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Abstract

Hexagonal planar arrays are useful in radar, sonar, and wireless communications due to their ability to provide complete coverage 

in the azimuth plane. On the other hand, hybrid arrays that combine two different array structures, like a small central square 

subarray surrounded by a number of rings, are capable of providing better performance than the conventional array architectures. 

This paper introduces two new planar array structures that are efficiently optimized to best cope with these aforementioned 

applications. The first proposed design is a planar array with hexagonal structure based on discrete hexagonal-ring amplitude 

distributions, while the second design structure is the hybrid array architecture with a small central square subarray surrounded 

by a number of elements in the shape of a ring. The idea of first design structure is to re-represent the conventional element-based 

excitation amplitudes by discrete hexagonal-based excitation amplitudes in which they are ordered in descending from the center 

to the array edges. By this way, the amplitude excitations of the array elements become more compatible and practicable with the 

needed real-life discrete RF attenuators or amplifiers that are used for configuring the targeted excitation amplitudes. Moreover, 

the discrete hexagonal-based excitation amplitudes need a simpler feeding network than its element-based counterpart, thus, the 

array cost and complexity are greatly reduced. An optimization scheme based on a genetic algorithm is used to optimize these two 

proposed array structures to achieve ultra-low sidelobe levels while preserving mainlobe directivity. Simulation results confirm 

the effectiveness of the proposed array structures.
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1 Introduction
Generally, antenna arrays with circular geometries or ring-
based planar subarrays are widely employed in radar [1], 
satellite communication [2], and sonar systems [3] due to 
their ability to provide 360° azimuthal coverage. Its prin-
ciple can be also applied in microphone arrays [4], acous-
tic echo [5], and biomedical applications [6]. However, one 
of the challenges in the synthesis of a circular array is the 
suppression of undesirable sidelobes without excessively 
broadening the main beam and maintaining the array 
directivity undistorted. Classical solutions include the 
use of some tapers such as Dolph–Chebyshev and Taylor 
distributions, which achieve specified sidelobe levels in 
linear arrays. The Kaiser window, derived from prolate 
spheroidal functions, has proven to be a versatile tapering 
function for linear and planar arrays due to its adjustable 
trade-off between mainlobe width and sidelobe level [7, 8].

Generally, non-uniform excitation tapers such as 
Dolph–Chebyshev arrays achieve equal-ripple sidelobe 
behavior, while Taylor distributions allow controlled sid-
elobe decay. Much published research has extensively 
addressed synthesis problems in one-dimensional linear 
and two-dimensional rectangular planar arrays. However, 
circular planar arrays pose additional challenges due to 
element placement on concentric rings and non-uniform 
spacing. Thus, some recent works have explored evolu-
tionary algorithms, convex optimization, and heuristic 
tapers to suppress sidelobes in circular geometries [9–11]. 
Such array geometry has been found in biomedical appli-
cations, direction-of-arrival estimation, and astron-
omy  [12–15]. To  simplify the feeding network complex-
ity, clustered arrays with various geometrical shapes have 
been also presented [16–19].
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This paper, first, extends the Kaiser approach to circular 
arrays and presents an optimization framework to achieve 
optimum low sidelobe levels. It develops the principle 
of continuous Kaiser distribution that was used in linear 
arrays to be applicable for circular apertures and maps it 
to discrete-hexagonal-based amplitude distribution shape 
which is more practical from implementation point of view. 
Further, the author combine closed form tapering with 
a small parameter optimization for geometry and window 
parameter β. The main contributions in this design are as 
follows: the continuous circular aperture with Kaiser taper 
was efficiently transformed to discrete hexagonal-based 
Kaiser taper. The design parameters β, ring radii Rm , ring 
populations Nm and other spacing constraints are optimized 
to get minimum sidelobe level while preserving the array 
directivity. Finally, a two stage optimization solver such as 
genetic algorithm (GA) and convex least squares (LS) was 
used to find the optimum excitation weights under discrete 
hexagonal-rings with the same excitation amplitude among 
all elements that belong to a certain ring.

In the second proposed array, a hybrid structure that 
combines between two different arrays like a small central 
square subarray with surrounded rings is suggested. This 
hybrid array is capable of providing better performance 
than the conventional planar array architectures. It should 
be mentioned that this is the first time to introduce such 
a hybrid array geometry which opens a new horizon for 
the hybrid planar array geometries.

2 The hexagonal planar array structure
Consider a continuous circular aperture with radius R. The 
author assume a continuous radial Kaiser taper for 0 ≤ r ≤ R:
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where Io is the zero-order modified Bessel function, 
w(0) = 1, w(R) = Io(0)/Io(β) = 1/Io(β) and β is the design 
parameter that controls the trade-off where large value 
corresponds to lower sidelobes and wider main beam. 
The continuous Kaiser taper is shown in Fig. 1 (a). To find 
the corresponding discrete hexagonal-based taper as 
shown in Fig. 1 (b), consider a hexagonal planar array with 
a number of concentric hexagonal-rings m = 1, 2, …, M. 
Let Rm be the ring radius, Nm be the ring population 
(i.e., the number of array elements in each ring), ∅m n,  ele-
ment angles in azimuth plane, (m,n) is the element index, 
and Rm,n is the element position in the array:
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Further let us assume the discrete complex weight of the 
ring-based element excitation amplitude is wm,n. For such 
a planar array, the far-field array pattern A �� �,�  relative 
to the broadside (z-axis) can be written as [20]:
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where k = 2π/λ is the wave number, λ is the wave length, 
and θ, ∅  are the elevation and azimuth angles respec-
tively. Clearly, the design variables β, ring radii Rm, ring 
populations Nm and wm,n can be optimized in two-stage 
optimization process to obtain minimum sidelobe level 
while preserving the array directivity.

Fig. 1 Continuous (a) and discrete (b) hexagonal tapers
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2.1 Objective function optimization
Section 2.1 introduces the objective function that is used to 
minimize the peak sidelobe level (PSL) in dB over the whole 
visible region (excluding the mainbeam) of the antenna 
array pattern, while constraining the beam width or maxi-
mizing the array directivity. Thus, it can be formulated as:
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The GA optimization was used to find the optimum 
value for the design variables { β, R1, …, RM , N1, …, NM }. 
Now, let us map the continuous Kaiser taper to the discrete 
hexagonal rings and elements:

R R m
M

m Mm � � �, , , , .0 1 	 (6)

Next, assign discrete ring-based amplitude excitations 
by sampling the continuous radial taper at Rm :
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After optimizing the geometrical design variables 
{ β, R1, …, RM , N1, …, NM } by means of a genetic opti- 
mization. The hexagonal array geometry becomes fixed. 
Next the author solve for discrete complex weights that 
reduce the sidelobe level with minimal deviation from 

the prior circular-Kaiser taper. A convex least squares 
was used to optimize the discrete hexagonal-based 
amplitude distributions:
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where ASLL represents the stacks steering vectors over 
sidelobe angles; w(0) is the prior circular Kaiser taper and 
λr  is the least square regularization parameter. The lin-
ear equality fixes broadside gain and maintains the main 
beam undistorted.

2.2 Ring feeding network design of the proposed 
hexagonal-based amplitude excitations
The feeding network design of the proposed hexagonal 
planar array with discrete ring-based amplitude exci-
tations is shown in Fig. 2.

In this design, six hexagonal rings were considered as 
was presented in Fig. 1 (b). The number of array elements 
in the first ring and upward are 6, 12, 18, 24, 30, 36 ele-
ments. Since each hexagonal ring consists of a certain num-
ber of elements and they are sharing the same amplitude 
and phase excitations, thus, the elements of each hexagonal 
ring are connected to a single radio frequency (RF) digi-
tal attenuator and a single digital phase shifter. The cen-
tral element is left individually, its normalized amplitude is 
one while its phase is zero, and thus, it is not connected to 
any attenuator or phase shifter. From this design, it is clear 

Fig. 2 Feed network design of proposed hexagonal planar array with discrete ring amplitude excitations
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that the proposed array needs only 6 digital attenuators 
and 6 phase shifters, while the conventional element-based 
amplitude excitations method needs a total number of dig-
ital attenuators equal to 126 and the same number of the 
phase shifters. Such a great reduction in the feeding net-
work complexity makes the proposed discrete hexagonal 
array practically most efficient and simplest method.

3 The hybrid planar array structure
In Section 3, the author consider a second proposed design 
geometry of the hybrid array where a fixed central subar-
ray in the form of a small square or rectangular surrounded 
by a number of array elements whose positions and exci-
tations are need to be optimized to get the minimum sid-
elobe level in the azimuth plane. The position (xi , yi ) and 
weight excitation wi of the central sub-array elements, Ns , 
can be expressed as:

Central subarray � � �� �
�

x y wi i i i

Ns
, , ,
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while each of the surrounded ring elements has polar coor-
dinate rj j,�� �  and its cartesian coordinate is:

x r y rj j j j j j� �� � � �� �cos , sin . 	 (10)

These array elements are with complex weight exci-
tation as:

w a ej j
j j� � , 	 (11)

where aj is amplitude and ψj is phase excitations.
Then, the optimization variables are:

u r a j Nj j j j r� �� � � �, , , , , ,,� for 1 2 	 (12)

where Nr is the total number of surrounded elements in the 
circular ring region.

The optimization problem for such hybrid array is to 
minimize the PSL as follows:

min
.

u
uPSL � � 	 (13)

Under the constraints:

r r r aj j jmin max
, , ,� � � � � � � �0 1 and � � 	 (14)

where the element positions are restricted within min-
imum and maximum specific bound within the required 
ring regions. Thus, the element positions in the ring region 
are only optimized, while the amplitude excitations are set 
to ones and the phase excitation are set to zeros.

4 Simulation results
4.1 Results of discrete hexagonal-based amplitude 
excitations
For the discrete hexagonal-based amplitude excitations, 
the author use an aperture radius Rm = 4λ, d = 0.5λ, and 
� �� �0 10, .  The  number of elements in each hexagonal 
ring Rm was determined by the optimizer. For the genetic 
optimization, the author used the build in function called 
"fmincon" with population size of 200 and maximum num-
ber of iteration equal to 400. The least square regulariza-
tion parameter was set to λr = 1e−2.

In the first example, the value of β was set to 0, thus, the 
discrete hexagonal-based amplitude excitations were uni-
form (i.e., unit amplitudes) and the corresponding array 
pattern has relatively high sidelobe level equal to −13.2 dB 
(see Fig. 3). In the second example, the β = 2.11 and the 

Fig. 3 Hexagonal ring-based amplitude excitations (a), and its corresponding array pattern (b) for β = 0, Rm = 4λ
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discrete hexagonal-based amplitude excitation becomes 
quite clear and the corresponding array pattern has peak 
SLL = −20 dB (see Fig. 4). In the next example, β = 5.65 
and the peak SLL was reduced to more than −45 dB 
(see Fig. 5). The array pattern and its corresponding dis-
crete hexagonal-based amplitude excitations for β = 5.65, 
and Rm = 8λ is shown in Fig. 6. All of these results fully 
confirm that the discrete hexagonal-based amplitude exci-
tations approach can provide array patterns with mini-
mized PSL. Compared to Dolph–Chebyshev or Taylor 
tapers, the proposed discrete hexagonal-based amplitude 
excitations method preserved narrower beamwidth while 
achieving additional sidelobe suppression.

4.2 Results of hybrid planar array
In the second proposed hybrid array, the size of the central 
sub-array was N × M = 8 × 8 elements, the inter-element 
spacing inside the central sub-array was d  =  0.5λ along 

both x- and y-axis, The total number of the surround-
ing elements is chosen to be 200 elements, the minimum 
allowed spacing between any two elements of these sur-
rounded elements was constrained to ds = 0.6λ, the inner 
and outer radius of the surrounded rings were 2.5λ and 
6.0λ, respectively. The  amplitude excitations of the cen-
tral sub-array as well as the surrounded elements were 
fixed to uniform. Only the positions of the surrounded 
elements were optimized to get a minimum PSL accord-
ing to Eqs. (13) and (14). The results are shown in Fig. 7 
and Fig. 8 where the PSL was −20 dB. Note that further 
reduction in the peak SLL can be obtained with optimiza-
tion of both element positions and excitations. However, 
there will be an increase in the feeding network complex-
ity when optimizing the element excitations. Fig. 9 shows 
the results of a central subarray structure with surrounded 
elements that are arranged along a specific number of 
rings. Compare the results of Fig.  9 with that of Fig.  7; 

Fig. 4 Hexagonal ring-based amplitude excitations (a), and its corresponding array pattern (b) for β = 2.11, Rm = 4λ

Fig. 5 Hexagonal ring-based amplitude excitations (a), and its corresponding array pattern (b) for β = 5.65, Rm = 4λ
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Fig. 6 Hexagonal ring-based amplitude excitations (a), and its corresponding array pattern (b) for β = 5.65, Rm = 8λ

Fig. 7 Hybrid planar array geometry (a), and its corresponding array pattern (b) for position–only optimization and uniform amplitude excitations

Fig. 8 Cost function variation of the hybrid planar array
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it is clear that the surrounded elements along the rings give 
an array patter with higher PSL about −17 dB than the pre-
vious case. This is mainly due to enforce more constraints 
on the array elements.

5 Conclusions
It was introduced a discrete hexagonal-based array pattern 
synthesized method for obtaining low sidelobes. Its design 
parameters were optimized by means of coupled GA and 
convex least square method. The designed hexagonal 
array has −45 dB sidelobes with controllable beamwidth 
under strict constraint value of β = 5.65. It is found that the 
first proposed method provides a balance between analyt-
ical simplicity and optimization flexibility.

Moreover, the proposed hexagonal array produces 
a low sidelobe level with monotonic decay, which is often 
preferred in radar and sonar applications. The practical 
implementation of the designed discrete hexagonal array 
is simpler and it can be easily and efficiently integrated 
with real-life discrete RF components such as digital 
attenuators. For electronically scanned arrays, the value 
of β can be reduced as scan angle increases. This helps to 
limit main beam broadening.

For the second proposed method, the designed hybrid 
array with surrounded element positions-control achieves 
a sidelobe level about −20 dB. Better results could be 
obtained with optimized element excitations and positions 
controls simultaneously.

Fig. 9 Hybrid planar array geometry with circular rings (a), and its corresponding array pattern (b) for position–only optimization and uniform 
amplitude excitations
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