)

In Eq. 4), ¢ is the power factor angle. Ignoring the
reactive power on the rotor side, the reactive power O
generated by the wind turbine is approximately equal to
the reactive power on the stator side.

2.2 Probability model of load

The random fluctuation of electric load is dependent on the
cyclical or regular changes in social production and life.
As a result, the random variation of electric load can be
described as the Normal distribution characteristics [19].
The PDF of active and reactive power of electrical loads
can be described as follows:

f(P) = 1 ef(Pf/"p)l/zo-i (5)

e_(Q_“q )2/265

; ©)

where f(°) is the PDF of the electric load; P and Q respec-
tively represent active and reactive power; 1, and 14, Tespec-
tively denote the average of active and reactive power of
electric bus load; o, and o, are respectively the standard
deviation of active and reactive power of electric bus load.

2.3 Correlation of wind power output

The Pearson correlation coefficient is a statistical measure
that can be used to assess the linear relationship between
two random variables [32]. This correlation index is easy to
calculate and requires little data. The Pearson correlation
coefficient better captures the true relationship between
two variables. Let the n-dimensional random variables
cnx)and Y(y, 3, Y, o5 ¥,), (7= 1,2, .., n).
In mathematics, the Pearson correlation coefficient between

X(x,, x,, x,

two random variables X and Y is given by Eq. (7) [5]:
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where x and y are respectively the average values of X
and Y. E, and E are respectively the variances of X and ¥.
The correlation coefficient p(X, ¥) is in [-1, 1]. where —1
indicates a completely negative linear relationship, 1 indi-
cates a completely positive linear relationship, and 0 indi-
cates no linear relationship.

2.4 Correlation processing based on Nataf transform
The Nataf transformation converts arbitrary random
variables into standard normal variables for probability

_ J:o:o.[j;F;l (CD(ZI'))FJTI (CD(ZJ‘ ))Q’zfj (z,.,zj )dz[dzl. —HH;

Pxj =
0,0,

where u and o are respectively the average and standard
deviation of x; 9., is the PDF of the standard binary Normal
distribution; the correlation coefficient of 9., is Py

According to Eq. (9), the correlation coefficient matrix
C,of Zz, z,, z, ..., z,) can be obtained. The Cholesky
decomposition C, can be obtained [34]:

C,=LL. (10)

With the lower triangular matrix L of the Cholesky
decomposition, the correlated Z(z,, z,, Z, ..., z,) can be
converted to an independent standard normally distrib-
uted random variable ¥(y, y,, v, ..., »,), i.€.,

Y=L'Z. (11)

Therefore, the correlation of wind speed can be pro-
cessed by Nataf transformation.

3 PPF calculation and voltage deviation risk assessment
method based on TPF

The PPF calculation method based on TPF considering
wind speed correlation is proposed to address the uncer-
tainty of wind power distribution network operation.
The piecewise linearization technique is introduced to
discretize the output power of wind turbines. Since only
the influence of input variable uncertainty is considered,
the expansion of Gram Charlier series with high-order
moments omitted can be adopted.

analysis and risk assessment. In addition, the calculation
accuracy of the Nataf transform is high [33].

The n-dimensional random variable Z(z,, z,, z,, ..., z,)
distributed a standard Normal is introduced. The correla-
tion coefficient between z, and z, is Py @Gj=1,2, .., n).
According to the principle of equal probability, x, and
z; satisfy:
z,=0"(F(x)) i=12,...n, @)

where ®7!(") is the inverse of the CDF of the standard
Normal distribution; F() is the CDF of the random
variable x..

According to Eq. (8) and the definition of the correla-
tion coefficient, the relationship between Py and P is

©

3.1 Power flow calculation model
The bus power equation of the power system is as
follows [35]:

R=V.37,(G, cos0, + B, sin,)

! (12)
0=V, (Gif sin), — B, cost), )

j=1

where P, and Q, are respectively the injection amounts of
active and reactive power of bus i; ¥, and 6, are respec-
tively the voltage amplitude and its angle of bus i; G,y and
B, are respectively the real and imaginary parts of admit-
tance matrix elements.

Equation (12) can be simplified as follows [36]:

{W = f(H)

K=L(H)’ (3

where W is the matrix composed of the injected power for
each bus; H is the state matrix of each bus; K is the matrix
of branch power flow; f(H) and L(H) are respectively the
bus voltage equation and branch power flow equation.

The injected bus power W is regarded as the input
random variable of the grid, then the results H and K of
power flow calculation can be regarded as the output ran-
dom variables. The above three random variables can be
written as the form of reference value with random distur-
bance value, that is



W =W, +AW
H=H,+AH , (14)
K=K, +AK

where W, H, and K are respectively the reference val-
ues or expectation values of bus injection power, bus state
and branch power flow; AW, AH and AK are respectively
the random disturbance values of bus injection power, bus
state and branch power flow.

The power flow equations at the reference operating
point are expanded using the Taylor series. Neglecting the
higher-order terms, the linearized expression of the power
flow equation can be shown as follows:

AW =J,AH

(15)
AK = D,AH
AH = J,'AW = S, AW 16)
AK =DyJ, AW =T AW’

where J| is the Jacobian matrix used in the last iteration
of power flow calculation; D, is a matrix of order 2b x 2n,

in which b is the number of branches and » is the number

oK
of buses; D, :67 wen, 3 Sy = Iy T, = DJ;" is the

sensitivity matrix.

3.2 Discretization of a stochastic model of wind power
generation

In Eq. (3), when the wind speed satisfies the condition
v € [v,, v,], the output power approximated as a linear state
of the wind turbines in this interval of wind speed [v , v,]
can be divided into m segments according to the set power
step size for discretization [37]. The relationship between
wind power and wind speed is shown in Fig. 1. Taking the
i paragraph on wind speed as an example, the power of
wind turbines is approximately (P, + P,,)/2 with a prob-
ability in Eq. (17). After the discretization process, m + 2

Puinakw) A
P,r————————
|
Pyp—————-— |
Pi [T 777 |
|
|
|
|
Vi i+l m v >
V(m/s)

Fig. 1 Relationship between wind power and wind speed
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discrete values and their corresponding probabilities are
used to describe the randomness of the output power for
the wind turbine [37].

Py[(R+P

i+l i

)/2]=F(vi)-F(v")= A i) ,
v <v< v,

17)

Where v is the wind speed; A and k are respectively the
scale parameter and shape parameter; v" is the i segment
wind speed discretized by wind speed's interval [v, v.];
F(v) is the CDF of wind speed; P_,[(P, + P, )/2] is the
probability when the output power of wind turbine is in
the i segment at (P, + P, )/2.

Meanwhile, P
power of the wind turbine is 0. P_,(P ) is the probability

(0) is the probability when the output

rob

when the output power of the wind turbine is P . The cal-
culations of P _,(0) and P_,(P,) are shown in Eq. (18) and

F

Eq. (19), respectively.

P, (0)= F(V1)+[1_F(V3 )J =1-e M e (18)
V<V 0rv>v,
Prob = (Pw) = F(V3)—F(V2 ) = e_(VZ/A) _e_(VSM) > (19)

v, <V <,

3.3 Combination of multiple discretization states of
wind power

The output power of multiple wind turbines needs to be
respectively discretized. Then, the output states of multi-
ple wind turbines are combined to obtain N combinations
of output power for the system's multiple wind turbines.
N is the superposition of the discretized fragments m of
wind power, as shown in Eq. (20). Furthermore, Eq. (21)
represents the n™ output combination state, where P(C))
is the output power of the i wind turbine in the n™ state.
The probability of the n™ state is shown in Eq. (22), where
P _.[P(C))]is the probability when the output power of the
n™ wind power station is P(C ).

N:ﬁ(m, +2) (20)

i=l1
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3.4 PPF results calculation based on TPF

Event 4 in the system is defined as a state variable x which
is less than x,. F(x,) indicates its cumulative distribu-
tion probability, and f{x,) represents its probability den-
sity. P_,(C)) is denoted as P _,(B). The probability of an
event A P (A) is shown in Eq. (23) by the TPF. When
the wind power output is a constant value, for the condi-
tional event A|B , the random variables in the system meet
the Normal distribution. Therefore, the CDF of the condi-
tional event 4|B is shown in Eq. (24) [38].

N
Prob (A):Zth( )XProb (B ) (23)
n=l1
X4 1 ’([’f‘»r )Z
F(x,|B)= [ ——e ™ a 4

o2

With the discretized stochastic model for wind power
output, there are N Gauss functions in the N output combi-
nation state of wind power generation for any system state
variable to be sought. From Eq. (23), the probability P (B, )
of the corresponding power combination state can be accu-
mulated one by one to obtain a complete PDF. In theory,
when N approaches infinity, that is, when the step size
approaches 0, the distribution function tends towards the
true distribution, as shown in Eqgs. (25) and (26). The above
process is based on the direct derivation of the established
discrete model of wind power generation.

X, ’(’*”n)z
N 4 1 5
F = P, (B o de 25
(xA ) ; rob ( n ):'; Gn [_27[ e ( )
N 1 ‘(M‘? )
EA IS I m— o

n=l1 Gn 27'[

Where F(x,|B)) is the CDF that the state variable x is less
than x, when the wind power output power is in the n"
state; 4 and o are respectively the expected value and
standard deviation of the state variable x obtained by cal-
culating the PPF, considering the random changes of the
bus loads when the wind power in the grid is in the n'" state.
The relationship between the cumulant and origin moment
is shown in Eq. (27). The properties of the TPF can be sat-
isfied based on the origin moment from Eq. (27). The ori-
gin moment of each state variable considering all combined
states is shown in Eq. (28) [39]. Then, the inverse transfor-
mation of Eq. (27) is used to obtain the final second-order
cumulant of the state variable. The center moments of other
orders can also be calculated using the above method.

{al =K, Cor {Kl =aq, 2 @7
a2=K1+K1 K, =Q, —Q

N N
al_zaln})mb(Bn)zzKln})mb( n)

n=I1 n=I1 (28)

Where o, represents the first-order origin moment; a,
represents the origin moment in the n" output state of
wind power generation; x is the symbol index has the same
meaning as the cumulant of the state variable.

3.5 Evaluation indicators

3.5.1 Probability of voltage deviation

Voltage deviation probability measures how likely bus
voltages are to exceed safe limits during grid operation.
This probability depends on grid conditions, load vari-
ations, generation uncertainties, and weather effects.
As the deviation increases, the risk of voltage devia-
tion also increases. Such deviations may damage equip-
ment, reduce power quality, or cause system failures.
Equation (29) provides the method to calculate this
probability [40]:

jj’ v)dv, v.<v,

min

F(V:): 0’ Vmin < V: < Vmax > (29)

j/‘ Ydv, V>V,

where f(V)) is the voltage probability density function of
the bus i; F(V)) is the risk value for voltage deviation; V, is
the per unit value of bus voltage; i-bus number; V. and

V. are the upper and lower limits of the allowable range

min

of bus voltage, respectively.

3.5.2 Severity of voltage deviation

Different forms of utility functions reflect decision-mak-
er's attitudes toward risk perception, which are generally
divided into three types: risk aversion, risk neutrality, and
risk preference. The functional characteristics of the risk
preference utility function are shown in Eq. (30) [41]:

M(0)=——, (30)

where 6 is the severity risk indicator: y > 0 is generally
taken as y = 1. The severity function for voltage exceeding
a given threshold is generally M'(0) > 0, M"(0) > 0.



The distribution network needs to have safe and reli-
able power supply capabilities. As the distribution net-
work directly faces the user terminal, it must ensure qual-
ified power quality, that is, M'(d) > 0. At the same time, an
increase in voltage fluctuation range will inevitably cause
voltage to exceed the limit, that is, M"(0) > 0. Therefore,
this paper adopts a risk preference utility function to char-
acterize the severity model of events, which reflects the
network's ability to withstand voltage exceeding limits
and is closer to the actual situation of the distribution sys-
tem [31]. Its utility function can be expressed as

M(0)=0.582(e" ~1). 31

Voltage deviation shows how far distribution network bus
voltages move from normal levels, indicating collapse risk.
Larger deviations cause more serious voltage problems. This
paper defines the severity risk index 6 as shown in Eq. (32):

Vi =V,

M’ VI <I/min
VB_V;
9 = O, Vmin < V: < Vmax > (32)
V.-V
x—n‘mx’ V/ >Vmax
Vi_VB

where V. and V. are the upper and lower limits of the
allowable range of bus voltage, respectively, and V, is the
reference voltage.

3.5.3 Comprehensive evaluation index for voltage
deviation risk

Taking into account the probability and severity of volt-
age deviation, the comprehensive risk index R for volt-
age exceeding in the distribution network is shown
in Eq. (33) [42]:

R=3R=T ) M@+ [ 1()m(E)a,.

(33)
where R, represents the comprehensive risk index of
voltage deviation of the system bus i; n is the total num-
ber of buses.

3.6 Voltage deviation risk assessment calculation
process
Fig. 2 shows the PPF calculation based on TPF consid-
ering correlation for voltage deviation risk assessment.
The specific steps are as follows:
1. According to Egs. (5) and (6), the probability model
of the load is developed and the second-order
semi-variables of the load are obtained.
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2. The rated power of wind power is segmented
step-by-step.

3. According to Egs. (20) and (21), N times determinis-
tic power flow is calculated.

4. Wind power is obtained by utilizing the relationship
of wind speed in Eq. (3) and the Nataf transform for
the correlation of wind speed for the wind speed.

5. The wind power is matched with the segmented
power to obtain the probability of each subsection.

6. The PDF of the output random variable can be
obtained from Egs. (25) and (26).

7. Calculate the voltage deviation probability and
severity. Then determine the comprehensive over-
voltage risk index using Eq. (33).

8. The comprehensive risk of voltage deviation in dis-
tribution networks under different operating condi-
tions is evaluated.

4 Results and discussion

4.1 Test system and input data

The IEEE-33 bus simulation system was established based
on the MATLAB platform to demonstrate the correct-
ness and effectiveness of the proposed TPF method in this
paper [21]. Fig. 3 depicts the topology of the IEEE-33 bus
system, highlighting the positions of critical buses and
wind turbine connections. The original load data uses the
sample mean as its baseline value, with a variation coeffi-
cient of 0.1. Buses 18 and 33 are electrically distant from
generators, making them weak voltage points in the sys-
tem. In order to mitigate voltage drops at these weak buses,
wind turbines with capacities of 600 kW and 400 kW were
connected to buses 18 and 33, respectively [22]. Wind tur-
bines operate at a constant power factor and receive reac-
tive power from the grid.

According to Egs. (1) and (2) in Section 2, the Weibull
distribution parameters are fitted based on historical mea-
sured wind speed data. The scale and shape parameters of
wind speed can be obtained as A = 10.7 m/s and k = 2.7,
respectively. The cut-in wind speed rated wind speed,
and excised wind speed of wind turbine are respectively
3 m/s, 18 m/s and 25 m/s [17]. According to the relation-
ship between the output active power of wind turbines and
wind speed in Eq. (3), the active power of wind turbines
follows a non-normal distribution. This paper proposes the
TPF method for PPF calculation. The 10* MCS results serve
as the benchmark. The TPF calculation results were com-
pared with the 2PEM calculation results to verify the accu-
racy and effectiveness of the method proposed in this paper.
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Input raw single-phase network data, as well as wind speed and
wind turbine capacity information.

v
According to the probability model of load, the second-order

semi-invariant is obtained.
v
The wind power in the wind speed interval [ vy, v, ] is segmented
with a fixed step size. The reactive power in each subsrction is
calculated by Eq. (4).
v
k=1

|The deterministic power flow is calculated once in each subsection.

el v

A The semi-invariant of the output variable is calculated according
to Egs. (15) and (16).

Y

N>k?
N
The spatial correlation of wind speed is processed by Nataf
transform. The wind power samples with correlation are obtained
according to Eq. (3).

The probability of each subsection after wind power combination
is calculated.

According to Egs. (25) and (26), the probability distribution of
output random variables are obtained.
v
From Eq. (28), the expectation and variance considering all
randomness are calculated.

v

According to Eq. (33), a comprehensive risk index for voltage
exceeding the limit is established.

v

The comprehensive risk of voltage exceeding the limit under
different conditions is evaluated.

End

Fig. 2 Flowchart of PPF calculation using the TPF method considering the correlation

23 24 25
4.2 Results of PPF
26 2_7 2_8 2_9 3'0 3'1 3_2 3_3 To visually demonstrate the accuracy of the proposed TPF
. | g . / o method, the MCS method was used as a benchmark to com-
[\ 3 6 910 11 1213 14 15 16 1718  Dare the TPF and 2PEM methods. The 18 and 33 buses con-
nected to the wind turbine, as well as the 22 and 25 buses
19 20 21 22 that are far away from the wind turbine connection bus, are

Fig. 3 Topology diagram of IEEE-33 bus system analyzed as examples. As presented in Fig. 4, shows that the
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Fig. 4 Voltage probability density obtained by different calculation methods: (a) Bus No. 18, (b) Bus No. 33, (c) Bus No. 22, (d) Bus No. 25

voltage probability density curves vary depending on the
proximity of the bus to the wind turbine and the distribution
characteristics of the input random variables. At buses 18
and 33, where the wind turbine is directly connected, the
results from the TPF method closely match those from the
MCS method, demonstrating the method's high accuracy. In
contrast, for buses 22 and 25, which are farther from the tur-
bine, the input random variables tend to follow the normal
distribution more closely, leading to a better performance of
the 2PEM method compared to TPF. This detailed compar-
ison underscores the capability of the TPF method in han-
dling non-normal random variables more effectively.

4.3 The analysis of calculation error

To quantitatively compare the overall performance of the
TPF method proposed in this paper, Average errors gi and
¢ are defined for each output random variable, as shown

in Egs. (34) and (35), respectively. The smaller the gi and
¢ indicators, the better the performance of the calculation
method. The specific results of the error results are shown
in Table 2, which have variable indicators such as voltage
amplitude (V) ), voltage phase angle (V), active power and
reactive power (P[.j and Q,-,-)~

N,

B Z|”MCS - .uo|

g, =+ x100[%] (34)
N,

B Z|GMCS - Uo|

&y =H———x100[%] (35)

r

Where u,, . and o, represents the average and standard
deviation of each output random variable calculated by the
MCS method, while x, and o, represents the average and
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Table 2 Comparison of calculation accuracy under different segmentation step sizes

Cases k=20kW k=25kW k=40 kW
TPF (%) 2PEM (%) TPF (%) 2PEM (%) TPF (%) 2PEM (%)
Results ¢ g ¢ g ¢ g ¢ g ¢ g £ g
g 0.0020  0.0210 02017 01311 00018 00210 02017 0131 00022  0.0208 02017  0.1311
v, 0.0002 00124 02635 01144 00005  0.0122 02635  0.144 00001  0.0127 02635  0.1144
P, 00035 00053 00302 00203 00027 00053 00302 00203 00041 00042 00302  0.0203
0 00023 00021  0.6863 00557 00027 00022 06863 00557  0.0020 00016  0.6863  0.0557

Y

standard deviation of the output random variables calcu-
lated by the other two methods except MCS; N is the num-
ber of random variables.

4.4 Comparison of calculation time

In the IEEE-33 bus system, the TPF method's computa-
tion time varies with wind power segmentation step sizes.
As in Section 4.3, the calculation speed of different meth-
ods is compared under three different step sizes. Table 3
compares computation times for MCS, TPF, and 2PEM
methods using these step sizes.

Table 3 shows TPF's efficiency improvements over MCS:
68.36% faster at 20 kW, 80.40% at 25 kW, and 88.77% at
40 kW step sizes. Larger step sizes significantly reduce
TPF's computation time, but require balancing speed with
accuracy. While 2PEM shows minimal computation time
variation, TPF offers greater advantages when considering
both computational accuracy and speed.

In summary, the proposed TPF method demonstrates
three key advantages when using optimal step sizes:

1. It computes faster than both MCS and 2PEM,

2. handles non-normal distributions more effectively,

3. maintains superior calculation accuracy.

These combined benefits make TPF particularly suit-
able for probabilistic power flow analysis and voltage
deviation risk assessment applications.

4.5 Average and standard deviation with different levels
of correlation

Fig. 5 shows the bus voltage average and standard devi-
ation. Fig. 5 (a) reveals that wind power correlation lev-
els have minimal impact on average voltage amplitudes.

Table 3 Comparison of calculation time

Calculation time (s) Improved efficiency of

FOW) MCS TPF 2PEM TPF (%)
20 33.8750 107188  7.2813 68.3579
25 33.5625  6.5781  7.4531 80.4004
40 347813 39063  7.6094 88.7691

However, Fig. 5 (b) demonstrates that voltage standard
deviation increases with higher wind speed correlations.
Stronger correlations make different wind turbine's out-
puts more similar yet more volatile. Buses closer to wind
turbines experience greater standard deviation changes.

4.6 Probability density of voltage amplitudes with
different correlations

Fig. 6 displays the voltage probability density for buses 18
and 33. As wind power correlation increases from 0.1 to
0.9, the probability density curve shifts from "thin and tall"
to "short and fat". This change indicates a wider voltage
fluctuation range under higher correlations. Consequently,
stronger correlations raise the risk of voltage deviations.

4.7 Probability assessment of voltage deviation risk
4.7.1 Probability assessment of voltage deviation risk
when connecting different wind turbine capacities

Fig. 7 shows the voltage probability density curves for
buses 18 and 33. As wind turbine capacity grows from
400 kW to 1600 kW, the curve shifts rightward, indicat-
ing higher average voltages. While wind power improves
voltage levels, it also widens the fluctuation range,
increasing grid uncertainty.

Fig. 8 shows the voltage probability density for buses 18
and 33. When connected wind turbine capacity reaches
4200 kW and 4800 kW, the voltage exceeds the upper limit.
Fig. 8 demonstrates that higher wind turbine capacity reduces
low-voltage probability but increases overvoltage risk.

Fig. 9 shows the voltage deviation risk at each bus for
different wind turbine capacities (without wind speed
correlation). As wind turbine capacity increases, the
risk index decreases. Fig. 7 reveals that higher capacities
(within a range) boost voltage and reduce lower-limit vio-
lations. Small capacities avoid upper-limit violations, but
at 4200 kW (Fig. 8), upper-limit violations occur. Thus,
risk initially decreases with capacity but rises for upper-
limit violations. The 4200 kW case is theoretical; practi-
cal networks may not support it. Hence, this study uses
1600 kW as the maximum capacity.
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14 . : . .
4200kW Table 4 presents bus voltage indicators for differ-
= = = -4800kW . . .. . .
12+ 1 ent wind turbine capacities. As capacity increases from
400 kW to 1600 kW, three trends occur:
10 il 1. voltage deviation probability decreases,
= - . .
Z 2. utility function value declines, and
5 gt . . L -
@ 3. comprehensive risk index drops significantly from
Z |l i 0.7332 to 0.1699.
2
2
-9}
4 . This 77% risk reduction greatly improves distribution
network safety. These results match practical experience -
2r 7 within this capacity range, larger wind turbines effectively
boost voltage and reduce lower-limit violation risks.
0
0.85 1.1
4.7.2 Probability assessment of voltage risk at different
@ levels of correlation
13 ' ' ' ' ' ' 42‘00kw Fig. 10 shows the voltage deviation risk index at 1600 kW
= = = -4300kW wind capacity across different correlation levels. Higher
correlation levels increase the risk index, especially at
wind turbine connection buses. Stronger correlations
.é‘m i | make wind turbine outputs more consistent, disrupting
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Table 5 shows clear trends as wind power correlation
increases from 0.1 to 0.9. The probability of voltage devia-
tion rises steadily. Utility function values show consistent
growth. The comprehensive risk index climbs from 0.1812
to 0.2114. This 16.7% increase signals higher operational
risks for the distribution network. Stronger correlation
creates tighter coupling between wind turbine outputs.
This synchronization leads to network instability. Voltage
deviation violations become more likely.

As shown above, the capacity and correlation level of
wind turbines connected will affect the voltage risk of the
distribution network. Within a certain range, the larger the
capacity of the connected wind turbine, the lower the voltage
risk of the distribution network. The higher the correlation
level, the higher the voltage risk of the distribution network.

5 Conclusions

This paper proposes a probability assessment method for
calculating voltage deviation risk using PPF based on TPF,
taking into account the correlation of wind speed. Firstly,
the Pearson correlation coefficient is used to character-
ize the correlation of wind speed. The Nataf transform
is used to process the correlation of wind speed. Within
the linear range of wind power, considering the calcula-
tion accuracy and speed of TPF, the output power of wind
turbines is discretized with a fixed segmented step size.
Secondly, this paper proposes a TPF method to solve PPF
for distribution networks with wind turbines. The method
obtains numerical characteristics and PDFs of the output
random variables. Then, this work establishes a voltage
deviation risk index. The index incorporates two factors:
the probability of voltage deviation, and the severity of
deviation. Finally, the accuracy and speed of the proposed
method were verified in the IEEE-33 bus system. Obtain
the following results:

Table 5 Voltage indicators at different correlation levels

Correlation level

Voltage index
0.1 0.3 0.5 0.7 0.9

Probability of

exceeding the limit 0.1474 = 0.1459

0.1493  0.1495 0.1503

Utility function value  0.4532  0.4387 0.4630 0.4734 0.4509

Comprehensive risk

. 0.1812
indicators

0.1842  0.1968 0.2037 0.2114
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1. The implementation of segmented linearization for
wind power output discretization enhances com-
putational efficiency while maintaining required
accuracy levels.

2. The correlation of wind power outputs shows negligible
influence on the average voltage amplitude at system
buses. However, stronger correlations lead to signifi-
cantly higher standard deviations in bus voltage ampli-
tude. Notably, buses electrically closer to wind power
sites experience more pronounced voltage fluctuations.

3. The higher the correlation level, the higher the prob-
ability of voltage deviation, and the higher the com-
prehensive risk index of voltage deviation.

4. Within a certain range, increasing the capacity of
connected wind turbines can elevate the bus voltage,
thereby decreasing the probability of voltage falling
below the lower limit and mitigating the overall volt-
age deviation risk. However, when the wind power
capacity exceeds a certain threshold, the bus volt-
age may rise beyond the upper limit, leading to an
increased risk of overvoltage.

The TPF method proposed in this paper is suitable for
analyzing and calculating the safe operation and planning
scheduling of high-proportion wind power integration into
distribution networks considering the uncertainty and has
certain feasibility. Building on the current research, future
work will investigate hybrid PV-wind distribution networks.
Specifically, the proposed method will be applied to inves-
tigate how photovoltaic (PV) and wind power interactions
influence grid operation. One limitation of the proposed
method is its inability to automatically select segmentation
step sizes. Automated selection of segmentation step sizes
would better balance computational accuracy and speed.
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