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Abstract

In this paper, an efficient nonlinear control algorithm, called Constrained Neural Networks based Model Predictive control using 

Sine Cosine Algorithm (CNNMPC-SCA) is developed to control the dynamics of quadrotors. The main objective is to design an 

efficient controller for quadrotors that ensures satisfactory performance while minimizing the gap between the quadrotor positions 

and the reference trajectories. Indeed, a novel dynamic model architecture of the quadrotor is developed using several Nonlinear 

Autoregressive Exogenous (NARX) neural networks, this model aims to accurately predict the future behavior of the quadrotor within 

a short and acceptable time frame, making it suitable for implementation in the control process. The designed model was validated 

and then integrated into the CNNMPC-SCA algorithm. Furthermore, the metaheuristic algorithm known as the Sine Cosine Algorithm 

(SCA) was modified and employed to solve the non-convex, nonlinear optimization problem of the proposed predictive controller. 

To assess the efficiency of the proposed CNNMPC-SCA algorithm, a comparative study was conducted using the Adaptive Fuzzy PID 

controller and the hybrid Fuzzy PID controller. The obtained results demonstrate that the proposed control algorithm achieves better 

control performances compared to those obtained using the other considered controllers.
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1 Introduction
Unmanned Aerial Vehicle (UAVs) have attracted signifi-
cant attention from researchers due to their versatility, ease 
of maneuverability, safety, adaptability to various environ-
ments, and their ability to be customized for a wide range of 
applications. Due to their architecture and advanced control 
algorithms, UAVs can operate effectively in challenging 
and confined spaces. Moreover, their deployment in harsh 
or hazardous environments enhances safety by minimiz-
ing risks to human operators. Nowadays, UAVs are widely 
utilized in numerous fields, including agriculture, surveil-
lance, transportation, military operations, and more [1–5].

Quadrotors represent a specific class of UAVs, distin-
guished by their simple yet efficient architecture, con-
sisting of four rotors, typically powered by brushless DC 
motors. This design enables them to perform highly com-
plex maneuvers, making them a subject of significant 
interest among researchers [6, 7]. Over the years, various 

control strategies have been developed to manage the 
dynamics of these systems [8–17]. For instance, PID-based 
methods have been employed, with optimized parameters 
to ensure a desired level of control performance  [10, 11, 
16]. Additionally, Sliding Mode Control techniques have 
been widely studied and used to control quadrotors for 
their robustness against parameter variations and differ-
ent disturbances  [12, 13, 17]. Furthermore, control algo-
rithms leveraging the principles of the Linear Quadratic 
Regulator (LQR), such as the classical LQR and Observer-
Based LQR, have been explored [14, 15]. On another front, 
some researchers have utilized metaheuristic algorithms to 
optimize the parameters of nonlinear controllers, including 
Type-1 and Type-2 Fuzzy Logic Controllers (FLC) [8, 9], 
aiming to enhance control performance.

Despite the variety of control algorithms optimized to 
manage the dynamics of quadrotors, achieving optimal 
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control performance remains a challenge due to the com-
plexity and nonlinearity of these systems. Therefore, this 
work proposes a novel control strategy that aims to improve 
control performances, such as response speed, stability, 
and precision in tracking desired reference trajectories. 
Specifically, a constrained neural network-based model 
predictive control (NN-MPC) approach is employed, 
where a metaheuristic algorithm is used to solve the asso-
ciated optimization problem.

Model-based Predictive Control (MPC) is a highly effec-
tive approach that gives satisfactory control performance 
and can handle various types of constraints for both linear 
and nonlinear systems  [18–23]. This technique relies on 
the principle of utilizing a prediction model to determine 
the future behavior of the controlled system over a predic-
tion horizon and computing a control sequence over the 
control horizon by minimizing a specified cost function 
through an optimization technique. Therefore, designing 
an MPC algorithm involves two key aspects: defining the 
prediction model and selecting the optimization technique 
for the cost function [24, 25].

The developed prediction model for the quadrotor is 
based on several Nonlinear Autoregressive Exogenous 
(NARX) neural networks, along with some integrators 
and two blocks used to calculate specific parameters. 
The NARX model consists of an input layer, one or more 
hidden layers, and an output layer. Its architecture is typ-
ically a feedforward network, except that its outputs are 
recurrent through delay operators connected to the inputs. 
Thus, the inputs to this network include both the exoge-
nous inputs and the delayed exogenous inputs and outputs. 
This network is known for its ability to model nonlin-
ear dynamical systems [26, 27]. The proposed prediction 
model was optimized to be both simple and capable of 
accurately predicting the future behavior of the quadrotor 
within a short and acceptable time frame.

The optimization problem of the proposed CNNMPC-
SCA was solved using a metaheuristic approach known as 
the Sine Cosine Algorithm (SCA). The SCA technique is 
a powerful stochastic, population-based, iterative, global 
search, non-nature-inspired, memory-based metaheuris-
tic algorithm [28–30]. The SCA algorithm begins by ini-
tializing a population of random candidate solutions, 
then adapts the position of each candidate by moving it 
toward or outward the best solution using sine and cosine 
functions. This algorithm involves four main stochastic 
parameters and one specific parameter. The superiority of 
the SCA algorithm in solving complex, non-convex, and 

nonlinear optimization problems has been demonstrated 
through various tests using unimodal, multi-modal, and 
composite benchmark functions.

To enhance the performance of the proposed CNNMPC-
SCA algorithm, the SCA optimization technique was 
modified by adding a greedy selection step within the 
SCA optimizer. Specifically, a new step was incorporated 
into the SCA algorithm after computing the new positions 
of candidate solutions. In this step, the fitness of the cost 
function is evaluated using the new candidate solutions. 
If the new solutions yield a better fitness than the previous 
ones, the new solutions are adopted; otherwise, they are 
discarded, and the old solutions are retained.

The rest of this paper is organized as follows: Section 2 
details the algorithms of the SCA optimizer and its proposed 
modified version. Section 3 presents the quadrotor dynamical 
model and the proposed prediction model. In Section 4, the 
proposed CNNMPC-SCA algorithm is introduced. Section 5 
provides and discusses the simulation results for various 
cases. Finally, Section 6 summarizes the conclusions. 

2 Sine cosine algorithm
2.1 Original sine cosine algorithm
Sine Cosine Algorithm leverages trigonometric functions, 
specifically sine and cosine, to update the positions of can-
didate solutions. The SCA excels at exploiting the search 
space while maintaining a strong balance between explo-
ration and exploitation phases of metaheuristic algorithms, 
due to the periodic property of sine and cosine functions.

The SCA uses a set of candidate solutions to search for 
the minimum of a given cost function. During the initial 
phase of the SCA algorithm, candidate solutions called 
search agents, or the population are generated using Eq. (1):

X X r X Xij j j j� � � �� �min max min 	 (1)

where i = 1:Npop , j = 1:D, Xij is the jth dimension of the ith 
candidate solution, Xmaxj and Xminj represent the upper 
bound and the lower bound of the search space of Xij , r is 
a random number between 0 and 1, Npop and D denote the 
size of the population and the dimension of the optimiza-
tion problem respectively.

The second step of the SCA algorithm consists of evalu-
ating the objective function for all search agents and select-
ing the best candidate solution as the destination point. 

In the third step, the SCA updates the position of each 
candidate solution using Eq. (2) as follows: 

X k X k P k X ki i g ir f r r�� � � � � � � � � � � � � � � �1
1 2 3

.	 (2)
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Xi (k + 1) is the new solution for the ith candidate solution 
Xi (k), and the destination point Pg (k)  =  [Pg,1 (k),  Pg,2 (k), 
…,  Pg,D (k)] represents the best solution obtained so far. 
The parameters r1 , r2 , r3 and r4 are four control variables 
of the SCA algorithm. Where, r1 is an algorithm-specific 
parameter, while the other three are randomly generated. 
The parameter r1 determines the movement direction of 
the new solution, either toward or outward the destination 
point. Its value is linearly updated from a to zero accord-
ing to Eq. (3): 

r a k a
k1

� � �
max

	 (3)

where a is a specific parameter defined by the user, k is the 
current iteration, kmax is the maximum number of iterations. 

The r2 , r3 and r4 are randomly generated as follows: 

r r r
2 3 4
2 2� � � � � � � � � � � �� rand , rand , rand  

where rand(  ) generates uniformly distributed random 
numbers in the range [0,1].

In the final step of the SCA algorithm, the termination 
criteria are evaluated. If any of them is satisfied, the optimi-
zation process ends; otherwise, the algorithm returns to the 
second step. The flowchart of the SCA is shown in Fig. 1.

2.2 Modified sine cosine algorithm
The proposed modified version of the SCA was devel-
oped to enhance the precision and speed of the optimiza-
tion process of the original SCA algorithm. Specifically, 
the evaluation process of the second step of the original 
SCA, which involves evaluating the objective function and 
selecting the best solution, was modified to occur only at 
the first iteration instead of at every iteration. After the 
initial evaluation, the objective function does not need to 
be recalculated at every iteration. The fitness required for 
selecting the best solution is already available from previ-
ous steps of the algorithm. By avoiding redundant compu-
tations, this modification helps reduce the overall execu-
tion time without compromising performance. In addition, 
after the third step of the original SCA, a greedy selection 
process is implemented. After calculating the new candi-
date solutions, the objective function is evaluated using 
these new solutions and compared to the ones obtained 

with the previous solutions. If a new solution provides 
better fitness, it is retained; otherwise, it is discarded. 
The flowchart of the modified SCA is given in Fig. 2. 

3 Dynamic model of the quadrotor
Developing a reliable prediction model is a crucial step in 
designing a numerically optimized MPC algorithm [25]. 
The model must satisfy two essential criteria: 

1.	 The developed model should accurately predict the 
future behavior of the controlled system.

2.	The prediction model must be computationally effi-
cient, allowing the MPC algorithm to perform all 
necessary calculations within a time frame shorter 
than the fixed sampling time.

To fulfill these criteria, a prediction model based on non-
linear autoregressive exogenous neural networks is proposed, 
which balances accuracy and computational simplicity.

Fig. 1 Flowchart of the Sine Cosine Algorithm
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3.1 Developed dynamic model
The proposed prediction model for the quadrotor combines 
multiple Nonlinear Autoregressive Exogenous (NARX) 
neural networks, integrators, and two functional blocks. 
The first block computes (u1 , u2 , u3 , u4 , w̄ ), while the sec-
ond calculates ( ux , uy ).

In the initial stage of the model, four NARX neural net-
works are employed to model the behavior of the rotors. 
These networks have the same architecture: they take two 

inputs—one representing the voltage applied to the rotor 
and the other is the delayed output of the model. Where, all 
delays in the proposed model are fixed at 10 ms, matching 
the sampling time. The hidden layer consists of eight neu-
rons, and the output represents the rotor's velocity. 

In the second stage of the model, the first functional block 
is designed to compute the variables (u1 ,  u2 ,  u3 ,  u4 ,  w̄ ) 
based on the outputs of the four NARX networks from the 
first stage, as follows: 
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where Kp = 0.000029842; Cd = 0.0000002232 are the thrust 
and drug coefficients of the quadrotor [31]. The w1 , w2 , w3 
and w4 are the outputs of the four NARX networks from 
the first stage.

The third stage of the proposed model consists of a sin-
gle NARX network with seven inputs, one hidden layer 
containing twenty neurons, and three outputs that predict 
the derivatives (ϕ̇  , θ̇  , ψ̇  ) of the quadrotor angles. The out-
puts of this network are integrated using the Heun method 
to obtain the predicted angles (ϕ, θ, ψ). The inputs to this 
network include u2 , u3 , u4 , w̄ , the variables calculated in 
the second stage, and the delayed angles.

In the fourth stage, the second functional block is 
designed to compute the variables ( ux and uy ) based on 
the predicted angles that were calculated in the previous 
stage, as follows: 

u

u
x

y

� � � � � � � � � � � �
� � � � � � � �
cos sin cos sin sin

cos sin sin si

� � � � �

� � � nn cos .� �� � � �
	 (5)

The final stage of the proposed model consists of two 
NARX networks. The first network is designed with 
ten inputs, one hidden layer containing twenty neurons, 
and two outputs that predict the derivatives (Ẋ and Ẏ  ) of 
the quadrotor's positions. These outputs are then inte-
grated using the Heun method to calculate the predicted 
positions (X and Y). The inputs to this network include 
(u1 , ux , uy , ϕ, θ, ψ), the variables calculated in the previous 
stages, as well as the delayed ( ux and uy ) and the delayed 
outputs from the network.  

The second network has one output, which pre-
dicts the derivative (Ż  ) of the quadrotor's altitude. This 

Fig. 2 Flowchart of the modified Sine Cosine Algorithm
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network consists of six inputs (u1 , cos(ϕ), cos(θ), cos(q−1∙ϕ),  
cos(q−1∙θ)), along with the delayed variable of its own 
output. It has one hidden layer containing ten neurons. 
The  output of this network is also integrated using the 
Heun method to calculate the predicted altitude. The block 
diagram of the proposed model is given in Fig. 3.

3.2 Quadrotor state model
In order to train and test the developed prediction model, 
the dynamic model of the quadrotor given by Eq. (6) and 
that of the rotors, as described by Eq. (7), were used [32]. 
This model serves as a benchmark for generating system 
data under various conditions, which is essential for both 
training and validation of the developed model. 

The constants are provided in Table 1, while the total 
thrust ( u1 ), the roll torque ( u2 ), the pitch torque ( u3 ), the 
yaw torque ( u4 ), and the average rotor angular velocity 
( w̄ ) are defined by Eq.  (2). Where, wi=1:4 represent the 
angular velocities of the rotors, which are determined by 
integrating the rotors' dynamic model described in Eq. (7): 
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where i = 1:4.
The parameters values of the rotors are given in 

Table 2.

Fig. 3 Block diagram of the proposed model
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3.3 Modulization results
To effectively train and test the developed prediction model, 
two datasets were generated using the dynamic models 
of the quadrotor and its rotors. Where, at each sampling 
time (10 ms), four random values between 0 and 12 were 
generated and applied as input voltages (V1 , V2 , V3 , V4 ) to 
the four rotors. These voltages were then used in the rotor 
dynamic model to compute the corresponding rotor angu-
lar velocities (w1 , w2 , w3 , w4 ) through numerical integra-
tion of the state model.

Using these velocities and Eq.  (4), the corresponding 
control inputs of the quadrotor ( u1 , u2 , u3 , u4 , W̄ ) were 
calculated. After that, the full quadrotor dynamic model 
was numerically integrated to compute the resulting state 
variables (ϕ̇  , θ̇  , ψ̇  , Ẋ  ,   Ẏ  ,   Ż  ,  ϕ, θ, ψ, X, Y, Z).

For each iteration, the input voltages (V1 ,  V2 ,  V3 ,  V4 ), 
the intermediate computed values ( u1 , u2 , u3 , u4 , W̄ ), and 
the resulting quadrotor states (ϕ̇  , θ̇  , ψ̇  , Ẋ  ,   Ẏ  ,   Ż  ,  ϕ, θ, ψ, 
X, Y, Z) were stored to form one data sample. This process 
was repeated 9000 times to construct the full dataset. This 
dataset was then used to train the neural networks in the 
proposed prediction model, where the networks were pro-
vided with their corresponding input values and trained to 
approximate the desired output responses.

The results of training the proposed prediction model 
are illustrated in Figs. 4 and 5.

According to Figs. 4 and 5, it is clear that the proposed 
model is well-trained. The modeling error remains below 
0.01% for all outputs. However, to further validate the 
trained model, the second dataset was used to calculate the 
predicted outputs of the quadrotor, which were then com-
pared to those obtained using the state model. The results 
are presented in Figs. 6 and 7.

According to Figs. 6 and 7, it can be seen that the mod-
eling error for all predicted outputs is very small, remain-
ing below 0.02%. This demonstrates that the proposed 
model is highly accurate and can be validated as a reliable 
prediction model of the quadrotor's behavior.

4 Constrained neural networks based model predictive 
control using SCA optimizer
4.1 Principle
Nearly all MPC algorithms operate on the same funda-
mental principle, which relies on an explicit prediction 
model combined with an optimization algorithm to gen-
erate a control sequence. This process can be summarized 
in the following steps: 

Table 1 Quadrotor constants values [31]

Constant Value Constant Value

Ix (N∙m/rad/s2) 3.8278∙10−3 kfax (N/rad/s) 5.567∙10−4

Iy (N∙m/rad/s2) 3.8288∙10−3 kfay (N/rad/s) 5.567∙10−4

Iz (N∙m/rad/s2) 7.6566∙10−3 kfaz (N/rad/s) 5.567∙10−4

kftx (N/m/s) 5.567∙10−4 Jr (N∙m/rad/s2) 2.8385∙10−5

kfty (N/m/s) 5.567∙10−4 d (m) 0.25

kftz (N/m/s) 5.567∙10−4 m (kg) 0.486

g (m/s2) 9.81

Table 2 Rotors parameters values [31]

Constant Value Constant Value

km (N∙m/A) 3.4629∙10−7 Jr (N∙m/rad/s2) 2.8385∙10−5

ke (V/rad/s) 2.1632∙10−2 Rm (Ω) 4.3541∙10−5

kr (N∙m) 3.4629∙10−7 Cs (N∙m∙s/rad) 5.3826∙10−3

Fig. 4 Training results of the prediction model for the outputs (ϕ, θ, ψ)

Fig. 5 Training results of the prediction model for the outputs (X, Y, Z)
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1.	 The future values of the system's outputs are calcu-
lated over the prediction horizon Np using the predic-
tion model.

2.	The reference trajectory must be defined over at least 
the prediction horizon.

3.	 A control sequence is computed over the control 
horizon ( Np ), but only the first element applied to the 
input to the controlled system.

4.2 CNNMPC-SCA control algorithm
To compute the control sequence, as outlined in the third 
step of the MPC principle, an objective function must 
be defined. This function incorporates all desired con-
trol performances. In the proposed CNNMPC-SCA algo-
rithm, the primary objective is to minimize the tracking 

error between the predicted future outputs of the quadro-
tor ( X̂  ,  Ŷ  ,  Ẑ  ,  ψ̂  ), calculated using the prediction model 
over Np , and their respective reference trajectories 
( Xr , Yr , Zr , ψr ). The secondary objective is to minimize 
the variations in the control signals ( ∆V1 , ∆V2 , ∆V3 , ∆V4 ) to 
optimize energy consumption. Therefore, the first version 
of the objective function (J) is given in Eq. (8): 

J k k k

k i k k i k i k k i
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Where: 
•	 Y k X k Y k Z k k

T� � � � � � � � � � ��� ��, , ,�̂ ̂ ̂ ̂ ̂ : are the pre-
dicted outputs.

•	 C k X k Y k Z k kr r r r
T� � � � � � � � � � ��� ��,� ,� ,� : are the 

future reference trajectories.
•	 N1 and N2 are the minimum and the maximum of the 

prediction horizon Np .
•	 Q and R are positive and semi-positive definite 

weighting matrices, respectively.

In addition to the first two objectives of the proposed 
controller, a third objective is introduced to manage the 
input and output constraints of the quadrotor within the 
CNNMPC-SCA algorithm. Indeed, the rotors of the 
quadrotor operate within a voltage range of [0, Vmax] where 
Vmax varies depending on the rotor type. To address this, 
the proposed controller incorporates input constraints, 
given in Eq. (9), by penalizing the objective function.

0 ≤ ≤V V
max

	 (9)

Besides the input constraints, and to improve the sta-
bility of the quadrotor, the angles (ϕ, θ) are also subject 
to constraints, as shown in Eq. (10). These constraints are 
incorporated into the proposed control algorithm using 
a penalty-based approach. Consequently, the cost function 
adopted for the proposed controller is defined in Eq. (11): 

Fig. 6 Testing results of the prediction model for the outputs (ϕ, θ, ψ)

Fig. 7 Testing results of the prediction model for the outputs (X, Y, Z)
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subject to: 

�V k i i Nu� �� � � �1 0 for . 

Where: 
•	 δ(k) = [V1 (k), V2 (k), V3 (k), V4 (k), ϕ(k), θ(k)] represents 

the vector of constrained variables.
•	 In = ones(6, 6) is the identity matrix. 
•	 Γ( δi ) is the output-dependent weight function, it is 

defined as follows: 
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•	 Ciδ  is the penalization factor, where Ciδ  = 0 indi-
cates the absence of a constraint, and Ciδ  = ∞ rep-
resents a hard constraint for i = 1:6.

The proposed CNNMPC-SCA is described in 
Algorithm 1.

5 Simulation study
To evaluate the efficiency of the proposed CNNMPC-SCA 
algorithm, a comparative study is carried out in Section 5 
using the Adaptive Fuzzy PID (AFLC-PID) controller and 
the hybrid Fuzzy PID (FPID) controller while consider-
ing various operating conditions. In addition to the pro-
posed controller, both the AFLC-PID and FPID control-
lers were implemented to control the quadrotor system 
that was defined by the state model in Eqs.  (6) and  (7). 
The design process of the AFLC-PID and the FPID con-
trollers is detailed in  [9], where their effectiveness was 
demonstrated. The control block diagram of the proposed 
CNNMPC-SCA algorithm is given in Fig. 8.

Several simulation scenarios are considered to ensure a 
comprehensive evaluation. The parameter values used for the 
proposed CNNMPC-SCA algorithm are provided in Table 3.

In the first simulation, a multistep reference trajectory is 
selected for all three quadrotor output positions (X, Y, Z), 

while a stationary reference trajectory equal to zero is set for 
the roll angle (ψ). The obtained control results are presented 
in Fig. 9. The control performances, including response time, 
overshoot, Mean Squared Error (MSE), and Mean Absolute 
Error (MAE), are summarized in Tables  4–6 for the con-
sidered controllers (CNNMPC-SCA, AFLCPID, and FPID).

From Fig. 9, it can be seen that the proposed CNNMPC-
SCA controller provides the best control results for the 
quadrotor positions (X, Y, Z) compared to those obtained 
using the AFLCPID and FPID controllers. Indeed, the track-
ing error between the quadrotor positions and their respec-
tive reference trajectories, as given by the CNNMPC-SCA 
algorithm, is much smaller than those of the other control-
lers. This implies that the quadrotor adapts its positions 
rapidly and precisely according to the desired trajectories. 
To further reinforce this result, the control performances 
summarized in Tables  4–6 indicate that the CNNMPC-
SCA controller is very efficient compared to the other con-
sidered controllers. Specifically, the MSE and MAE val-
ues provided by the proposed controller are much smaller 
than those obtained with the AFLCPID and FPID control-
lers, indicating better tracking accuracy of the desired ref-
erence trajectories for the quadrotor positions (X,  Y,  Z), 
except for the roll angle, where the FPID performs better. 
Furthermore, the response time of the proposed control-
ler is notably fast compared to the other controllers, and 
the overshoot value obtained using the CNNMPC-SCA 
algorithm is very small, indicating superior stability of the 
quadrotor when using the proposed controller.

In the second simulation, a helical reference trajectory is 
selected to evaluate the effectiveness of the proposed control-
ler in tracking nonlinear paths. The control results for each 
quadrotor output are shown in Fig. 10, while a 3D represen-
tation is provided in Fig. 11. Additionally, the response time, 
overshoot, MSE, and MAE for all considered controllers 
are summarized in Tables 7–9. The response time was mea-
sured at the moment when the quadrotor trajectory matched 
the shape of the desired trajectory, while the overshoot was 
determined at the peaks of each sinusoidal trajectory.

According to Figs. 10 and 11, the proposed CNNMPC-
SCA algorithm demonstrates the best control performance 
for the quadrotor in tracking the helical reference trajec-
tory. The tracking error provided by the CNNMPC-SCA 
is significantly smaller compared to those obtained with 
AFLCPID and FPID when controlling the quadrotor's 
positions (X,  Y,  Z). Furthermore, from Tables  7–9, it is 
evident that the quadrotor reaches the desired trajectory 
faster when controlled by CNNMPC-SCA, which, unlike 
the other controllers, does not produce any overshoot.  



Benrabah et al.
Period. Polytech. Elec. Eng. Comp. Sci. |9

Algorithm 1 CNNMPC-SCA algorithm

Initialize the MPC parameters N N N Cu i, , , , ,
1 2 �

Q R� �  for i = 1:6.

Initialize the SCA parameters D N k a X Xpop ij ij, , , , max , min
max� �  for i = 1:Npop , j = 1:D.

Load the trained proposed model given in Section 3.
for i = 1:Npop

for j = 1:D
Generate the initial solutions ( Xij ) using Eq. (1). 

End for
End for
Specify the reference trajectories X Y Zr r r r, , ,�� �  for at least the next prediction horizon.
if the first iteration of the optimization process j j k� �� �1 1:

max
 is being executed, Do:

for i = 1:Npop
Compute the predicted outputs over Np using the developed prediction model. 
Evaluate the objective function J �V Y C, ,� �̂  using Eq. (11) to calculate the fitness ( f ). 

End for
for i = 1:Npop

if f i f� � �� � �� �min  Do: 

if min f f� � �� �best
 Do:

fbest = min( f ).

Pg = Xi,(1:D).
End if
Break.

End if
End for 

End if 
Update the value of r1 linearly from a to 0 according to Eq. (3). 
for i = 1:Npop

Compute r2 , r3 and r4 as indicated in Section 2.
Calculate the new position of each particle ( Xnewi ) using Eq. (2).

End for 
for i = 1:Npop

Compute the predicted outputs over Np using the developed prediction model. 
Evaluate the objective function J �V Y C, ,� �̂  using Eq. (11) to calculate the new fitness ( fnew ). 

End for
for i = 1:Npop

if f i f i
new � � � � �� �  Do: 

f(i) = fnew(i). 
Xi = Xnewi. 

End if
End for 
for i = 1:Npop

if f i f� � �� � �� �min  Do: 

if min f f� � �� �best
 Do:

fbest = min( f ).

Pg = Xi,(1:D).
End if
Break.

End if
End for
if none of the stopping criteria of the optimization process are met, Do: 

Go back to line 7. 
else:

Apply the obtained control value (the first elements of Pg ) on the quadrotor's inputs using the state model defined in Eq. (6). 
Wait for the next sampling time.
if the predicted outputs of the model differ from the actual outputs of the quadrotor, Do:

Retrain the prediction model to minimize the modeling error. 
End if
Go back to line 4 (first loop). 

End if
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Fig. 8 CNNMPC-SCA control block diagram

Table 3 CNNMPC-SCA parameters values

Parameter Value Parameter Value

N1 1 D 50

N2 50 Npop 10

Nu 50 kmax 100
Ciδ  106 a 2

Q eye(4,4) Xmax 12 12 12 12
2 2

, , , , ,
� ��

��
�
��  

R zeros(4,4) Xmin 0 0 0 0
2 2

, , , , ,� ��
��

�
��

� �

 

Fig. 9 Control results of the quadrotor using CNNMPC-SCA, AFLCPID, 
and FPID controllers for the multistep reference trajectory case

Table 4 CNNMPC-SCA's obtained control performance for the 
multistep reference trajectory case

Position 
(X)

Position 
(Y)

Position 
(Z)

Angle  
(ψ)

Response time ( Tr ) 1.61 s 1.37 s 1.29 s /

Overshoot 1.73% 0.8% 1.16% /

MSE 6.2866 2.4942 3.1067 0.0966

MAE 49.2081 37.6245 33.8916 11.1805

Table 5 AFLCPID's obtained control performance for the multistep 
reference trajectory case

Position 
(X)

Position 
(Y)

Position 
(Z)

Angle  
(ψ)

Response time ( Tr ) 7.91 s 5.71 s 3.37 s /

Overshoot 27.4% 28.8% 2.16% /

MSE 367.2685 454.2523 12.9054 8.928e-05

MAE 737.6834 867.1814 93.7593 0.1938

Table 6 FPID's obtained control performance for the multistep 
reference trajectory case

Position 
(X)

Position 
(Y)

Position 
(Z)

Angle  
(ψ)

Response time ( Tr ) 7.44 s 5.74 s 3.34 s /

Overshoot 20.6% 19.83% 2.16% /

MSE 271.1004 267.7256 12.8291 2.794e-05

MAE 635.5665 628.9148 93.1249 0.0541
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Additionally, the MSE and RMSE obtained with the pro-
posed controller are considerably lower than those of the 
AFLCPID and FPID which demonstrates the superiority of 
CNNMPC-SCA in tracking a helical trajectory.

In the third simulation, a square reference trajectory 
is chosen for the quadrotor. The obtained control results 
are presented in Figs. 12 and 13 and Tables 10–12. Fig. 12 
illustrates the reference trajectories alongside the quadro-
tor outputs and the tracking error for each output, while 
Fig.  13 provides a 3D representation of the desired and 
actual trajectory of the quadrotor. Tables 10–12 summa-
rize the control performances: response time, overshoot, 
MSE, and MAE.

According to Figs.  12 and  13, the best control per-
formances are achieved using the proposed controller. 
The  tracking errors produced by CNNMPC-SCA are 
smaller than those obtained with the AFLCPID and FPID. 
This is further supported by the response time presented 
in Tables 10–12, where the proposed controller gives the 
shortest response time. Additionally, it achieves the small-
est overshoot, highlighting its superiority. Furthermore, 
the MSE and RMSE values in Tables 10–12 demonstrate 

Fig. 10 Control results of the quadrotor using CNNMPC-SCA, 
AFLCPID, and FPID controllers for the helical reference trajectory case

Fig. 11 3D representation of the quadrotor's trajectory for the helical 
reference case

Table 7 CNNMPC-SCA's obtained control performance for the helical 
reference trajectory case

Position 
(X)

Position 
(Y)

Position 
(Z)

Angle  
(ψ)

Response time ( Tr ) 1.38 s 1.43 s 1.03 s /

Overshoot 0% 0% / /

MSE 0.7858 40.0121 1.7046 0.0288

MAE 17.2903 62.5988 22.2561 5.5917

Table 8 AFLCPID's obtained control performance for the helical 
reference trajectory case

Position 
(X)

Position 
(Y)

Position 
(Z)

Angle  
(ψ)

Response time ( Tr ) 2.28 s 1.90 s 3.59 s /

Overshoot 16.8% 25.8% / /

MSE 73.5447 187.5627 11.0165 0.0013

MAE 339.3687 469.5831 58.4978 0.4584

Table 9 FPID's obtained control performance for the helical reference 
trajectory case

Position 
(X)

Position 
(Y)

Position 
(Z)

Angle  
(ψ)

Response time ( Tr ) 2.55 s 1.78 s 3.59 s /

Overshoot 14.2% 21.1% / /

MSE 87.0459 133.2267 10.9257 5.7664e-04

MAE 360.3316 376.0431 58.2344 0.2285

Fig. 12 Control results of the quadrotor using CNNMPC-SCA, 
AFLCPID, and FPID controllers for the square reference trajectory case
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the high precision of the CNNMPC-SCA in tracking the 
square reference trajectory when compared to the other 
considered controllers.

For all three simulations, the proposed CNNMPC-SCA 
algorithm was subjected to the six constraints listed in Table 3. 
To assess its ability to handle these constraints, the minimum 
and maximum values of the variables [V1 , V2 , V3 , V4 , ϕ, θ] are 
provided in Table 13 for all three simulations.

From Table  13, it can be concluded that all imposed 
constraints were satisfied, demonstrating the ability of 
the proposed CNNMPC-SCA algorithm to handle various 
constraints. 

In order to evaluate the performance of the proposed 
controller under parameter variation, a fourth simula-
tion is conducted. Where, a step reference trajectory is 
applied simultaneously to all three positional outputs of 
the quadrotor (X, Y, Z), while the roll angle (ψ) is assigned 
a fixed reference of zero. During this simulation, the 
quadrotor mass m is changed at t = 4 s from 0.486 kg to 
1 kg, simulating the act of picking up an object. The result-
ing control behavior is illustrated in Fig. 14.

As shown in Fig. 14, the proposed controller effectively 
compensates for the parameter change. The impact of the 
mass variation is quickly attenuated, and the CNNMPC-
SCA succeeds in re-stabilizing the system and driving it 
back to the target position within 1.03 s.

In the final simulation, the robustness of the CNNMPC-
SCA controller is evaluated under the influence of external 

Fig. 13 3D representation of the quadrotor's trajectory for the square 
reference case

Table 10 CNNMPC-SCA's obtained control performance for the square 
reference trajectory case

Position 
(X)

Position 
(Y)

Position 
(Z)

Angle  
(ψ)

Response time ( Tr ) 0 s 0 s 0.57 s /

Overshoot 0% 0% 0% /

MSE 0.2922 0.2950 4.7376 0.0439

MAE 26.1765 27.1524 33.3796 10.4919

Table 11 AFLCPID's obtained control performance for the square 
reference trajectory case

Position 
(X)

Position 
(Y) 

Position 
(Z)

Angle  
(ψ)

Response time ( Tr ) 2.49 s 2.21 s 4.37 s /

Overshoot 7,54% 6% 4% /

MSE 48.3302 32.9438 11.2891 0.0028

MAE 230.6753 191.7029 67.2219 0.8131

Table 12 FPID's obtained control performance for the square reference 
trajectory case

Position 
(X)

Position 
(Y)

Position 
(Z)

Angle  
(ψ)

Response time ( Tr ) 2.49 s 2.18 s 4.37 s /

Overshoot 7,54% 5.4% 4% /

MSE 48.4100 27.5962 11.2821 0.0014

MAE 230.7780 156.7155 67.0204 0.4172

Table 13 Minimum and maximum values of the constrained variables 
obtained with the CNNMPC-SCA

First simulation Second simulation Third simulation

Max Min Max Min Max Min

V1 12 0 12 0 12 0

V2 12 0 12 0 12 0

V3 12 0 12 0 12 0

V4 12 0 12 0 12 0

ϕ 0.6577 −0.399 1.0431 −0.676 0.2045 −0.268

θ 0.8911 −0.855 0.291 −0.213 0.2436 −0.241

Fig. 14 Control results of the quadrotor using CNNMPC-SCA during 
a parameter variation scenario



Benrabah et al.
Period. Polytech. Elec. Eng. Comp. Sci. |13

disturbances applied to the quadrotor's outputs. Specifically, 
a constant positional disturbance of −50 cm is introduced at 
t = 4 s on the output positions (X, Y, Z). The reference tra-
jectory remains unchanged from the previous test. The cor-
responding results are illustrated in Fig. 15.

From Fig. 15, it is clear that the proposed control strat-
egy handles the imposes outputs disturbances effectively. 
The quadrotor quickly recovers and returns to the desired 
position, compensating for the X output disturbance in 
750  ms, the Y output disturbance in 810  ms and the Z 
output disturbance in 630 ms. These results confirm the 
robustness of the CNNMPC-SCA in the presence of out-
puts perturbations.

6 Conclusion
An efficient Constrained Neural Network-based Model 
Predictive Control using the Sine Cosine Algorithm has 
been developed to control the dynamics of quadrotors. 
This controller leverages a predictive model of quadro-
tor dynamics and a modified SCA metaheuristic to solve 
the associated optimization problem. The proposed model 
relies on seven NARX neural networks, which are known 
for their accuracy in modeling dynamic systems along 
with two functional blocks. The simulation results con-
firmed the high precision of the developed model, with 
prediction errors for all outputs remaining below 0.02%.

Additionally, the modified SCA incorporates a greedy 
selection step to enhance the convergence rate of the opti-
mization process. The proposed controller is designed 
with six hard constraints specific to the quadrotor system 
while maintaining a simple architecture, making it well-
suited for real-time implementation. 

To evaluate its effectiveness, a comparative study was 
conducted against the AFLCPID and FPID controllers. 
The results demonstrated that the CNNMPC-SCA con-
troller achieves superior performance in terms of response 
time, overshoot reduction, tracking accuracy, and con-
straint handling. Furthermore, the controller was evaluated 
under conditions involving parameter variations and out-
put disturbances. The obtained performances confirm the 
robustness of the CNNMPC-SCA in such scenarios, high-
lighting its reliability for quadrotor control applications.

Acknowledgement
The project presented in this article is supported by 
the DGRSDT (Direction Générale de la Recherche 
Scientifique et du Développement Technologique).

Fig. 15 Control results of the quadrotor using CNNMPC-SCA under 
output disturbance conditions
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