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Abstract

Driven by the "dual-carbon" goals, the large-scale integration of wind power into distribution networks poses challenges to voltage 

stability due to its inherent volatility and uncertainty. To address it, this paper proposes a probabilistic assessment method based on 

the total probability formula that incorporates wind speed correlation to effectively evaluate voltage deviation. Firstly, the probability 

model of wind power is established according to the uncertainty of wind speed considering the correlation. Secondly, the wind power 

output is discretized and aggregated to ensure that the resulting random variables in the combined state approximately follow a normal 

distribution. Spatial correlations in wind speed are accounted for using the Nataf transformation. Furthermore, the probability of 

each aggregated wind power state determines its weight. These weights are then used to accumulate and integrate the probabilistic 

power flow (PPF) results. The total PPF calculation accounts for wind power uncertainty, following the Total Probability Formula (TPF) 

framework. Finally, considering the indexes with the probability and severity of voltage deviation, the comprehensive risk indicator 

for voltage exceeding limits is constructed. Based on the IEEE-33 bus test system, the proposed TPF method is compared with Monte 

Carlo Simulation (MCS) and the Two-Point Estimation Method (2PEM). The comparison demonstrates its superior computational 

accuracy and efficiency, establishing it as an effective tool for assessing the impact of wind power integration on distribution networks.
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1 Introduction
1.1 Background
Under the promotion of the "dual-carbon" strategic objec-
tives, distributed and centralized wind power generation, 
as crucial components of clean energy, play significant 
roles in constructing new power systems  [1]. By the end 
of 2024, China's installed wind power capacity reached 
approximately 510  million kilowatts, with photovoltaic 
capacity around 840  million kilowatts, maintaining a uti-
lization rate above 95% [2]. The increasing integration of 
wind power into distribution networks, particularly under 
the "Thousand Townships and Ten Thousand Villages 
Wind Utilization Initiative", has rendered the interaction 
between distributed wind power and distribution networks 
increasingly complex  [3]. During wind turbine operation, 
wind speed fluctuations are transformed into power varia-
tions through a cubic relationship, thereby inducing voltage 
fluctuations. Influenced by multiple factors including wind 

speed and meteorological conditions, wind power exhib-
its marked uncertainty  [4,  5]. When wind power output 
exceeds local load demand, it alters the voltage distribution 
and power flow direction in distribution networks [6]. This 
phenomenon not only expands the voltage fluctuation range 
but also triggers voltage quality issues such as voltage devi-
ation exceedance [7]. Therefore, voltage risk assessment for 
wind-integrated distribution networks constitutes a critical 
link in ensuring secure and stable system operation.

1.2 Literature review
Traditional methods for voltage risk analysis and assess-
ment in distribution networks include sensitivity analy-
sis  [8], continuation power flow method  [9], and modal 
analysis  [10]. These deterministic approaches, based on 
fixed operational scenarios, offer advantages such as 
computational simplicity, high efficiency, and intuitive 
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results, enabling the evaluation of system security mar-
gins [11, 12]. However, wind power output exhibits inher-
ent uncertainty and randomness, with operational scenar-
ios being non-unique. The extreme scenario assumptions 
in deterministic methods may lead to assessment results 
deviating from actual operating conditions [13]. Notably, 
adjacent wind turbines demonstrate significant spatial 
correlations in wind speed exposure and power gener-
ation  [14]. Neglecting such spatial correlations could 
severely compromise the accuracy of voltage risk assess-
ments  [15]. For voltage quality analysis in wind-inte-
grated distribution networks considering uncertainty, 
probabilistic risk assessment based on probabilistic 
power flow (PPF) calculation proves effective. Common 
PPF computation methods fall into three categories [16]: 
Monte Carlo Simulation (MCS), analytical approaches, 
and approximation methods  [17]. While MCS achieves 
the highest accuracy, it requires extensive random sam-
pling and iterative computations, resulting in low effi-
ciency  [18]. Analytical approaches generate significant 
errors when input variables exhibit large fluctuations, 
whereas approximation methods face scalability limita-
tions due to constrained sampling sizes [19].

Singh et  al.  [20] proposed a Cornish-Fisher expan-
sion-based risk assessment method for distribution net-
works. However, in wind-integrated distribution networks, 
non-Gaussian distributions of input variables may induce 
computational deviations, and the spatial correlations 
among wind turbines remain unaddressed. Table 1 shows 
a comparison between existing research and the current 
study. Ma  et  al.  [21] employed multi-order semi-invari-
ants combined with Gram-Charlier series expansion for 
probabilistic static voltage stability assessment in wind-in-
tegrated systems. Nevertheless, its limited capability to 
model non-Gaussian distributions introduces significant 
errors in voltage risk evaluation. Yu et al.  [22] developed 

a time-segmented Monte Carlo sampling method to assess 
voltage risks from distributed wind and photovoltaic inte-
gration, addressing their intermittency. However, this 
approach suffers from high computational costs and ineffi-
ciency. Nejadfard-jahromi et al. [23] introduced a preven-
tive control-based method for rapid voltage stability margin 
evaluation in distribution networks with electric vehicles 
and wind power, yet the exclusion of wind power cor-
relations compromises assessment completeness. Canudo 
et  al.  [24] proposed an improved point estimate method 
incorporating local voltage stability indices, but its neglect 
of wind farm spatial correlations leads to non-negligible 
errors in system voltage stability assessment. In contrast, the 
Total Probability Formula (TPF) inherently avoids distribu-
tion-fitting assumptions (e.g., normality deviations) while 
strictly adhering to the probability conservation principle 
(summing to unity) [25]. By integrating probabilistic distri-
butions from PPF calculations, TPF demonstrates superior 
computational accuracy for voltage risk quantification.

1.3 Contribution
In light of these considerations, this paper innovatively 
integrates wind speed spatial correlations with the TPF 
to propose a voltage deviation risk assessment framework 
for wind-integrated distribution networks. The framework 
combines TPF and Nataf transformation-based PPF cal-
culations, establishing a spatially correlated wind speed 
probability model. By leveraging voltage deviation prob-
abilities and severity indices, it constructs a comprehen-
sive risk assessment framework to quantitatively evaluate 
the impact of wind speed correlations on voltage deviation 
risks. The key contributions are summarized as follows:

1.	 A data-driven wind speed parameter modeling 
method incorporating spatial correlations is devel-
oped to accurately characterize the operational 
uncertainty of wind turbines.

Table 1 Comparison between existing research and this study

Research direction Research contents Research methods Methods of this paper

Probabilistic 
Power Flow 
(PPF) calculation 
methods

Probability power 
flow result distribution 

considering the 
randomness of wind power 
(voltage, power, etc.) [20].

Analysis methods (such as 
convolution) [9], Monte Carlo 
simulation [17], approximation 

methods (such as Cornish 
Fisher expansion) [19].

The proposed PPF method, based on TPF combined with the 
Nataf transformation, efficiently computes PPF in distribution 

networks with correlated wind power. This approach 
improves computational accuracy while maintaining low 

computational costs.

Voltage deviation 
risk assessment

Statistical evaluation of the 
probability of bus voltage 
exceeding the limit [14], 
standard deviation and 

average value of voltage 
amplitude [15].

Probability density function 
fitting [11], risk indicators [12].

Based on the PPF method combining TPF and Nataf 
transformation, the comprehensive risk index is formed by 

considering the probability and severity of voltage deviation. 
The comprehensive risk of voltage deviation has been 

evaluated. Comprehensively reflect the impact of wind power 
on the distribution network.
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2.	A piecewise linearization technique is introduced to 
discretize wind power outputs, coupled with a PPF 
computation method based on TPF and Nataf trans-
formation, significantly enhancing computational 
efficiency.

3.	 A composite voltage risk index integrating deviation 
probability and severity is formulated, establishing 
a  TPF-based PPF framework for voltage deviation 
risk assessment to improve result accuracy.

4.	 The proposed TPF-Nataf probabilistic risk assess-
ment method provides practical case studies and 
analytical tools for evaluating the grid integra-
tion impacts of the "Thousand Townships and Ten 
Thousand Villages Wind Utilization Initiative".

The rest of this paper is organized as follows: 
•	 Section  2 introduces the wind speed probability 

model and the correlation characterization of ran-
dom variables. 

•	 In Section 3 introduces the PPF calculation method 
based on TPF and proposes a comprehensive voltage 
risk method and calculation evaluation process. 

•	 Section 4 verifies the framework through case anal-
ysis and discussion. 

•	 Finally, Section 5 is the conclusion.

2 Probability model and correlation of input random 
variables
2.1 Probabilistic modeling of wind power
Due to the deterministic models not reflecting the random-
ness and volatility of wind power [26], the commonly uti-
lized Weibull distribution is used to describe the probabil-
ity model of wind speed, as shown in Eq. (1). Equation (2) 
represents the cumulative distribution function (CDF) 
of wind speed  [27]. The relationship between the active 
power output of wind turbines and wind speed can be 
expressed as a piecewise function in Eq. (3).
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Where v is the wind speed; λ and k are respectively the 
scale parameter and shape parameter of the Weibull dis-
tribution; f(∙) is the probability density function (PDF); v1, 
v2 and v3 are the cut-in wind speed, rated wind speed, and 
cut-out wind speed, respectively; PDG and PDG,w are respec-
tively represent the actual output and rated output of the 
wind turbines.

For doubly-fed induction generators (DFIGs), optimiza-
tion algorithms are employed to enhance operational perfor-
mance [28–30]. Under the constant power factor control strat-
egy, the proportional relationship between active power Ps 
and reactive power Qs at the stator side follows Eq. (4) [31].

Q Ps s� � �tan � 	 (4)

In Eq.  (4), φ is the power factor angle. Ignoring the 
reactive power on the rotor side, the reactive power QG,w 
generated by the wind turbine is approximately equal to 
the reactive power on the stator side.

2.2 Probability model of load
The random fluctuation of electric load is dependent on the 
cyclical or regular changes in social production and life. 
As a result, the random variation of electric load can be 
described as the Normal distribution characteristics [19]. 
The PDF of active and reactive power of electrical loads 
can be described as follows:
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where f(∙) is the PDF of the electric load; P and Q respec-
tively represent active and reactive power; μp and μq respec-
tively denote the average of active and reactive power of 
electric bus load; σp and σq are respectively the standard 
deviation of active and reactive power of electric bus load.

2.3 Correlation of wind power output
The Pearson correlation coefficient is a statistical measure 
that can be used to assess the linear relationship between 
two random variables [32]. This correlation index is easy to 
calculate and requires little data. The Pearson correlation 
coefficient better captures the true relationship between 
two variables. Let the n-dimensional random variables 
X(x1, x2, xi, …, xn ) and Y(y1, y2, yi, …, yn ), (i, j = 1, 2, …, n). 
In mathematics, the Pearson correlation coefficient between 
two random variables X and Y is given by Eq. (7) [5]:
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where x̄ and ȳ are respectively the average values of X 
and Y. EX and EY are respectively the variances of X and Y. 
The correlation coefficient ρ(X, Y) is in [−1, 1]. where −1 
indicates a completely negative linear relationship, 1 indi-
cates a completely positive linear relationship, and 0 indi-
cates no linear relationship.

2.4 Correlation processing based on Nataf transform
The Nataf transformation converts arbitrary random 
variables into standard normal variables for probability 

analysis and risk assessment. In addition, the calculation 
accuracy of the Nataf transform is high [33].

The n-dimensional random variable Z(z1, z2, zi, …, zn ) 
distributed a standard Normal is introduced. The correla-
tion coefficient between zi and zj is ρZij (i, j = 1, 2, …, n). 
According to the principle of equal probability, xi and 
zj satisfy:

z F x i ni i i� � �� � � ��� 1
1 2, , , ,	 (8)

where Φ−1(∙) is the inverse of the CDF of the standard 
Normal distribution; Fi(∙) is the CDF of the random  
variable xi.

According to Eq. (8) and the definition of the correla-
tion coefficient, the relationship between ρXij and ρZij is 
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where μ and σ are respectively the average and standard 
deviation of x; φzij is the PDF of the standard binary Normal 
distribution; the correlation coefficient of φzij is ρZij .

According to Eq. (9), the correlation coefficient matrix 
CZ of Z(z1,  z2,  zi,  …,  zn ) can be obtained. The Cholesky 
decomposition CZ can be obtained [34]:

C LLZ
T= .	 (10)

With the lower triangular matrix L of the Cholesky 
decomposition, the correlated Z(z1,  z2,  zi,  …,  zn ) can be 
converted to an independent standard normally distrib-
uted random variable Y(y1, y2, yi, …, yn ), i.e., 

Y L Z� �1 .	 (11)

Therefore, the correlation of wind speed can be pro-
cessed by Nataf transformation.

3 PPF calculation and voltage deviation risk assessment 
method based on TPF
The PPF calculation method based on TPF considering 
wind speed correlation is proposed to address the uncer-
tainty of wind power distribution network operation. 
The  piecewise linearization technique is introduced to 
discretize the output power of wind turbines. Since only 
the influence of input variable uncertainty is considered, 
the expansion of Gram Charlier series with high-order 
moments omitted can be adopted.

3.1 Power flow calculation model
The bus power equation of the power system is as 
follows [35]:
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where Pi and Qi are respectively the injection amounts of 
active and reactive power of bus i; Vi and θi are respec-
tively the voltage amplitude and its angle of bus i; Gij and 
Bij are respectively the real and imaginary parts of admit-
tance matrix elements.

Equation (12) can be simplified as follows [36]:

W H
K H
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�

��

f
L

,	 (13)

where W is the matrix composed of the injected power for 
each bus; H is the state matrix of each bus; K is the matrix 
of branch power flow; f(H) and L(H) are respectively the 
bus voltage equation and branch power flow equation.

The injected bus power W is regarded as the input 
random variable of the grid, then the results H and K of 
power flow calculation can be regarded as the output ran-
dom variables. The above three random variables can be 
written as the form of reference value with random distur-
bance value, that is 
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where W0, H0 and K0 are respectively the reference val-
ues or expectation values of bus injection power, bus state 
and branch power flow; ∆W, ∆H and ∆K are respectively 
the random disturbance values of bus injection power, bus 
state and branch power flow.

The power flow equations at the reference operating 
point are expanded using the Taylor series. Neglecting the 
higher-order terms, the linearized expression of the power 
flow equation can be shown as follows:
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where J0 is the Jacobian matrix used in the last iteration 
of power flow calculation; D0 is a matrix of order 2b × 2n, 
in which b is the number of branches and n is the number 

of buses; D
K
H H H0 0

�
�
� � ; S0  =  J0

−1; T0  =  D0J0
−1 is the 

sensitivity matrix.

3.2 Discretization of a stochastic model of wind power 
generation
In Eq.  (3), when the wind speed satisfies the condition 
v ∈ [v1, v2], the output power approximated as a linear state 
of the wind turbines in this interval of wind speed [v1, v2] 
can be divided into m segments according to the set power 
step size for discretization [37]. The relationship between 
wind power and wind speed is shown in Fig. 1. Taking the 
ith paragraph on wind speed as an example, the power of 
wind turbines is approximately (Pi + Pi+1 )/2 with a prob-
ability in Eq. (17). After the discretization process, m + 2 

discrete values and their corresponding probabilities are 
used to describe the randomness of the output power for 
the wind turbine [37].
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Where v is the wind speed; λ and k are respectively the 
scale parameter and shape parameter; vi

m is the ith segment 
wind speed discretized by wind speed's interval [v1,  v2]; 
F(v) is the CDF of wind speed; Prob[(Pi  +  Pi+1 )/2] is the 
probability when the output power of wind turbine is in 
the ith segment at (Pi + Pi+1 )/2.

Meanwhile, Prob(0) is the probability when the output 
power of the wind turbine is 0. Prob(Pw ) is the probability 
when the output power of the wind turbine is Pw . The cal-
culations of Prob(0) and Prob(Pw ) are shown in Eq. (18) and 
Eq. (19), respectively.
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3.3 Combination of multiple discretization states of 
wind power
The output power of multiple wind turbines needs to be 
respectively discretized. Then, the output states of multi-
ple wind turbines are combined to obtain N combinations 
of output power for the system's multiple wind turbines. 
N is the superposition of the discretized fragments m of 
wind power, as shown in Eq. (20). Furthermore, Eq. (21) 
represents the nth output combination state, where Pi(Cn ) 
is the output power of the ith wind turbine in the nth state. 
The probability of the nth state is shown in Eq. (22), where 
Prob[Pi(Cn )] is the probability when the output power of the 
nth wind power station is Pi(Cn ).
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Fig. 1 Relationship between wind power and wind speed
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3.4 PPF results calculation based on TPF
Event A in the system is defined as a state variable x which 
is less than xA. F(xA ) indicates its cumulative distribu-
tion probability, and f(xA ) represents its probability den-
sity. Prob(Cn ) is denoted as Prob(B). The probability of an 
event  A Prob(A) is shown in Eq.  (23) by the TPF. When 
the wind power output is a constant value, for the condi-
tional event A|Bn, the random variables in the system meet 
the Normal distribution. Therefore, the CDF of the condi-
tional event A|Bn is shown in Eq. (24) [38].

P A P A B P Brob rob n rob n
n

N

� � � � �� � �
�
�

1
	 (23)

F x B e tA n
n

tx n

n

A

� � �
� �� �

��
�

1

2

2

2
2

� �

�

�
d 	 (24)

With the discretized stochastic model for wind power 
output, there are N Gauss functions in the N output combi-
nation state of wind power generation for any system state 
variable to be sought. From Eq. (23), the probability Prob(Bn ) 
of the corresponding power combination state can be accu-
mulated one by one to obtain a complete PDF. In  theory, 
when N approaches infinity, that is, when the step size 
approaches 0, the distribution function tends towards the 
true distribution, as shown in Eqs. (25) and (26). The above 
process is based on the direct derivation of the established 
discrete model of wind power generation.
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Where F(xA|Bn ) is the CDF that the state variable x is less 
than xA when the wind power output power is in the nth 
state; μn and σn are respectively the expected value and 
standard deviation of the state variable x obtained by cal-
culating the PPF, considering the random changes of the 
bus loads when the wind power in the grid is in the nth state.

The relationship between the cumulant and origin moment 
is shown in Eq. (27). The properties of the TPF can be sat-
isfied based on the origin moment from Eq. (27). The ori-
gin moment of each state variable considering all combined 
states is shown in Eq. (28) [39]. Then, the inverse transfor-
mation of Eq. (27) is used to obtain the final second-order 
cumulant of the state variable. The center moments of other 
orders can also be calculated using the above method.
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Where α1 represents the first-order origin moment; α1,n 
represents the origin moment in the nth output state of 
wind power generation; κ is the symbol index has the same 
meaning as the cumulant of the state variable.

3.5 Evaluation indicators
3.5.1 Probability of voltage deviation
Voltage deviation probability measures how likely bus 
voltages are to exceed safe limits during grid operation. 
This probability depends on grid conditions, load vari-
ations, generation uncertainties, and weather effects. 
As  the deviation increases, the risk of voltage devia-
tion also increases. Such deviations may damage equip-
ment, reduce power quality, or cause system failures. 
Equation  (29) provides the method to calculate this 
probability [40]:
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where f(Vi ) is the voltage probability density function of 
the bus i; F(Vi ) is the risk value for voltage deviation; Vi is 
the per unit value of bus voltage; i-bus number; Vmax and 
Vmin are the upper and lower limits of the allowable range 
of bus voltage, respectively.

3.5.2 Severity of voltage deviation
Different forms of utility functions reflect decision-mak-
er's attitudes toward risk perception, which are generally 
divided into three types: risk aversion, risk neutrality, and 
risk preference. The functional characteristics of the risk 
preference utility function are shown in Eq. (30) [41]:

M e
e

�
��

� � � �
�

1
1

,	 (30)

where θ is the severity risk indicator: γ ≥ 0 is generally 
taken as γ = 1. The severity function for voltage exceeding 
a given threshold is generally M'(θ) > 0, M"(θ) > 0.
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The distribution network needs to have safe and reli-
able power supply capabilities. As the distribution net-
work directly faces the user terminal, it must ensure qual-
ified power quality, that is, M'(θ) > 0. At the same time, an 
increase in voltage fluctuation range will inevitably cause 
voltage to exceed the limit, that is, M"(θ) > 0. Therefore, 
this paper adopts a risk preference utility function to char-
acterize the severity model of events, which reflects the 
network's ability to withstand voltage exceeding limits 
and is closer to the actual situation of the distribution sys-
tem [31]. Its utility function can be expressed as 

M e� �� � � �� �0 582 1. .	 (31)

Voltage deviation shows how far distribution network bus 
voltages move from normal levels, indicating collapse risk. 
Larger deviations cause more serious voltage problems. This 
paper defines the severity risk index θ as shown in Eq. (32):

� �

�
�

�

� �
�
�

�

�

�

V V
V V

V V

V V V
V V
V V

V V

i

B i
i

i

i

i B
i

min

min

min max

max

max

,

,

,

0

��
��

�

�
�
�

,	 (32)

where Vmax and Vmin are the upper and lower limits of the 
allowable range of bus voltage, respectively, and VB is the 
reference voltage.

3.5.3 Comprehensive evaluation index for voltage 
deviation risk
Taking into account the probability and severity of volt-
age deviation, the comprehensive risk index Rs for volt-
age exceeding in the distribution network is shown 
in Eq. (33) [42]:

R R f V M V f V M Vs i
i
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i i

V

i i
V
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min

max

,	

(33)

where Ri represents the comprehensive risk index of  
voltage deviation of the system bus i; n is the total num-
ber of buses.

3.6 Voltage deviation risk assessment calculation 
process
Fig.  2 shows the PPF calculation based on TPF consid-
ering correlation for voltage deviation risk assessment. 
The specific steps are as follows:

1.	 According to Eqs. (5) and (6), the probability model 
of the load is developed and the second-order 
semi-variables of the load are obtained.

2.	The rated power of wind power is segmented 
step-by-step. 

3.	 According to Eqs. (20) and (21), N times determinis-
tic power flow is calculated.

4.	 Wind power is obtained by utilizing the relationship 
of wind speed in Eq. (3) and the Nataf transform for 
the correlation of wind speed for the wind speed.

5.	 The wind power is matched with the segmented 
power to obtain the probability of each subsection.

6.	 The PDF of the output random variable can be 
obtained from Eqs. (25) and (26).

7.	 Calculate the voltage deviation probability and 
severity. Then determine the comprehensive over-
voltage risk index using Eq. (33).

8.	 The comprehensive risk of voltage deviation in dis-
tribution networks under different operating condi-
tions is evaluated.

4 Results and discussion
4.1 Test system and input data
The IEEE-33 bus simulation system was established based 
on the MATLAB platform to demonstrate the correct-
ness and effectiveness of the proposed TPF method in this 
paper [21]. Fig. 3 depicts the topology of the IEEE-33 bus 
system, highlighting the positions of critical buses and 
wind turbine connections. The original load data uses the 
sample mean as its baseline value, with a variation coeffi-
cient of 0.1. Buses 18 and 33 are electrically distant from 
generators, making them weak voltage points in the sys-
tem. In order to mitigate voltage drops at these weak buses, 
wind turbines with capacities of 600 kW and 400 kW were 
connected to buses 18 and 33, respectively [22]. Wind tur-
bines operate at a constant power factor and receive reac-
tive power from the grid.

According to Eqs. (1) and (2) in Section 2, the Weibull 
distribution parameters are fitted based on historical mea-
sured wind speed data. The scale and shape parameters of 
wind speed can be obtained as λ = 10.7 m/s and k = 2.7, 
respectively. The cut-in wind speed rated wind speed, 
and excised wind speed of wind turbine are respectively 
3 m/s, 18 m/s and 25 m/s [17]. According to the relation-
ship between the output active power of wind turbines and 
wind speed in Eq.  (3), the active power of wind turbines 
follows a non-normal distribution. This paper proposes the 
TPF method for PPF calculation. The 104 MCS results serve 
as the benchmark. The TPF calculation results were com-
pared with the 2PEM calculation results to verify the accu-
racy and effectiveness of the method proposed in this paper.
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Fig. 3 Topology diagram of IEEE-33 bus system

4.2 Results of PPF
To visually demonstrate the accuracy of the proposed TPF 
method, the MCS method was used as a benchmark to com-
pare the TPF and 2PEM methods. The 18 and 33 buses con-
nected to the wind turbine, as well as the 22 and 25 buses 
that are far away from the wind turbine connection bus, are 
analyzed as examples. As presented in Fig. 4, shows that the 

Fig. 2 Flowchart of PPF calculation using the TPF method considering the correlation
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voltage probability density curves vary depending on the 
proximity of the bus to the wind turbine and the distribution 
characteristics of the input random variables. At buses 18 
and 33, where the wind turbine is directly connected, the 
results from the TPF method closely match those from the 
MCS method, demonstrating the method's high accuracy. In 
contrast, for buses 22 and 25, which are farther from the tur-
bine, the input random variables tend to follow the normal 
distribution more closely, leading to a better performance of 
the 2PEM method compared to TPF. This detailed compar-
ison underscores the capability of the TPF method in han-
dling non-normal random variables more effectively.

4.3 The analysis of calculation error
To quantitatively compare the overall performance of the 
TPF method proposed in this paper, Average errors ξ̄μ and 
ξ̄σ are defined for each output random variable, as shown 

in Eqs. (34) and (35), respectively. The smaller the ξ̄μ and 
ξ̄σ indicators, the better the performance of the calculation 
method. The specific results of the error results are shown 
in Table 2, which have variable indicators such as voltage 
amplitude (Vm ), voltage phase angle (Va ), active power and 
reactive power (Pij and Qij ).
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Where μMCS and σMCS represents the average and standard 
deviation of each output random variable calculated by the 
MCS method, while μ0 and σ0 represents the average and 

(a)

Fig. 4 Voltage probability density obtained by different calculation methods: (a) Bus No. 18, (b) Bus No. 33, (c) Bus No. 22, (d) Bus No. 25

(b)

(c) (d)



366|Mo et al.
Period. Polytech. Elec. Eng. Comp. Sci., 69(4), pp. 357–371, 2025

standard deviation of the output random variables calcu-
lated by the other two methods except MCS; Nr is the num-
ber of random variables.

4.4 Comparison of calculation time
In the IEEE-33 bus system, the TPF method's computa-
tion time varies with wind power segmentation step sizes. 
As in Section 4.3, the calculation speed of different meth-
ods is compared under three different step sizes. Table 3 
compares computation times for MCS, TPF, and 2PEM 
methods using these step sizes.

Table 3 shows TPF's efficiency improvements over MCS: 
68.36% faster at 20 kW, 80.40% at 25 kW, and 88.77% at 
40  kW step sizes. Larger step sizes significantly reduce 
TPF's computation time, but require balancing speed with 
accuracy. While 2PEM shows minimal computation time 
variation, TPF offers greater advantages when considering 
both computational accuracy and speed.

In summary, the proposed TPF method demonstrates 
three key advantages when using optimal step sizes:

1.	 It computes faster than both MCS and 2PEM, 
2.	handles non-normal distributions more effectively, 
3.	 maintains superior calculation accuracy. 

These combined benefits make TPF particularly suit-
able for probabilistic power flow analysis and voltage 
deviation risk assessment applications.

4.5 Average and standard deviation with different levels 
of correlation
Fig. 5 shows the bus voltage average and standard devi-
ation. Fig. 5  (a) reveals that wind power correlation lev-
els have minimal impact on average voltage amplitudes. 

However, Fig.  5  (b) demonstrates that voltage standard 
deviation increases with higher wind speed correlations. 
Stronger correlations make different wind turbine's out-
puts more similar yet more volatile. Buses closer to wind 
turbines experience greater standard deviation changes.

4.6 Probability density of voltage amplitudes with 
different correlations
Fig. 6 displays the voltage probability density for buses 18 
and 33. As wind power correlation increases from 0.1 to 
0.9, the probability density curve shifts from "thin and tall" 
to "short and fat". This change indicates a wider voltage 
fluctuation range under higher correlations. Consequently, 
stronger correlations raise the risk of voltage deviations.

4.7 Probability assessment of voltage deviation risk
4.7.1 Probability assessment of voltage deviation risk 
when connecting different wind turbine capacities
Fig.  7 shows the voltage probability density curves for 
buses  18 and 33. As wind turbine capacity grows from 
400 kW to 1600 kW, the curve shifts rightward, indicat-
ing higher average voltages. While wind power improves 
voltage levels, it also widens the fluctuation range, 
increasing grid uncertainty.

Fig. 8 shows the voltage probability density for buses 18 
and 33. When connected wind turbine capacity reaches 
4200 kW and 4800 kW, the voltage exceeds the upper limit. 
Fig. 8 demonstrates that higher wind turbine capacity reduces 
low-voltage probability but increases overvoltage risk.

Fig. 9 shows the voltage deviation risk at each bus for 
different wind turbine capacities (without wind speed 
correlation). As wind turbine capacity increases, the 
risk index decreases. Fig. 7 reveals that higher capacities 
(within a range) boost voltage and reduce lower-limit vio-
lations. Small capacities avoid upper-limit violations, but 
at 4200  kW (Fig.  8), upper-limit violations occur. Thus, 
risk initially decreases with capacity but rises for upper-
limit violations. The 4200 kW case is theoretical; practi-
cal networks may not support it. Hence, this study uses 
1600 kW as the maximum capacity.

Table 3 Comparison of calculation time

k (kW)
Calculation time (s) Improved efficiency of 

TPF (%)MCS TPF 2PEM

20 33.8750 10.7188 7.2813 68.3579

25 33.5625 6.5781 7.4531 80.4004

40 34.7813 3.9063 7.6094 88.7691

Table 2 Comparison of calculation accuracy under different segmentation step sizes

Cases k = 20 kW k = 25 kW k = 40 kW

TPF (%) 2PEM (%) TPF (%) 2PEM (%) TPF (%) 2PEM (%)

Results ξ̄μ ξ̄σ ξ̄μ ξ̄σ ξ̄μ ξ̄σ ξ̄μ ξ̄σ ξ̄μ ξ̄σ ξ̄μ ξ̄σ
Vm 0.0020 0.0210 0.2017 0.1311 0.0018 0.0210 0.2017 0.1311 0.0022 0.0208 0.2017 0.1311

Va 0.0002 0.0124 0.2635 0.1144 0.0005 0.0122 0.2635 0.1144 0.0001 0.0127 0.2635 0.1144

Pij 0.0035 0.0053 0.0302 0.0203 0.0027 0.0053 0.0302 0.0203 0.0041 0.0042 0.0302 0.0203

Qij 0.0023 0.0021 0.6863 0.0557 0.0027 0.0022 0.6863 0.0557 0.0020 0.0016 0.6863 0.0557
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Fig. 7 Voltage probability density curves under different access capacities: (a) Bus No. 18, (b) Bus No. 33

(a) (b)

Fig. 5 Average and standard deviation of voltage at different levels of correlation: (a) The average value of voltage, (b) Standard deviation of voltage

(a) (b)

Fig. 6 Voltage probability density curves at different levels of correlation: (a) Bus No. 18, (b) Bus No. 33

(a) (b)
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Table  4 presents bus voltage indicators for differ-
ent wind turbine capacities. As capacity increases from 
400 kW to 1600 kW, three trends occur: 

1.	 voltage deviation probability decreases, 
2.	 utility function value declines, and 
3.	 comprehensive risk index drops significantly from 

0.7332 to 0.1699. 

This 77% risk reduction greatly improves distribution 
network safety. These results match practical experience - 
within this capacity range, larger wind turbines effectively 
boost voltage and reduce lower-limit violation risks.

4.7.2 Probability assessment of voltage risk at different 
levels of correlation
Fig. 10 shows the voltage deviation risk index at 1600 kW 
wind capacity across different correlation levels. Higher 
correlation levels increase the risk index, especially at 
wind turbine connection buses. Stronger correlations 
make wind turbine outputs more consistent, disrupting 
distribution network operation. The impact grows stron-
ger closer to the wind turbine buses.

Fig. 8 Voltage probability density curves when connected to a large-
capacity wind turbine: (a) Bus No. 18, (b) Bus No. 33

(a)

(b)

Fig. 9 Comprehensive risk of voltage deviation under different 
connected wind turbine capacities

Table 4 Voltage indicators under different connected wind 
turbine capacities

Voltage index
P (kW)

400 800 1000 1200 1600

Probability of 
exceeding the limit 0.3638 0.2972 0.2389 0.2097 0.1425

Utility function value 0.7811 0.5823 0.5258 0.4926 0.4361

Comprehensive risk 
indicators 0.7332 0.4496 0.3342 0.2704 0.1699

Fig. 10 Comprehensive risk indicators for voltage exceeding limits 
at different levels of correlation
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Table 5 shows clear trends as wind power correlation 
increases from 0.1 to 0.9. The probability of voltage devia-
tion rises steadily. Utility function values show consistent 
growth. The comprehensive risk index climbs from 0.1812 
to 0.2114. This 16.7% increase signals higher operational 
risks for the distribution network. Stronger correlation 
creates tighter coupling between wind turbine outputs. 
This synchronization leads to network instability. Voltage 
deviation violations become more likely.

As shown above, the capacity and correlation level of 
wind turbines connected will affect the voltage risk of the 
distribution network. Within a certain range, the larger the 
capacity of the connected wind turbine, the lower the voltage 
risk of the distribution network. The higher the correlation 
level, the higher the voltage risk of the distribution network.

5 Conclusions
This paper proposes a probability assessment method for 
calculating voltage deviation risk using PPF based on TPF, 
taking into account the correlation of wind speed. Firstly, 
the Pearson correlation coefficient is used to character-
ize the correlation of wind speed. The Nataf transform 
is used to process the correlation of wind speed. Within 
the linear range of wind power, considering the calcula-
tion accuracy and speed of TPF, the output power of wind 
turbines is discretized with a fixed segmented step size. 
Secondly, this paper proposes a TPF method to solve PPF 
for distribution networks with wind turbines. The method 
obtains numerical characteristics and PDFs of the output 
random variables. Then, this work establishes a voltage 
deviation risk index. The index incorporates two factors: 
the probability of voltage deviation, and the severity of 
deviation. Finally, the accuracy and speed of the proposed 
method were verified in the IEEE-33 bus system. Obtain 
the following results:

1.	 The implementation of segmented linearization for 
wind power output discretization enhances com-
putational efficiency while maintaining required  
accuracy levels.

2.	 The correlation of wind power outputs shows negligible 
influence on the average voltage amplitude at system 
buses. However, stronger correlations lead to signifi-
cantly higher standard deviations in bus voltage ampli-
tude. Notably, buses electrically closer to wind power 
sites experience more pronounced voltage fluctuations.

3.	 The higher the correlation level, the higher the prob-
ability of voltage deviation, and the higher the com-
prehensive risk index of voltage deviation.

4.	 Within a certain range, increasing the capacity of 
connected wind turbines can elevate the bus voltage, 
thereby decreasing the probability of voltage falling 
below the lower limit and mitigating the overall volt-
age deviation risk. However, when the wind power 
capacity exceeds a certain threshold, the bus volt-
age may rise beyond the upper limit, leading to an 
increased risk of overvoltage.

The TPF method proposed in this paper is suitable for 
analyzing and calculating the safe operation and planning 
scheduling of high-proportion wind power integration into 
distribution networks considering the uncertainty and has 
certain feasibility. Building on the current research, future 
work will investigate hybrid PV-wind distribution networks. 
Specifically, the proposed method will be applied to inves-
tigate how photovoltaic (PV) and wind power interactions 
influence grid operation. One limitation of the proposed 
method is its inability to automatically select segmentation 
step sizes. Automated selection of segmentation step sizes 
would better balance computational accuracy and speed.
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Table 5 Voltage indicators at different correlation levels

Voltage index
Correlation level

0.1 0.3 0.5 0.7 0.9

Probability of 
exceeding the limit 0.1474 0.1459 0.1493 0.1495 0.1503 

Utility function value 0.4532 0.4387 0.4630 0.4734 0.4509 

Comprehensive risk 
indicators 0.1812 0.1842 0.1968 0.2037 0.2114 
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