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Abstract

In this paper we propose a straightforward method to generate random points uniformly distributed on the unit sphere or following 

a 3D Gaussian distribution. For that, we use a small Coupled Map Lattice (CML), which is similar to a cellular automaton but with cells 

containing arbitrary variables in place of states from a finite set. Our lattice variables are 3D unit vectors. We use this setup to solve 

the otherwise challenging task of generating uniformly distributed direction vectors on the unit sphere without resorting to rejection 

sampling. We also generate samples of a 3D Gaussian distribution with sufficient accuracy by summing several of the above random 

vectors. To showcase the possible uses of this method, we introduce a new Bidirectional Reflection Distribution Function (BRDF) model 

that is physically plausible and features: perfect importance sampling, only needing a few intuitive parameters, not rejecting samples, 

and supporting anisotropy. The sampling process is generalized by projecting 3D Gaussian samples to 2D direction space. The resulting 

probability density function over directions is obtained in a closed form. We also demonstrate the capabilities of our lattice Pseudo-

Random Number Generators (PRNG) by creating an especially fast Lambertian path tracer and a volumetric scattering effect.
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1 Introduction
Pseudo-Random Number Generators (PRNGs), are ubiq-
uitously used in science and engineering, with different 
fields posing varied requirements on the randomness qual-
ities of the generated number sequences. These require-
ments include [1] that the numbers: have k-uniform dis-
tribution, are uncorrelated, have a long period before 
repeating, satisfy statistical tests of randomness, can be 
changed by choosing an initial seed value, can be gener-
ated rapidly and use limited computer memory.

In the case of Monte Carlo methods, suitable random 
numbers are essential, as k-uniform distribution is crucial 
to avoid bias. Low correlation, i.e., the independence of 
consecutive random numbers from each other is especially 
important when dealing with higher-dimensional integrals. 
Using correlated values for different sample dimensions 
results in a non-uniform sampling of the multi-dimen-
sional integration domain, introducing bias again. Rapid 
generation is often the least concern, as the evaluation 
of light path contributions via ray casting is always more 
expensive. However, the memory footprint of the method 
can be a serious bottleneck when using GPU hardware, 
as processor-local memory is a very limited resource. 

If GPU threads use more local memory, less of them can be 
executed on a multiprocessor concurrently, reducing occu-
pancy and thus, performance. Also, a long period may not 
be important when a PRNG is executed on a GPU thread, 
building a random walk from only a handful of randoms 
generated from an externally randomized seed. Meeting 
other randomness statistics is, in some cases, even con-
sidered detrimental. Deterministic sequences with low 
discrepancy (e.g., the Halton or Hammersley sequences) 
are used in what are called Quasi-Monte Carlo methods, 
obtaining better stratification and thus, less error in the 
estimates. These sequences are certainly not random in 
a statistical sense. We should note that multiple sequences 
with different prime bases must be used to provide sample 
coordinates in different dimensions, which may become 
cumbersome when the dimension count gets high.

PRNGs are most often constructed to produce a uniform 
distribution. Other desired distributions may be obtained 
using transformations. However, this is not always a triv-
ial task, as exemplified by the plethora of methods devised 
to produce Gaussian random numbers [2].
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In formulating Monte Carlo random walk image synthe-
sis methods, the rendering equation can be written as:

L x L x f x dv l l r l v l, , cos , , ,� � � � � �� � � � � � ���  (1)

where L (x, ωv ) is the radiance function at position x and 
direction ωv , x is the shaded surface point, ωv is the out-
going direction for the computed outgoing radiance, ωl is 
the integration variable, i.e., the incoming light direc-
tion, over Ω on the hemisphere above the shaded surface, 
θl is the angle between the incoming light direction and 
the surface normal and fr is the Bidirectional Reflection 
Distribution Function (BRDF) that describes the reflec-
tion properties of the surface, giving the outgoing radi-
ance in response to unit irradiance.

This integral should be evaluated using the Monte Carlo 
technique, that is, generating random samples according to 
a probability density p, and averaging sampled integrand val-
ues divided by the corresponding value of p. The estimator is 
going to have low variance if p is mimicking the integrand, 
which is the principle of importance sampling. In case of 
direct lighting, the sampling can be performed most straight-
forwardly according to the emitted radiances, meaning that 
the BRDF has to be evaluated for a pair of incoming and out-
going directions. For indirect lighting, however, importance 
sampling can generally only be performed according to the 
BRDF. Therefore, BRDFs are required for which the sam-
ples can be generated perfectly or almost perfectly follow-
ing its distribution. Meeting these two requirements at the 
same time (the BRDF can be efficiently evaluated and also 
sampled with perfect importance sampling) poses stringent 
criteria on possible BRDF models.

Physically based rendering requires BRDFs that obey 
physical laws. These are positivity, energy conservation, 
and reciprocity. Out of these, reciprocity, formally the 
requirement that satisfies:

f fr l v r v l� � � �, , ,� � � � �  (2)

is quite challenging to meet. This is because reciprocity 
implies that the directional sampling process must rely 
on a random variable that is independent of the outgo-
ing direction. Often not all values of the random variable 
can be mapped to an incoming direction, as area-preserv-
ing mappings between spherical regions can be costly 
to compute [3], especially so when BRDF anisotropy 
requires scaling spherical circles into spherical ellipses. 
Therefore, some samples must be rejected. This has to be 
accounted for in the estimator's generation probability fac-
tor. However, the evaluation of the rejection probability 
can lead to another costly elliptic integral.

In this research, we provide an algorithm that directly 
produces random samples of desired distributions with the 
following characteristics:

• generates independent samples matching a desired 
distribution,

• starts from an externally randomized initial state,
• runs in deterministic constant time (without rejections),
• has a low memory footprint,
• can be implemented simply and efficiently on any 

GPU.

In addition, we illustrate the potential applications of 
this method in three distinct cases: superior to state-of-
the-art Lambertian Monte Carlo sample generation on the 
GPU, subsurface scattering simulation, and a novel BRDF 
model that facilitates the use of our PRNG and aims to 
achieve the following properties:

• cheap to evaluate,
• perfect importance sampling,
• rejected samples,
• physically plausible,
• has only a few, intuitive parameters,
• supports anisotropy.

2 Previous work
2.1 Generation of normally distributed random 
numbers
The generation of random numbers with a one-dimen-
sional Gaussian distribution is already a challenging task 
addressed by numerous solutions, categorized by Thomas 
et al. [2] as CDF inversion techniques, transformation 
methods, rejection methods, sum-of-uniforms methods 
and the recursive method.

CDF inversion and transformation methods are mostly 
overlapping. In both cases, uniformly distributed samples 
need to be transformed into a normal distribution. As the 
CDF of the Gaussian cannot be written in terms of ele-
mentary functions, it is not straightforward to evaluate 
within the constraints PRNGs operate under and certainly 
unfeasible in GPU shaders.

The Box-Muller transform, however, exploits the fact 
that the radial CDF of a two-dimensional normal distri-
bution can indeed be written in a closed form, providing 
a way to transform two uniformly distributed random 
numbers ξ0 and ξ1 into a 2D Gaussian. In polar coordi-
nates, the equation is:

r � � �2 2
0 1

ln , .� � ��  (3)
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As the Gaussian is separable, this provides two inde-
pendent random variables with a normal distribution:

� � � �
0 1
� �r rcos , sin .  (4)

This method is exact and simple, and objections against 
it can only be raised when the tail of the Gaussian beyond 
five standard deviations must be accurately sampled and 
number representation issues become relevant. However, it 
still needs good quality uniform randoms, that may them-
selves be challenging or costly to obtain, e.g., in a GPU 
thread. Rejection methods are a poor fit for parallel sin-
gle-instruction-multiple-threads architectures, where 
threads that have finished iteration must wait for those still 
working to find an acceptable sample. Most widespread 
and powerful algorithms investigated by Thomas et al. [2] 
rely on dynamic flow control of this kind.

The sum-of-uniforms methods are also known as the 
Central Limit Theorem (CLT) approach, as the theorem 
implies that the distribution of the average of multiple ran-
dom variables converges to the Gaussian as the number of 
variables increases. Convergence is especially fast for uni-
formly distributed variables (the Irwin–Hall distribution), 
at least initially. However, even with thousands of vari-
ables summed, error does not completely vanish, and CLT 
methods are discarded as only approximate while also 
expensive. Notably, the generated numbers always fall in 
a finite range, between the sum of the minima and maxima 
of the uniform distribution ranges, and thus sampling of 
the tails of the normal distribution is always lacking. Still, 
the CLT method works where accuracy requirements are 
not especially strict. The presence of low-precision float-
ing-point arithmetic can be such a qualifying factor. There 
are some ancient tricks [4] to further reduce the error by 
transforming the generated samples.

The Wallace [5] method is referred to as recursive, 
as it relies on a large set of already normally distributed 
samples and combines them in random permutations to 
obtain new ones. The quality of samples is not compara-
ble to more refined methods, but it is extremely fast and 
well-suited to parallel architectures. However, the method 
does not scale down to work with a small memory foot-
print, which would be used when generating samples in 
thread-local or group-local memory in GPUs. Indeed, the 
Wallace method relies on perturbations over the entire pool 
of samples, accessing random locations in global memory.

2.2 Cellular automata as PRNGs
Cellular automata were shown to be useful as PRNGs, 
producing results with good randomness qualities [6]. 

When using non-commutative algebra in PRNGs, cellu-
lar automata over quaternions were identified as the most 
promising candidates for application in cryptography [7].

The PRNG concept proposed in this paper is inspired 
by Quaternionic Cellular Automata (QCA) [8]. QCA 
generators load m cells with initial values (the seed) 
x x Hm Zm1

0 0
0, , \ ,� �  meaning that the quaternion coeffi-

cients are integers. This represents stage zero. To compute 
stage n + 1 from stage n, one can use the rule:

x x xs
n

s
n

s
n�

� �� �1

1 1
,  (5)

where s z� �� �0 1,  is the cell index out of z cells. The arith-
metic on the subscripts takes place in Zm. The output at 
each stage is the element of a fixed but arbitrary cell. Cell 
count m can be as low as 5, and a PRNG with good quality 
metrics can be obtained [7], when the quaternions are in 
HZm

,  where all coefficients are modulo m integers.

2.3 Coupled Map Lattice
A Coupled Map Lattice (CML) is different from a Cellular 
Automaton in that its cells (or rather sites) may contain 
arbitrary variables in place of states from a finite set. 
CMLs can be used to model non-linear systems and often 
exhibit chaotic dynamics [9].

2.4 BRDF
Over decades of computer graphics research, numerous 
BRDF models and representations have been proposed for 
designing and capturing material surface reflectance proper-
ties and rendering scenes by evaluating the resulting func-
tions. The most basic out of those, the diffuse Lambertian, is 
not only very simple and efficient to evaluate but also lends 
itself to simple and efficient importance sampling. As the 
BRDF itself is constant, only the cosine term needs to be con-
sidered. This can be done by transforming a pair of uniformly 
distributed random numbers onto the directional hemisphere.

For our work, the sampling scheme proposed by 
Tobler et al. [10] is more relevant. Instead of generating 
cosine-distributed points on the directional hemisphere, 
samples are taken with a uniform distribution on a unit 
radius sphere sharing a tangent plane with the surface at 
the shaded point (Fig. 1).

We will continue to refer to this sphere as the tan-
gent sphere S. When these points are centrally projected 
through the surface point to a double-radius hemisphere, 
we obtain cosine-distributed directional samples. This 
allows for extremely elegant implementation if sam-
ples uS , uniformly distributed on the unit sphere, are read-
ily available. The sampled direction l is described by:



4|Kárpáti et al.
Period. Polytech. Elec. Eng. Comp. Sci. 

l n u� �� ��S ,  (6)

where n is the surface normal and the center of the tangent 
sphere, and the ^ superscript denotes normalization.

BRDFs that go beyond the Lambertian need to cap-
ture dependence on directions v and l, using the unit vec-
tors to represent directions. In order to ensure reciprocity, 
the BRDF is most often written as a function of the half-
way vector h defined as:

h v l� �� �� ,  (7)

which is what the normal vector should be to produce ideal 
reflection from v to l or vice versa.

2.5 Physically based BRDFs
Popular physically based BRDFs are based on the micro-
facet model, assuming a distribution of small ideal reflec-
tors along material interfaces. The BRDF is determined by 

the probability density of hitting a small surface element 
with normal h, so a random distribution of normals must 
be prescribed. The challenge is that not all microfacet ori-
entations produce valid reflections, as occlusion and multi-
ple reflections can and do happen in reality. The domain of 
valid microfacet normals is a cone, in which the integral of 
the scattering density is typically an elliptic integral, which 
cannot be evaluated analytically. Therefore, if being physi-
cally based means that a microfacet distribution is sampled 
and invalid samples are rejected, then the rejection proba-
bility can only be approximated through expensive numer-
ical methods, like the one presented by Guillén et al. [3] 
Constructing BRDF-specific helper structures, as proposed 
by Montes et al. [11], can improve the unpredictable runtime 
of rejection sampling; nevertheless, this method requires 
more GPU memory, which we would prefer to avoid.

2.6 Ward and Schlick models
To exemplify the above concerns and provide a baseline, 
we consider two well-known models. Among the countless 
existing BRDFs, here we concentrate on the Ward [12, 13] 
and Schlick [14] models in particular. These are used in 
Monte Carlo image synthesis extensively and are momen-
tous milestones in BRDF theory and practice. The Ward 
BRDF is an empirical anisotropic BRDF that employs 
an elliptic Gaussian distribution on the directional hemi-
sphere for the distribution of normals. The method pro-
posed for importance sampling does not achieve perfect 
cancellation of factors, and thus weighting (or renormal-
ization) of the random samples is required. The renormal-
ization factor is not simple or transparent, underscored by 
the fact that several corrections to the original formula 
were published more than a decade later [13, 15].

Schlick's BRDF is considered a physically based model, 
and it incorporates occlusion and self-shading terms to com-
plement the microfacet model while maintaining relatively 
few, reasonably intuitive parameters. Schlick's BRDF can 
be importance sampled perfectly, with one caveat. Both the 
Ward and Schlick BRDFs sample the microfacet normal 
distribution and, especially for grazing angles, are prone to 
generating invalid reflection directions.

These are considered to be self-obstructed by the surface. 
The photons are assumed to undergo multiple scattering, 
and they are re-emitted in a diffuse way. This requires addi-
tional random sampling that happens only on a condition, 
which is not ideal on parallel GPU hardware. On a more the-
oretical note, the probability of self-obstruction happening 

Fig. 1 Cosine sampling using the tangent sphere: (a) 2D representation; 
(b) 3D representation

S

(a)

(b)
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cannot be written exactly in terms of elementary functions, 
but a rational fraction approximation is given by Schlick.

It can be said that the Ward BRDF is a great practical 
choice for most rendering tasks, while the widespread use 
of the Schlick formulas in high-fidelity renderers is justified 
by their qualities. Indeed, the only requirement we stated in 
the introduction of this paper that the Schlick BRDF does 
not meet is that it should not reject samples, which may be 
a minor or even irrelevant issue, depending on the hard-
ware architecture. Still, both BRDFs use relatively compli-
cated formulas that are empirical or approximate, remov-
ing the implementation from physical intuition.

2.7 Tobler, Neumann, Sbert, and Purgathofer model
BRDFs that are physically plausible (i.e., reciprocal), but 
not strictly microfacet-based, also exist. The previously 
cited work by Tobler et al. [10] does not only address 
sampling the diffuse BRDF in a new and simple way but 
also handles specular reflections. The BRDF is defined 
in terms of bidirectional distributions over the tangent 
sphere S. The benefit is that when this distribution is sam-
pled, the cosine term does not need to be considered, as it 
is covered by the projection from the tangent sphere to the 
directional hemisphere. Also, all directions on the tangent 
sphere correspond to valid directions on the directional 
hemisphere, avoiding the rejection of obstructed samples. 
The benefit is that when this distribution is sampled, the 
cosine term does not need to be considered, as it is covered 
by the projection from the tangent sphere to the directional 
hemisphere. Instead of uniformly distributed samples 
on S, the samples need to be concentrated around the ideal 
reflection direction. For this, the authors propose using 
the analogy of the hat-box theorem, orienting a cylinder 
around the tangent sphere so that its axis coincides with 
the ideal reflected direction. Samples on the cylinder are 
generated from two uniformly distributed random vari-
ables, sampling the azimuth angle uniformly and the axial 
position according to an arbitrary PDF with an analyti-
cally invertible CDF. This construction again satisfies all 
of our stated requirements, including perfect importance 
sampling and no sample rejections, except for the inclu-
sion of anisotropy. As the BRDF is written in terms of the 
reflected direction and not microfacet normals, relation to 
tangential directions is not straightforward to incorporate.

Our work, inspired by the above results, explores fur-
ther options for reciprocal sampling using the tangent 
sphere, eventually solving the anisotropy problem.

3 The Unit-Quaternionic CML
We tested the idea that the scheme of the Quaternionic 
Cellular Automaton could work with unit quaternions 
with real coefficients, a setup we refer to here as the Unit-
Quaternionic CML, or UQCML. In order to avoid the 
eventual degradation due to numerical errors in the reali-
zation, we formulate the rule as:

x
x x
x xs

n s
n

s
n

s
n

s
n

� � �

� �

�
�

�
1 1 1

1 1

,  (8)

where superscripts denote iteration indices, and we added 
a theoretically superfluous normalization to maintain the 
unit norm of the quaternion in every cell.

The straightforward alternative to UQCML would be 
to use Shoemake's formula [16] on uniform pseudo-ran-
dom numbers provided by a standard high-quality PRNG. 
In general, the Mersenne Twister [17] is the de facto stan-
dard solution. When memory usage is at a premium, but 
PRNG cycle length is a secondary concern, as in GPU ker-
nels or shaders, its variant TinyMT can be used [18].

To evaluate the resulting pseudo-random sequence of 
rotations, we computed the rotation axes as unit vectors. 
If these are evenly distributed on the unit sphere, all their 
components need to be uniformly distributed, as evident 
from the hat-box theorem [19]. We quantized them to 8 bits 
and benchmarked the resulting byte stream using the ENT 
PRNG test suite [20]. We compared the results against the 
standard C random generator, against the uniform random 
numbers produced by the TinyMT PRNG, and direction 
components/polar angles we got by mapping randoms pro-
duced by TinyMT to the unit quaternions by Shoemake's for-
mula. Results in Table 1 [20] show that UQCML achieved 
the same quality as TinyMT if the size of the lattice is at 
least 5 and an odd number. Even-sized lattices separate their 
internal state into two disjunct subsets, therefore, even-num-
bered lattices produce good-quality randoms from size 10. 
Interestingly, increasing the UQCML site count did not 
improve randomness. Overall, the statistics are excellent, 
and we find it remarkable that this extremely simple setup 
compares equally to the quite refined Mersenne Twister 
solution. TinyMT uses 127 bits for internal storage, while 
UQCML-5 stores five quaternions using single-precision 
floats in 640 bits. This is redundant, as all quaternions are unit 
length. Later solutions in this paper improve this number.

It may be noted that there are obviously flawed starting 
states, e.g., if all cells hold an identity quaternion, when the 
output will not be random. When we set the starting states 
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using uniform random rotations generated by Shoemake's 
formula, we never encountered any flawed configurations.

4 The Reflection Lattice
While UQCML can be used to generate uniform rotations, 
a more ubiquitous problem is the generation of random 
directions, e.g., in the context of random walks in Monte 
Carlo image synthesis algorithms. Our idea was to con-
struct a CML with 3D vectors instead of quaternions but still 
using non-commutative operations. Obvious candidates are 
the cross product and the reflection of a vector onto another 
vector. These operations are implemented in shader lan-
guages as the cross and reflect intrinsics, respectively:

v v vs
n

s
n

s
n�

� �� �1

1 1
,  (9)

v v v v vs
n

s
n

s
n

s
n

s
n�

� � � �� � � ��1

1 1 1 1
2 .  (10)

The stage transition rule is Eq. (9) or Eq. (10). As before, 
the results can be normalized to avoid number-representa-
tion inaccuracies.

The alternatives would be using uniform randoms 
mapped to spherical coordinates, using the Box-Muller 
transform, then normalizing, or using rejection sam-
pling on uniforms in 3D. Rejection sampling is not done 
in constant time and is thus poorly suited to GPU con-
texts. We compare the Reflection Lattice (RL) to using 
random spherical coordinates and the Box-Muller trans-
form (Table 1). The reference methods need uniform ran-
doms, which we supplied with the TinyMT PRNG.

Results were similar or better than those of the UQCML, 
with both uniform distribution on the sphere and low serial 
correlation. Visually, the results of UCQML, RL, and the 
reference methods are similar. Again, using more than five 

Table 1 ENT [20] randomness and uniformity test results over 10 million elements for the UQCML and RL direction components (X, Y, Z) / polar 
angle(atan) distribution

Entropy Chi square dist Mean Monte Carlo Pi Pi error (%) Serial correlation coeff.

C Rand 7.999993 93.79 127.4905 3.141471657 0.00 0.000096

TinyMT float 7.999979 284.22 127.4467 3.141987657 0.01 0.000107

TinyMT X 7.999981 261.49 127.5023 3.141894057 0.01 −0.000015

TinyMT atan (X,Y) 7.999984 228.26 127.4968 3.141685257 0.00 0.000009

UQCML31 X 7.999984 219.86 127.491 3.141802857 0.01 −0.000285

UQCML31 Y 7.99998 279.58 127.4702 3.141558057 0.00 −0.000195

UQCML31 Z 7.999979 291.74 127.4698 3.143108457 0.05 −0.000021

UQCML31 atan (X,Y) 7.999982 244.51 127.4897 3.142330857 0.02 −0.000035

UQCML31 atan (X,Z) 7.999982 254.84 127.5126 3.141174056 0.01 −0.000203

UQCML31 atan (Y,Z) 7.999982 250.79 127.4706 3.142078857 0.02 −0.000408

UQCML5 X 7.999975 353.07 127.7271 3.128658051 0.41 −0.014072

UQCML5 Y 7.999983 241.25 127.533 3.139750856 0.06 0.000698

UQCML5 Z 7.999975 353.07 127.7271 3.128658051 0.41 −0.014072

UQCML5 atan (X,Y) 7.999976 326.91 127.6642 3.131007652 0.34 −0.008352

UQCML5 atan (X,Z) 7.999976 332.84 127.6801 3.130122052 0.37 −0.008284

UQCML5 atan (Y,Z) 7.99998 283.17 127.5324 3.139736456 0.06 0.000125

RL31 X 7.999982 253.71 127.5184 3.139710056 0.06 −0.000225

RL31 Y 7.999979 294.22 127.478 3.141332457 0.01 0.000408

RL31 Z 7.99998 279.55 127.5291 3.140694056 0.03 −0.000311

RL31 atan (X,Y) 7.999983 235.75 127.5073 3.140653256 0.03 0.000002

RL31 atan (X,Z) 7.999983 233.16 127.5025 3.142323657 0.02 −0.000519

RL31 atan (Y,Z) 7.999983 241.08 127.4668 3.141666057 0.00 0.000056

RL5 X 7.99998 280.81 127.487 3.139707656 0.06 −0.000302

RL5 Y 7.999981 260.62 127.55 3.140074856 0.05 0.000371

RL5 Z 7.99998 275.1 127.4933 3.140082056 0.05 −0.000191

RL5 atan (X,Y) 7.999981 268.29 127.498 3.141567657 0.00 −0.00049

RL5 atan (X,Z) 7.999981 269.98 127.4813 3.140842856 0.02 −0.000358

RL5 atan (Y,Z) 7.999982 252.49 127.5796 3.139119656 0.08 0.000075
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sites did not improve statistics. The five-site Reflection 
Lattice (RL5) stores its state on 480 bits, which can be 
reduced to 320 bits by exploiting the fact that all vectors are 
of unit length. This is still more than the 127 bits of TinyMT, 
but the implementation is simpler, and the results are some-
what better. Also, the RL can work on hardware where integer 
operations are not available or in OpenGL ES 2.0 contexts.

5 The summed RL
Generating samples from a three-dimensional normal dis-
tribution is possible if we sum the output of our CMLs, 
following the sum-of-uniforms (or CLT) scheme of gen-
erating Gaussian samples. Although the values at the sites 
cannot be regarded as independent, the Shapiro–Wilk [21] 
test shows that the samples can be accepted as that of a nor-
mal distribution with high confidence, especially at higher 
site counts (Table 2) [21]. In Table 2 each row shows results 
for a given lattice size, each column gives the value for 
a given sample count. A value below 0.05 means that the 
hypothesis that the samples were taken from a normal dis-
tribution is rejected. Note that the reference value in the 
table does not actually depend on z, its variation is only 
random, highlighting how the test values should not be 
given more significance beyond passing or failing the test. 
In fact, we generate samples of the Irwin–Hall distribution, 
which can be used as an approximation of the Gaussian. 
As the variance of the Irwin–Hall is z/12, with z being the 
number of uniform distributions added, the summed and 
normalized distribution is limited to � ��� ��12 12z z, ,  
where z is the size of the lattice. Even for a lattice size of 5, 
these are beyond 7 standard deviations.

Even so, compared to more refined normal distribu-
tion generation methods, tails are sampled relatively 
poorly, which shows up in the Shapiro test at higher sam-
ple counts. In practice, if samples are generated for the 
purpose of Monte Carlo rendering in a per-thread or per-
thread-block fashion, the required sample counts can be 
expected to remain under 100.

Using Sherman's upper bound [22] for the approxima-
tion of the normal CDF using the Irwin–Hall distribution, 
we can say that for a lattice size of 5, we get a worst-case 
integration error of less than 2.5%. The same value for 
z = 31 is 0.0024%. 

We can conclude that for the purposes of Monte Carlo 
rendering, our SRL-5 provides an approximate distribu-
tion that leads to slightly biased estimates, but SRL-31 can 
be considered error-free. On GPU hardware with 32- or 
64-lane architecture, it would be ideal to implement a per-
block PRNG with parallel execution.

6 Group shared memory utilization
Group shared memory utilization significantly reduces 
the per-thread memory requirement, which can greatly 
enhance computation performance on the GPU. Compute 
shader threads were dispatched in groups of 32. Each 
group maintains a CML, with every thread being respon-
sible for updating one cell. The calculation step can be 
executed simultaneously for every instance of the compute 
shader group without expensive code branching. This way 
the RL is able to generate a new state in every cell while 
executing only a reflection and a normalization step and 
only requiring 12 bytes of memory per shader thread.

Table 2 Results of the Shapiro–Wilk [21] test for samples generated by the summed RL

z Reference 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

3 0.36 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

5 0.20 0.19 0.12 0.16 0.10 0.06 0.05 0.08 0.01 0.01 0.00

7 0.16 0.25 0.32 0.29 0.33 0.24 0.02 0.01 0.02 0.01 0.00

9 0.14 0.46 0.42 0.30 0.15 0.06 0.02 0.05 0.04 0.02 0.01

11 0.07 0.27 0.61 0.26 0.27 0.41 0.41 0.38 0.46 0.40 0.36

13 0.41 0.81 0.48 0.26 0.21 0.31 0.15 0.26 0.18 0.20 0.13

15 0.75 0.43 0.20 0.89 0.94 0.95 0.88 0.68 0.55 0.33 0.44

17 0.87 0.51 0.33 0.50 0.49 0.40 0.54 0.40 0.49 0.12 0.09

19 0.99 0.60 0.62 0.22 0.28 0.52 0.33 0.33 0.09 0.13 0.40

21 0.77 0.48 0.09 0.09 0.51 0.65 0.59 0.42 0.36 0.64 0.60

23 0.68 0.74 0.66 0.63 0.55 0.84 0.74 0.64 0.56 0.56 0.52

25 0.84 0.53 0.49 0.38 0.59 0.87 0.80 0.46 0.39 0.32 0.29

27 0.42 0.46 0.36 0.31 0.51 0.67 0.23 0.38 0.33 0.73 0.52

29 0.26 0.16 0.44 0.57 0.08 0.29 0.46 0.33 0.23 0.15 0.23

31 0.56 0.48 0.34 0.49 0.70 0.41 0.16 0.14 0.16 0.17 0.46
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7 Sampling on the tangent sphere using uniform 
directional samples
The hat-box mapping for generating samples on the tangent 
sphere S is a convenient method when uniformly distributed 
random numbers are available. However, as random num-
ber generation is challenging on some hardware, it is possi-
ble that pre-generated randoms are used, possibly the same 
or correlated ones in all pixels. In such a setup, pre-gen-
erating random numbers already uniformly distributed on 
the sphere means no overhead. Alternatively, methods that 
generate random directions directly can be used, such as the 
one described in this paper. Therefore, it is of interest how 
these uniformly distributed directions can be transformed 
into non-uniform sampling on the tangent sphere.

The hat-box analogy can still be used, but there is no 
need to transform uniform variables onto the cylinder. Let 
rS S∈  be the fixed point (or pivot) of the transformation. 
Pivot rS can certainly be the normal itself, e.g., to produce 
a distribution of halfway vectors around the normal, or it 
could be an ideal reflection direction to produce samples 
of a specular lobe, as chosen by Tobler et al. [10]

The axis coordinate on the hat-box cylinder would be:

z S S� �q r .  (11)

Transformed by an arbitrary PDF, we can obtain z'. 
Then the transformed sample is:

� � � � �� � � �
� �

� �q r q rS S S Sz z z
z

1

1

2

2
.  (12)

8 Halfway-on-tangent-sphere BRDF
The shortcoming of the tangent-sphere sampling method 
is that it does not work with a microfacet normal distribu-
tion, and therefore cannot incorporate the anisotropy of 
these microfacets. We could define:

h v lS S S� �� �� ,  (13)

where vS and lS are related to v and l as given by Tobler 
et al. [10] and shown in Fig. 2:

v n v v n l n l l nS S� �� � � � �� � �2 2, .  (14)

Then, it is a logical variant to formulate the BRDF in 
terms of hS ∙ n. Samples of hS can be generated using the 
method in Section 7 or on an elliptic cylinder that has the 
normal as its axis, and projected onto S. Then, a random 
sample for v can be generated by projecting it onto the tan-
gent sphere to get:

v n v v nS � �� � �2 ,  (15)

reflecting this on hS gives:

l v n h vS S S S� � � � ��2 .  (16)

Finally, lS is projected back to the directional hemi-
sphere as:

l n l� �� ��S .  (17)

But the problem with this idea, and the likely reason the 
original authors did not consider this, is that isotropic lobes 
on the tangent sphere are not isotropic on the direction 
sphere. As circles are mapped to ellipses, blurring along 
the plane spanned by vectors v and n appears. Note that this 
is not the regular anisotropy induced by the scratches on 
the surface of the material but a viewpoint-dependent blur.

9 Volumetric sampling
As the halfway-on-tangent-sphere BRDF does not provide 
the required behaviour, it is logical to look for another way 

Fig. 2 Cosine sampling using the tangent sphere: (a) 2D representation; 
(b) 3D representation

S

(a)

(b)
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to relate vS and lS in a symmetric manner. If distribution on 
the surface of the tangent sphere does not work, a distri-
bution over the volume of the tangent sphere could. Follow 
the process in Fig. 3.

If we select a point ξ in the tangent sphere, then draw-
ing the line E through vS and ξ intersects S at another 
point lSR. This direction is not near the ideal reflection 
direction, but if it is reflected onto the normal to get lS , 
that one is. The process is entirely symmetric only if we 
restrict the sampled distribution to be symmetric along the 
normal. Then, the integrals along lines E and ER are equiv-
alent. The sampled light path can be seen to go from vS to lS 
while being reflected from the equatorial plane of S (high-
lighted in red in Fig. 3).

This way, if the distribution is concentrated around 
the center of S, the sampled directions will be close to the 
ideal reflected direction. On the other hand, a uniform dis-
tribution on S gives the diffuse BRDF. The distribution 
has to be so that it can be both efficiently sampled and 
the probability of generating a sample can be determined. 

All points along line E map to the same sample, so we have 
to integrate the volume PDF along E. This needs to be the 
same path if vS and lS are switched, which is true if the vol-
ume distribution is symmetric on the equatorial plane of S. 
This integral can be very challenging to evaluate, with 
a closed-form solution not existing for most distributions.

If the PDF is constant or piecewise constant, then the 
length of the path intersecting a domain of constant value 
could be found. However, we cannot expect that to lead to 
natural BRDF models. If the distribution is a 3D normal 
distribution, the integral is again easy to evaluate. The eas-
iest case is what we call the isotropic full Gaussian version. 
In this case we do not limit samples to the inside of S, and the 
line E along which the same directional sample is obtained is 
an infinite line, not a line segment. A 2D projection of a 3D 
normal distribution is also a normal distribution, so we only 
have to find the distance between E and the center of S, and 
obtain the value of the projected distribution there.

We first project v and l to vS and lS , respectively, using 
the same formulas as before. Then the distance is:

t S S S S�
� � � �� �� � �1 2

2

v l v n l n
,  (18)

which is notably symmetric in vS and lS . The BRDF is:

f er soGauss

t

i
�

�1

2

2

2
2

��
� .  (19)

This, however, produces realistic reflection only as long 
as the variance of the Gaussian is small, and samples out-
side of the tangent sphere are not generated with a signifi-
cant probability. As the variance increases, the distribution 
of the direction of the line E converges to a uniform dis-
tribution. This leads to a non-uniform distribution on the 
tangent sphere, featuring stronger retro-reflection. Instead, 
a BRDF that converges to the diffuse case is preferable. 
We call this version the isotropic clipped Gaussian, where 
Gaussian samples generated outside of the tangent sphere 
are simply projected onto the sphere to produce a uniform 
distribution, exactly recreating the diffuse case. In this case, 
however, the BRDF consists of a diffuse and a specular 
component. The probability of selecting the specular com-
ponent, i.e., a point within the sphere along line E is the inte-
gral of the Gaussian distribution along line E between the 
entry and exit points. With the half-length of the segment:

� � �1 2t ,  (20)

the integral can be expressed using the Gaussian error 
function, making the weight of the specular:Fig. 3 Volumetric sampling of directions using the tangent sphere: 

(a) 2D representation; (b) 3D representation

S

(a)

(b)
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�
�

�
�

�
� �

�
2 2

.  (21)

The BRDF is:

fr soGaussi clipped
� �

�1

2

1

��
�

�
�
,  (22)

where the second term captures the diffuse component.
It is possible to apply any affine transformation on the 

Gaussian distribution, maintaining the ability to evalu-
ate the PDF (as lines are transformed to lines). The trans-
formation cannot depend on v, as that breaks reciprocity, 
but it can depend on model tangents and binormals, as in 
Wards and Schlick's models, introducing material anisot-
ropy. If we combine this with the clipping of the Gaussian 
distribution to the tangent sphere, the limits of the integra-
tion change, as the tangent sphere, in the primary distribu-
tion space, is an ellipsoid. In this case, the BRDF can be 
evaluated by transforming vS and lS to tangent space, scal-
ing them with the anisotropy factor to primary distribu-
tion space, and evaluating ζ with the respective values of 
the 1D error function at those locations. Note that this also 
makes the formerly diffuse component anisotropic.

10 Volumetric scattering
Another possible application of the presented lattice PRNG 
is creating volumetric scattering effects. Volumetric scatter-
ing, in contrast to the aforementioned applications, requires 
random distance in addition to the random direction vec-
tor to replicate the random walk inside solid bodies. In this 
scenario, we demonstrate that our RL can create directions 
so effectively that it is more beneficial to use RL to generate 
directions and TinyMT to generate the distance simultane-
ously than it is to use TinyMT exclusively to generate both.

11 Results
In order to demonstrate the various application possibili-
ties of our novel PRNG, we constructed four path tracing 
scenarios:

1. The first is a simple Cornell box to demonstrate the 
efficiency of the RL (Fig. 4). We measured a 10% 
FPS increase when generating the directions with RL 
compared to TinyMT without any perceptible visual 
change. We also implemented our Gaussian distribu-
tion-based BRDF with both random generation meth-
ods and compared them to Schlick and Ward alterna-
tives. The efficiency of our BRDF improved by 25% 
FPS with RL while visually remaining the same. 
Our BRDF looked different from Ward and Schlick, 

but all three seemed plausible. The Schlick version 
was 18% while the Ward version was 26% faster than 
our BRDF, but when the generated direction was 
invalid, we reverted to diffuse sampling. If we were 
to reject samples in this case, then we could achieve 
varying results depending on the number of surfaces 
that are shown from sharp viewing angles.

2. In the second scenario we showcase that our BRDF 
provides a perfectly continuous transition between 
ideal mirror and completely diffuse surfaces while 
also allowing anisotropy (Fig. 5).

3. In the third scene we can perceive that our BRDF 
can create similar visuals to the references in com-
plex environments (Fig. 6). We think that the only big 

Fig. 4 Simple Cornell boxes: (a) Completely diffuse with TinyMT 
36 FPS, (b) our BRDF with TinyMT 31 FPS, (c) Ward 49 FPS, (d) 

completely diffuse with RL32 40 FPS, (e) our BRDF with RL32 39 
FPS, (f) Schlick 46 FPS

Fig. 5 Our BRDF with shininess: (a) 0, (b) 0.7 (isotropic), 
(c) 0.7 (anisotropic), (d) 1

Fig. 6 Scene with multiple objects: (a) our BRDF with TinyMT 9 FPS, 
(b) Ward 11 FPS, (c) our BRDF with RL32 10 FPS, and (d) Schlick 11 FPS
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differences between our BRDF and the references are 
on the edges of shiny surfaces, where the view angle 
is almost parallel with the surface. In this case, Ward 
and Schlick BRDFs can easily generate invalid angles 
that cause a darkened contour in the original Ward and 
diffuse colour dominancy over specular colour in the 
later Ward variants and Schlick BRDF. We think that 
our solution handles this behaviour in a more correct 
way. In this scene our BRDF was 10% faster with RL 
compared to TinyMT, and Ward and Schlick were 
even faster by 10% when rejection was circumvented.

4. The last scenario is a volumetric scattering test case 
to prove that our lattice can be used in a wide range of 
applications (Fig. 7). The reference volumetric scat-
tering generated the directions and the distance with 
TinyMT. In our version the direction generation was 
changed to RL, but the distance generation remained 
unchanged. We measured a 10% FPS increase apply-
ing RL while the visual changes were very minor.

We implemented our ideas into practice in a DirectX 
11 environment. Our technical parameters were: 
1024px × 1024px render target, NVIDIA GeForce GTX 
1080 Ti graphics card and Intel i7 4790k processor. 
The compute shader instances of the path tracers calcu-
lated 32 different routes until the 8th depth per frame. 
The volumetric scattering was evaluated until the 64th step 
in the inside of the objects.

12 Conclusions
Our proposed PRNG performs around 10% faster and 
requires 24% less memory when generating directions 
compared to the de facto standard TinyMT version while 
providing correct distributions without any visual glitches. 
We also measured the correctness of this PRNG with ENT 
and the derived 3D Gaussian distribution with Shapiro–Wilk 
test, achieving good results. Our BRDF model improves on 
the model of Tolber et al. by allowing for anisotropy, and 
it is better suited to GPU kernels than the Ward or Schlick 
BRDFs because it does not reject samples. As results in 

Fig. 5 show, a smooth transition from the ideal mirror to 
a completely diffuse appearance is supported. Both the sam-
pling process and the BRDF evaluation are relatively sim-
ple, and no renormalization is needed. The visual quality of 
the new BRDF is very similar to Ward and Schlick models 
but more vivid on sharp angles when the sample generation 
of these alternatives could fail. We also proved that our lat-
tice can achieve the aforementioned improvements even if 
used together with alternative random generator solutions.

Fig. 7 Subsurface scattering: (a) TinyMT 45 FPS, (b) RL32 and 
TinyMT 56 FPS

(a)

(b)
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