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Abstract

Speaker identification is a crucial topic in various fields, including linguistics, speech acoustic technology, and artificial intelligence.
Despite the progress, speaker identification remains a challenge, particularly in acoustically noisy contexts or when the speakers are
phonetically similar. Moreover, concerns regarding privacy and data protection frequently arise in speaker identification, particularly
concerning the use of personal audio data. Signal processing and machine learning techniques have significantly advanced, improving
the accuracy and resilience of voice recognition systems. New methods, including Convolutional Neural Networks (CNN), are
advancing voice information extraction performance. This study aims to develop a Speaker Identification System based on deep
learning techniques. These techniques have gained widespread recognition in the field of automatic acoustic signal processing. Many
researchers have used convolutional neural networks, and the recognition phase is based on the cross-entropy criterion. This article
proposes an advanced technique to combine convolutional neural networks with the maximum likelihood criterion. This proposed

technique has yielded promising results when compared to traditional systems, such as Vector Quantization (VQ), and Gaussian

Mixture Model (GMM). The suggested approach achieves an accuracy of 87.97% using all the data from the LibriSpeech corpus.
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1 Introduction

Automatic Speaker Recognition (ASR) is a technique for
identifying individuals based on their voice. It includes
information regarding the speaker's identity. This cate-
gory includes speaker verification (SV) and identification
(SI) duties. An SV system determines whether the stated
identity belongs to the client or an imposter. However, in
identification, the system selects a person from a known
group of persons. SI is divided into closed-set identifica-
tion and open-set SI. It is further divided into text-inde-
pendent and text-dependent systems. Several techniques
have been developed for ASR. They include vectorial, sta-
tistical, connectionist, and predictive methods.

Because of their ability to discriminate, short-time fea-
tures, such as MFCC, have been extensively employed in
SISs. Long-term characteristics, like prosody, are essen-
tially a speaker's ingrained qualities. In SI, pitch and

energy work incredibly well, especially when the channels
are mismatched, and the data is chaotic. The vocal tract's
structural variations between speakers result in speaker
specific information being included in prosodic elements.
One unfeasible aspect of prosodic characteristics is the
vast amount of information required for precise recogni-
tion. Much study has been done on SI in different back-
drop contexts during the last few decades [1-3].

Finding the best feature set to represent the speaker is
a significant difficulty in SI. As a result, decision-making
relies heavily on the quality and quantity of information
available. The message and identity are encoded on mul-
tiple levels of abstraction. Everyone has a distinct voice,
pitch, and style of speaking. Humans frequently use spec-
trum, auditory information, and prosodic data in everyday
discourse. However, none of this information is sufficient
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to distinguish between two individuals. So, all of this data
must be used to determine a speaker's identity.

This study aims to illustrate the significant improve-
ment of deep neural networks over previous methods.
It focuses on closed-set speaker recognition in text-inde-
pendent mode. Several techniques were employed, includ-
ing VQ, GMM, and CNNss.

The remainder of this work is structured into three sec-
tions. The first section discusses ASR systems and intro-
duces the relevant tasks. It contains three modules: audio
analysis, system learning, and identification. The second
section describes the procedures utilized to install the
proposed systems, and finally, the outcomes are presented
and reviewed.

2 Speaker recognition background

Fig. 1 depicts the basic structure of speaker recognition, a
decision-making process that employs speech signal fea-
tures to determine a speaker's identity among a collection
of P speakers. The limitation on linguistic content elimi-
nates one of the most variable sources. The SI architecture
consists of three primary components: speech analysis,
system training, and the identification phase.

The learning step consists of gathering multiple speech
signals provided by the speaker. Signals must be recorded
during several sessions and separated in time to approxi-
mate real conditions as closely as possible.

To make a comparative study, the proposed system is
implemented using several approaches: VQ, GMM, and
CNN.
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Fig. 1 Speaker Identification System
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2.1 Mel Frequency Cepstral Coefficients (MFCC)

Fig. 2 depicts a modular cepstral representation built on
a filter bank. High-pass filtering pre-emphasizes the spo-
ken signal. It improves the upper frequencies of the spec-
trum. They are frequently minimized throughout the
speech-production process.

x,(t)=x(t)-a-x(t-1) (1

a is generally taken as a value in the range [0.95, 0.98].
The use of this filter follows empirical experimentation.
The speech signal is analyzed using a sliding Hamming
window of 40 ms with a 50% overlap. In this case, the sig-
nal is assumed to be quasi-stationary.

0.54—0.46 cos(Z”T”j 0<n<N

H(n): ()

0 Otherwise

Using the Fourier transform, the signal spectrum is
obtained by transforming each frame into the frequency
domain. A filter bank multiplies the latter. Itis a series of band
pass filters placed evenly across the Mel scale. The position
of the central frequency of the filters is provided by:

S
log(l i 1000) 3)

, =1000-
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The resulting frame is transformed into a logarithmic
scale. Finally, a discrete cosine transform was used to get
the cepstral coefficients. The expression of these coeffi-
cients is given by:
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Fig. 2 MFCC Extraction
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K is the number of spectral coefficients calculated before,
S, are the spectral coefficients, and L is the number of cepstral
coefficients we want to calculate (L < K). In the speech sig-
nal, the dynamic information is different from one speaker
to another. Cepstral derivatives often give this information.
The first cepstral coefficient derivatives (A) give informa-
tion about the vector's variation over time. However, the sec-
ond cepstral coefficient derivative (AA) gives speech accel-
eration information. These coefficients are given by:

z;— 1k2 “Conk
= s sk 5)

m !
2 lH

Ac

! 2
AAc = M (6)
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2.2 Vector quantization

Vector quantization comprises a finite set of D quantiza-
tion levels, which are associated by a function to a vector
of K samples produced by the source. The set D represents
the vector quantization dictionary.

We can define vector quantization as applying the
space Q of dimension K in R, to a subset Y in R . Let
x = {x, x,, ..., X} be a vector of the set 0, and the x quan-
tification amounts to representingit by a close vector y, of
a finite dictionary Y= {y, ,, ..., y,,}. The dictionary Y is
obtained by partitioning R, into M classes C, each repre-
sented by its centroid y. Any vector x € C, will be repre-
sented by y,. This substitution introduces a quantization
error. This error increases as the distance between Xand ¥
is more excellent.

The iterative algorithm LBG allows us to build a dic-
tionary from a set of learning vectors [4]. The size of the
dictionary is an even number. The different steps of this
algorithm are:

» Initialization: An initial dictionary comprises a sin-

gle vector, the gravity center of the learning set.
Let d, be this vector.

» Splitting: All the elements d in number 2k of the dic-
tionary are "exploded" into two vectors. It is done,
for example, by transforming each vector d into d + ¢
and d — ¢. Where ¢ is a random vector of variance
adapted to the points of the cloud associated with d.

» Convergence: Apply the k-means algorithm to the
dictionary of 2k + 1 elements thus constituted. After
convergence, we get an "optimal" dictionary of
2k + 1 elements.

* Stop: Increment k. If k£ > k, the algorithm ends; oth-
erwise, we return to the splitting step. Where & is a
value fixed in advance.

The acoustic vectors are encoded in N dictionaries cor-
responding to N different speakers. The quantization errors
on each codebook are accumulated through the test signal.
The average distortion on the codebook of speaker i is:

1 & '
D :zzmmISjSM d(az’b}) "
=1

The final decision for SI is given by:

S, =argmin D' ®)

1<i<N

2.3 Gaussian mixture model

A weighted sum of many Gaussian distributions is called
a GMM. Each one has a mean vector x and a covari-
ance matrix X. The following equation gives a Gaussian
mixture:

P(x\),)zzzlpibi(x), (€)

where x is a dimension D vector, M denotes the Gaussian
components, w, is the weight of the mixture, which verifies
the condition ZZ w, =1, and b (x) is a multidimensional
Gaussian distribution:

b, (x) =

1

1 — (- ) =7 (v ;)
(Zﬂ)D/2|2,-|1/2 e’ ’ . (10)

A single model A characterizes the Gaussian mixture.
This model combines the mean vector u, the covariance
matrix X, and the mixture weight w. It is given by:

r={p,u,%}i=1..,M (11)

Several techniques are available to estimate the param-
eters of GMMs. Maximum likelihood (ML) estimation
remains the most popular. Indeed, for a sequence of T vec-
tors X= {x,, x,, ..., X}, assumed to be independent, the ML
of the GMM is given by:

P(x|A)=T]_P(x 1) (12)

Unfortunately, the analytical maximization of this func-
tion is not easy. The expectation-maximization algorithm
solves this problem. The basis of this algorithm is to esti-
mate, from an initial model 4, a new model / in an itera-
tive way. The estimated one A must verify p(X \i) > p(X|A)
condition. The two steps of this algorithm are :



» Expectation Step: Calculate the posterior probability
pib, (xt )
M
zk:lpkbk (xt )

* Maximization Step : The estimated parameters may

Pr(ilx,A)= (13)

given by
= 3 p(il%.2) (14)
> plilx.d)x, as)
I ;p(”xn}“)
! (i|x l)x2
62 = PN o (16)
_p(ilx,2)

In the identification phase, each speaker / (among
speakers) is represented by its GMM A, The goal is to
identify the model that provides the highest probability for
a particular observation sequence:

§ = arg max Pr(/lk | X) (17

1<k<P
Or
argmax, . .p p(X | 4 )p(’lk )
p(X)

If all the apriori probabilities p(Z,) are equal and p(X)

S= (18)

are the same for all speakers. We use the logarithm and the
independence between the observations to get:

~ T
S, =argmax,_,_, 21:1 logp(x, | lk) ) (19)

where p(x|,) is given by Eq. (9).

2.4 Convolutional Neural Network
CNN s are a subset of artificial Neural Networks (NN) that
applies a mathematical process known as convolution. Their
architecture consists of two major parts: convolutional and
classification. A CNN is an NN with at least one layer that
uses convolution rather than ordinary matrix multiplica-
tion [5]. They are commonly employed in image process-
ing [6, 7]. In recent years, many researchers have integrated
deep neural networks into speaker recognition systems [8, 9].
A CNN generally comprises a convolutional layer, a
pooling layer, a fully connected layer, and the output or
classification layer. Additional layers, such as the batch
normalization [10] and the dropout layer [11], can increase
the CNN's performance.
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The convolution layer identifies edges, color patches,
and other visual aspects. The convolution filter gener-
ates images known as output feature maps. Increasing
the number of convolution filters enhances the number of
identified features.

The pooling layer is a down-sampling procedure that
comes after the convolution layer. The most common
types of pooling are maximum and average pooling.
In these circumstances, the pooling layer takes the maxi-
mum or average value.

The fully connected (FC) layer tries to connect a flattened
input to all neurons. CNN designs finish with FC layers.
Its primary goal is to improve objectives such as class scores.

After a convolution layer, the CNN architecture uses a
nonlinear function called ReLU (Rectified Linear Unit).
It replaces all negative values in the array with zero.
ReLU aims to introduce nonlinearity in CNNs so that
they perform better.

The posterior probabilities, obtained from the final
classification layer for each frame, are utilized to compute
the ultimate score using maximum likelihood criteria.

T
S, =argmax,_,_, ZPr(x, IL) (20)
=1
Where P is the number of speakers, and Pr(x|L) is a
matrix containing estimates of the posterior probabilities
that the " coefficients were the source of the i speaker
observation.

3 Materials and methods

The experiments were conducted using an HP EliteBook
820 Gl laptop with an Intel(R) Core(TM) i5-4300U CPU
@ 1.90GHz processor and 8GHz RAM. This reflects the
enormous amount of time required to implement the dif-
ferent phases of the proposed system.

3.1 Speakers corpora
To evaluate the proposed systems, we used the LibriSpeech
corpus. This corpus, produced from audio books that are
part of the LibriVox project, has 1000 hours of speech sam-
pled at 16 kHz. This corpus is available for free download.
It also provides speech model training data that has been
created separately and pre-constructed speech models.
We used a set of 250 speakers, 125 of whom were male
and 125 female. To ensure balance among all speakers,
we took 10 minutes for each one, with 8 minutes used
for learning and the remaining 2 minutes reserved for the
testing phase.
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3.2 Acoustic signal parameters
The speech signals are transformed into vectors of MFCC
parameters.

Table 1 summarizes the characteristics of this operation:

4 Results and discussion

The evaluation of the SI performance is done as follows:
the speech signal to be tested is first passed through the
acoustic analysis module and then transformed into acous-
tic vectors {x,, x,, ..., x}. The series of acoustic vectors
is partitioned into many segments, each including acous-
ticvectors. The first two segments are:

f_/%
@n
Ko Xy geens Xp s Xp 19 X nseee

———
22
Xys Xy ey Xy Xy s Xy sene

Suppose the estimated identity matches the real iden-
tity. The frame is correctly identified. The accuracy gives
the final performance evaluation:

N"of correct segments

= 23
Total N™of tested segments @3)

4.1 Classical methods for SI

Fig. 3 illustrates the recognition step for the two meth-
ods. The input speech signal is transformed into MFCC
Parameters. These parameters are used to find the speaker
identity by ML criteria for GMM or minimum distortion
with VQ.

Each speaker is modeled by a GMM, and VQ model.
The Gaussian components number and the VQ dictionary
are varied from 8, 16, 32, 64 and 128.

Fig. 4 shows the performance evaluation of the two SISs.
It shows that the performance of both systems increases
rapidly when the model order varies between 8 and 64.
However, between 64 and 128, we observe that the identi-
fication performance stabilizes. This means that the min-
imum model order for these methods is 64. In addition,

Table 1 MFCC Extraction

Parameters Value
Window Hamming
Length 40 ms
Overlap 50%
MFCC Order 14=13+1(E)
First Derivatives 14A
Second derivatives 14AA

Speech signal

Parameters Extraction

Speakers database
v
7 L&
3 logp () ) >| ;D mind(eb)
t=1 =1
AF D*
v v
5. _ k & _ o Dk
‘ Sc_mggfg’[\ \ Sv arglxsx}ng
(a) (b)

Fig. 3 Classical methods testing: (a) GMM, (b) VQ

Accuracy %

Model order

Fig. 4 Classical methods accuracy

GMM Sl performs better than VQ. GMM SI shows its best
performance of 72.47 % with 128 Gaussian components.
Table 2 summarizes the acquired results.

4.2 CNN speaker identification

Fig. 5 illustrates the CNN SI architecture. It is made up
of 25 multiple interconnected layers of neuron units.
The parameterization module transforms the speech signal
into a 15 x 42 parameters matrix (MFCC). A concatenation
step then groups all the columns into a 1 x 630 parameter
vector. The system uses this vector as an input for training
or recognition.

Table 2 Classical methods performances

Model Order GMM vQ

8 67.68% 60.49%
16 69.04% 65.74%
32 70.36% 68.41%
64 71.73% 70.97%
128 72.47% 72.09%
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Fig. 5 CNN/ML-SI architecture

These data will transit through numerous hidden layers
with varying levels of abstraction. Finally, the output layer
assigns the final categorization to the input data. The CNN
speaker characterization may be summarized as follows:

* The model includes five convolutional layers, fol-
lowed by batch normalization, Leaky ReLU, and
Maxpooling.

» Thereare 256 FC layers, which dropouts may precede.

* Nonlinear layers are most commonly utilized with
the ReLU and the scaled exponential linear unit
(SELU).

» Pooling layers use average or maximum pooling.

* A final softmax layer ascertains the output unit acti-
vation function for multi-class classification prob-
lems to calculate the conditional probabilities for
classifying the input data.

» The training phase takes 1311 minutes and 9 seconds
to complete.

* Identify the speaker with ML criteria.

Fig. 6 shows the learning phase of the CNN SIS. From
the LibriSpeech corpus, a total of 250 speakers were used.
The system undergoes training for 5 epochs, with each
epoch including 4400 iterations, totaling 22000 iterations.
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Fig. 6 CNN-SI training

Fig. 7 depicts the frame-level and ultimate-level accu-
racy vs. epoch number. The findings indicate that the sys-
tem improves as epochs grow. The final accuracy score
is 64.59% for CNN and 87.97% for CNN/ML. This tech-
nique performs well for SI.

To validate the choice of CNN model, we implemented
the speaker identification system using various deep learn-
ing techniques: LSTM, BiLSTM, and RNN. The four sys-
tems were tested in the same conditions, like the number
of speakers, the exact size of the training and test signals,
and so on. Fig. 8 shows how CNNs perform well compared
to other models.
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We used the suggested model (CNN/ML) on TIMIT
corpora to check the results we got. This corpus con-
6,300 phonetically balanced
630 speakers. 250 speakers were selected at random
(125 male and 125 female).

The primary issue with TIMIT corpora pertains to the

tains sentences from

size of the speech signals. The majority of signals do not
surpass 2 minutes. To address this issue, we implemented
a data augmentation module utilizing Time Stretching and
Noise Addition methods. This enhances the resilience and
generality of speaker recognition models by mimicking
various speaking circumstances.

Fig. 9 shows the accuracy obtained using the CNN/ML
model with the TIMIT corpus. This accuracy is given for
two types of data: MFCCs alone and MFCCs with their
primary and secondary derivatives.

These findings demonstrate that the suggested approach
works effectively with this corpus. For just six epochs, the
highest rate is 84%. This shows that it is possible to use the
proposed CNN/ML system in real applications.

4.3 Comparative study

We compared different approaches in terms of time spent
on training and recognition. Table 3 summarizes this
study. GMM is the finest method in terms of training time,
taking only 96.68 seconds for each speaker. However, in
the recognition phase, the CNN method performs faster
than other methods.

100 Ty ! T T RERE
80 i
: IR SZENREN
g 60— 4 R ! ‘ :
] i : —— MFCC
g : : | ! —— MFCCHA+AA
§ 40 e
< 1/ 10
I S ————
0 I I B I B I ‘ L B I
1 2 3 4 5 6 7 8 9 10
Epoch
Fig. 9 CNN/ML performance with TIMIT corpora
Table 3 Comparative analysis of elapsed time
Method Model Order Training/speaker ~ Recognition
CNN 5 epochs 313 s 1.43 s
VQ 128 156 s 3.55s

GMM 128 97s 6.90s

The results of this study were compared to those in the
work of Saritha et al. [12]. Table 4 summarizes this com-
parison, demonstrating that the CNN/SGDM system, with
an accuracy of 86.47%, significantly improved the SIS
compared to other models.

5 Conclusions

Most speaker recognition research is based on traditional
GMM, VQ systems. However, in this research, we devel-
oped a deep learning-based model, CNN, commonly used
in image processing. This model requires a large dataset.
Using the speech signal directly reduces the system's perfor-
mance. First, we constructed the SIS using GMM and VQ.
These systems achieve good accuracies, with 72.47%,
72.09%, respectively for GMM and VQ. The MFCC algo-
rithm is used to parameterize speech signals. All models
are assessed against the LibriSpeech speech corpus.

Finally, we used CNNs to implement the proposed sys-
tem. An acoustic parameter extraction module (MFCC)
increases their performance. The acoustic coefficient
matrix is concatenated into a single vector to generate
the input vector.

The final system had an accuracy rate of 64.69%.
By applying the maximum likelihood criterion, the sys-
tem shows a significant performance improvement with an
accuracy of 87.97%. CNN/ML outperforms conventional
models. We also demonstrated the effectiveness of the pro-
posed model using the TIMIT speech corpus. This vali-
dates its implementation in real-world applications.

Future work will focus on increasing the suggested sys-
tem's performance by combining it with another system
or by improving the extraction of acoustic parameters.
Furthermore, it will investigate its performance in real
world noise contexts and telephone speech signals.

Table 4 Comparative analysis of different architecture

Ref Model Accuracy (%)
CNN 72.97
SincNet 78.39
[12]
RANet/Adam 79.51
RANet/SGDM 82.57
vQ 72.47
GMM 72.09
This work
CNN 64.69
CNN/ML 87.97
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