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Abstract

Speaker identification is a crucial topic in various fields, including linguistics, speech acoustic technology, and artificial intelligence. 

Despite the progress, speaker identification remains a challenge, particularly in acoustically noisy contexts or when the speakers are 

phonetically similar. Moreover, concerns regarding privacy and data protection frequently arise in speaker identification, particularly 

concerning the use of personal audio data. Signal processing and machine learning techniques have significantly advanced, improving 

the accuracy and resilience of voice recognition systems. New methods, including Convolutional Neural Networks (CNN), are 

advancing voice information extraction performance. This study aims to develop a Speaker Identification System based on deep 

learning techniques. These techniques have gained widespread recognition in the field of automatic acoustic signal processing. Many 

researchers have used convolutional neural networks, and the recognition phase is based on the cross-entropy criterion. This article 

proposes an advanced technique to combine convolutional neural networks with the maximum likelihood criterion. This proposed 

technique has yielded promising results when compared to traditional systems, such as Vector Quantization (VQ), and Gaussian 

Mixture Model (GMM). The suggested approach achieves an accuracy of 87.97% using all the data from the LibriSpeech corpus.
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1 Introduction
Automatic Speaker Recognition (ASR) is a technique for 
identifying individuals based on their voice. It includes 
information regarding the speaker's identity. This cate-
gory includes speaker verification (SV) and identification 
(SI) duties. An SV system determines whether the stated 
identity belongs to the client or an imposter. However, in 
identification, the system selects a person from a known 
group of persons. SI is divided into closed-set identifica-
tion and open-set SI. It is further divided into text-inde-
pendent and text-dependent systems. Several techniques 
have been developed for ASR. They include vectorial, sta-
tistical, connectionist, and predictive methods.

Because of their ability to discriminate, short-time fea-
tures, such as MFCC, have been extensively employed in 
SISs. Long-term characteristics, like prosody, are essen-
tially a speaker's ingrained qualities. In SI, pitch and 

energy work incredibly well, especially when the channels 
are mismatched, and the data is chaotic. The vocal tract's 
structural variations between speakers result in speaker 
specific information being included in prosodic elements. 
One unfeasible aspect of prosodic characteristics is the 
vast amount of information required for precise recogni-
tion. Much study has been done on SI in different back-
drop contexts during the last few decades [1–3].

Finding the best feature set to represent the speaker is 
a significant difficulty in SI. As a result, decision-making 
relies heavily on the quality and quantity of information 
available. The message and identity are encoded on mul-
tiple levels of abstraction. Everyone has a distinct voice, 
pitch, and style of speaking. Humans frequently use spec-
trum, auditory information, and prosodic data in everyday 
discourse. However, none of this information is sufficient 
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to distinguish between two individuals. So, all of this data 
must be used to determine a speaker's identity.

This study aims to illustrate the significant improve-
ment of deep neural networks over previous methods. 
It focuses on closed-set speaker recognition in text-inde-
pendent mode. Several techniques were employed, includ-
ing VQ, GMM, and CNNs.

The remainder of this work is structured into three sec-
tions. The first section discusses ASR systems and intro-
duces the relevant tasks. It contains three modules: audio 
analysis, system learning, and identification. The second 
section describes the procedures utilized to install the 
proposed systems, and finally, the outcomes are presented 
and reviewed.

2 Speaker recognition background
Fig. 1 depicts the basic structure of speaker recognition, a 
decision-making process that employs speech signal fea-
tures to determine a speaker's identity among a collection 
of P speakers. The limitation on linguistic content elimi-
nates one of the most variable sources. The SI architecture 
consists of three primary components: speech analysis, 
system training, and the identification phase.

The learning step consists of gathering multiple speech 
signals provided by the speaker. Signals must be recorded 
during several sessions and separated in time to approxi-
mate real conditions as closely as possible.

To make a comparative study, the proposed system is 
implemented using several approaches: VQ, GMM, and 
CNN.

2.1 Mel Frequency Cepstral Coefficients (MFCC) 
Fig. 2 depicts a modular cepstral representation built on 
a filter bank. High-pass filtering pre-emphasizes the spo-
ken signal. It improves the upper frequencies of the spec-
trum. They are frequently minimized throughout the 
speech-production process.

x t x t a x tp � � � � � � � �� �1 	 (1)

α is generally taken as a value in the range [0.95, 0.98]. 
The use of this filter follows empirical experimentation. 
The speech signal is analyzed using a sliding Hamming 
window of 40 ms with a 50% overlap. In this case, the sig-
nal is assumed to be quasi-stationary.
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Using the Fourier transform, the signal spectrum is 
obtained by transforming each frame into the frequency 
domain. A filter bank multiplies the latter. It is a series of band 
pass filters placed evenly across the Mel scale. The position 
of the central frequency of the filters is provided by:
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The resulting frame is transformed into a logarithmic 
scale. Finally, a discrete cosine transform was used to get 
the cepstral coefficients. The expression of these coeffi-
cients is given by:
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Fig. 1 Speaker Identification System Fig. 2 MFCC Extraction
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K is the number of spectral coefficients calculated before, 
Sk are the spectral coefficients, and L is the number of cepstral 
coefficients we want to calculate (L ≤ K). In the speech sig-
nal, the dynamic information is different from one speaker 
to another. Cepstral derivatives often give this information. 
The first cepstral coefficient derivatives  (∆) give informa-
tion about the vector's variation over time. However, the sec-
ond cepstral coefficient derivative (∆∆) gives speech accel-
eration information. These coefficients are given by:
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2.2 Vector quantization
Vector quantization comprises a finite set of D quantiza-
tion levels, which are associated by a function to a vector 
of K samples produced by the source. The set D represents 
the vector quantization dictionary.

We can define vector quantization as applying the 
space Q of dimension K in RK to a subset Y in RK. Let 
x = {x1, x2, ..., xK} be a vector of the set Q, and the x quan-
tification amounts to representingit by a close vector y1 of 
a finite dictionary Y = {y1, y2, ..., yM}. The dictionary Y is 
obtained by partitioning RK into M classes Ci, each repre-
sented by its centroid yi. Any vector x ∈ Ci will be repre-
sented by yi. This substitution introduces a quantization 
error. This error increases as the distance between X and Y 
is more excellent.

The iterative algorithm LBG allows us to build a dic-
tionary from a set of learning vectors [4]. The size of the 
dictionary is an even number. The different steps of this 
algorithm are:

•	 Initialization: An initial dictionary comprises a sin-
gle vector, the gravity center of the learning set. 
Let d0 be this vector.

•	 Splitting: All the elements d in number 2k of the dic-
tionary are "exploded" into two vectors. It is done, 
for example, by transforming each vector d into d + ε 
and d − ε. Where ε is a random vector of variance 
adapted to the points of the cloud associated with d.

•	 Convergence: Apply the k-means algorithm to the 
dictionary of 2k + 1 elements thus constituted. After 
convergence, we get an "optimal" dictionary of  
2k + 1 elements.

•	 Stop: Increment k. If k > k0, the algorithm ends; oth-
erwise, we return to the splitting step. Where k0 is a 
value fixed in advance.

The acoustic vectors are encoded in N dictionaries cor-
responding to N different speakers. The quantization errors 
on each codebook are accumulated through the test signal. 
The average distortion on the codebook of speaker i is:
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The final decision for SI is given by:
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2.3 Gaussian mixture model
A weighted sum of many Gaussian distributions is called 
a GMM. Each one has a mean vector μ and a covari-
ance matrix Σ. The following equation gives a Gaussian 
mixture:
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where x is a dimension D vector, M denotes the Gaussian 
components, wi is the weight of the mixture, which verifies 
the condition i

M

�� 1  wi = 1, and bi(x) is a multidimensional 
Gaussian distribution:
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A single model λ characterizes the Gaussian mixture. 
This model combines the mean vector μ, the covariance 
matrix Σi, and the mixture weight wi. It is given by:

� �� � � �p i Mi i i, , ,...,� 1 	 (11)

Several techniques are available to estimate the param-
eters of GMMs. Maximum likelihood (ML) estimation 
remains the most popular. Indeed, for a sequence of T vec-
tors X = {x1, x2, ..., xT}, assumed to be independent, the ML 
of the GMM is given by:

P X P x
t

T
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Unfortunately, the analytical maximization of this func-
tion is not easy. The expectation-maximization algorithm 
solves this problem. The basis of this algorithm is to esti-
mate, from an initial model λ0, a new model λ in an itera-
tive way. The estimated one λ must verify ̂p(X |λ) ≥ p(X |λ) 
condition. The two steps of this algorithm are :
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•	 Expectation Step: Calculate the posterior probability
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•	 Maximization Step : The estimated parameters may 
given by
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In the identification phase, each speaker l (among  
speakers) is represented by its GMM λl. The goal is to 
identify the model that provides the highest probability for 
a particular observation sequence:
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If all the apriori probabilities p(λk) are equal and p(X) 
are the same for all speakers. We use the logarithm and the 
independence between the observations to get:
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where p(xt|λk) is given by Eq. (9).

2.4 Convolutional Neural Network
CNNs are a subset of artificial Neural Networks (NN) that 
applies a mathematical process known as convolution. Their 
architecture consists of two major parts: convolutional and 
classification. A CNN is an NN with at least one layer that 
uses convolution rather than ordinary matrix multiplica-
tion  [5]. They are commonly employed in image process-
ing [6, 7]. In recent years, many researchers have integrated 
deep neural networks into speaker recognition systems [8, 9].

A CNN generally comprises a convolutional layer, a 
pooling layer, a fully connected layer, and the output or 
classification layer. Additional layers, such as the batch 
normalization [10] and the dropout layer [11], can increase 
the CNN's performance.

The convolution layer identifies edges, color patches, 
and other visual aspects. The convolution filter gener-
ates images known as output feature maps. Increasing 
the number of convolution filters enhances the number of 
identified features. 

The pooling layer is a down-sampling procedure that 
comes after the convolution layer. The most common 
types of pooling are maximum and average pooling. 
In these circumstances, the pooling layer takes the maxi-
mum or average value. 

The fully connected (FC) layer tries to connect a flattened 
input to all neurons. CNN designs finish with FC layers. 
Its primary goal is to improve objectives such as class scores.

After a convolution layer, the CNN architecture uses a 
nonlinear function called ReLU (Rectified Linear Unit). 
It  replaces all negative values in the array with zero. 
ReLU aims to introduce nonlinearity in CNNs so that 
they perform better.

The posterior probabilities, obtained from the final 
classification layer for each frame, are utilized to compute 
the ultimate score using maximum likelihood criteria. 
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Where P is the number of speakers, and Pr(xt|Li) is a 
matrix containing estimates of the posterior probabilities 
that the tth coefficients were the source of the ith speaker 
observation.

3 Materials and methods
The experiments were conducted using an HP EliteBook 
820 G1 laptop with an Intel(R) Core(TM) i5-4300U CPU 
@ 1.90GHz processor and 8GHz RAM. This reflects the 
enormous amount of time required to implement the dif-
ferent phases of the proposed system.

3.1 Speakers corpora
To evaluate the proposed systems, we used the LibriSpeech 
corpus. This corpus, produced from audio books that are 
part of the LibriVox project, has 1000 hours of speech sam-
pled at 16 kHz. This corpus is available for free download. 
It also provides speech model training data that has been 
created separately and pre-constructed speech models. 

We used a set of 250 speakers, 125 of whom were male 
and 125 female. To ensure balance among all speakers, 
we took 10  minutes for each one, with 8  minutes used 
for learning and the remaining 2 minutes reserved for the 
testing phase.
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3.2 Acoustic signal parameters
The speech signals are transformed into vectors of MFCC 
parameters. 

Table 1 summarizes the characteristics of this operation:

4 Results and discussion
The evaluation of the SI performance is done as follows: 
the speech signal to be tested is first passed through the 
acoustic analysis module and then transformed into acous-
tic vectors {x1,  x2,  ...,  xt}. The series of acoustic vectors 
is partitioned into many segments, each including acous-
ticvectors. The first two segments are:

x x x x xT T T1 2 1 2
, ,..., , , ,...

� �� ��
+ +

	 (21)

x x x x xT T T1 2 1 2
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Suppose the estimated identity matches the real iden-
tity. The frame is correctly identified. The accuracy gives 
the final performance evaluation:

Acc
N of correct segments

Total N of tested segments

br

br
= 	 (23)

4.1 Classical methods for SI
Fig. 3 illustrates the recognition step for the two meth-
ods. The input speech signal is transformed into MFCC 
Parameters. These parameters are used to find the speaker 
identity by ML criteria for GMM or minimum distortion 
with VQ.

Each speaker is modeled by a GMM, and VQ model. 
The Gaussian components number and the VQ dictionary 
are varied from 8, 16, 32, 64 and 128.

Fig. 4 shows the performance evaluation of the two SISs. 
It shows that the performance of both systems increases 
rapidly when the model order varies between 8 and 64. 
However, between 64 and 128, we observe that the identi-
fication performance stabilizes. This means that the min-
imum model order for these methods is 64. In addition, 

GMM SI performs better than VQ. GMM SI shows its best 
performance of 72.47 % with 128 Gaussian components.

Table 2 summarizes the acquired results.

4.2 CNN speaker identification
Fig. 5 illustrates the CNN SI architecture. It is made up 
of 25 multiple interconnected layers of neuron units. 
The parameterization module transforms the speech signal 
into a 15 × 42 parameters matrix (MFCC). A concatenation 
step then groups all the columns into a 1 × 630 parameter 
vector. The system uses this vector as an input for training 
or recognition.

Table 1 MFCC Extraction

Parameters Value

Window Hamming

Length 40 ms

Overlap 50%

MFCC Order 14 = 13 + 1(E)

First Derivatives 14∆

Second derivatives 14∆∆

(a) (b)

Fig. 3 Classical methods testing: (a) GMM, (b) VQ

Fig. 4 Classical methods accuracy

Table 2 Classical methods performances

Model Order GMM VQ

8 67.68% 60.49%

16 69.04% 65.74%

32 70.36% 68.41%

64 71.73% 70.97%

128 72.47% 72.09%
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These data will transit through numerous hidden layers 
with varying levels of abstraction. Finally, the output layer 
assigns the final categorization to the input data. The CNN 
speaker characterization may be summarized as follows:

•	 The model includes five convolutional layers, fol-
lowed by batch normalization, Leaky ReLU, and 
Maxpooling.

•	 There are 256 FC layers, which dropouts may precede.
•	 Nonlinear layers are most commonly utilized with 

the ReLU and the scaled exponential linear unit 
(SELU).

•	 Pooling layers use average or maximum pooling.
•	 A final softmax layer ascertains the output unit acti-

vation function for multi-class classification prob-
lems to calculate the conditional probabilities for 
classifying the input data.

•	 The training phase takes 1311 minutes and 9 seconds 
to complete.

•	 Identify the speaker with ML criteria.

Fig. 6 shows the learning phase of the CNN SIS. From 
the LibriSpeech corpus, a total of 250 speakers were used. 
The system undergoes training for 5 epochs, with each 
epoch including 4400 iterations, totaling 22000 iterations. 

Fig. 7 depicts the frame-level and ultimate-level accu-
racy vs. epoch number. The findings indicate that the sys-
tem improves as epochs grow. The final accuracy score 
is 64.59% for CNN and 87.97% for CNN/ML. This tech-
nique performs well for SI.

To validate the choice of CNN model, we implemented 
the speaker identification system using various deep learn-
ing techniques: LSTM, BiLSTM, and RNN. The four sys-
tems were tested in the same conditions, like the number 
of speakers, the exact size of the training and test signals, 
and so on. Fig. 8 shows how CNNs perform well compared 
to other models.

Fig. 5 CNN/ML-SI architecture

Fig. 6 CNN-SI training

Fig. 7 CNN-SI performances

Fig. 8 Deep Learning-SI performances
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We used the suggested model (CNN/ML) on TIMIT 
corpora to check the results we got. This corpus con-
tains 6,300 phonetically balanced sentences from 
630  speakers. 250  speakers were selected at random 
(125 male and 125 female).

The primary issue with TIMIT corpora pertains to the 
size of the speech signals. The majority of signals do not 
surpass 2 minutes. To address this issue, we implemented 
a data augmentation module utilizing Time Stretching and 
Noise Addition methods. This enhances the resilience and 
generality of speaker recognition models by mimicking 
various speaking circumstances.

Fig. 9 shows the accuracy obtained using the CNN/ML 
model with the TIMIT corpus. This accuracy is given for 
two types of data: MFCCs alone and MFCCs with their 
primary and secondary derivatives.

These findings demonstrate that the suggested approach 
works effectively with this corpus. For just six epochs, the 
highest rate is 84%. This shows that it is possible to use the 
proposed CNN/ML system in real applications.

4.3 Comparative study
We compared different approaches in terms of time spent 
on training and recognition. Table 3 summarizes this 
study. GMM is the finest method in terms of training time, 
taking only 96.68 seconds for each speaker. However, in 
the recognition phase, the CNN method performs faster 
than other methods.

The results of this study were compared to those in the 
work of Saritha et al. [12]. Table 4 summarizes this com-
parison, demonstrating that the CNN/SGDM system, with 
an accuracy of 86.47%, significantly improved the SIS 
compared to other models.

5 Conclusions
Most speaker recognition research is based on traditional 
GMM, VQ systems. However, in this research, we devel-
oped a deep learning-based model, CNN, commonly used 
in image processing. This model requires a large dataset. 
Using the speech signal directly reduces the system's perfor-
mance. First, we constructed the SIS using GMM and VQ. 
These systems achieve good accuracies, with 72.47%, 
72.09%, respectively for GMM and VQ. The MFCC algo-
rithm is used to parameterize speech signals. All models 
are assessed against the LibriSpeech speech corpus.

Finally, we used CNNs to implement the proposed sys-
tem. An acoustic parameter extraction module (MFCC) 
increases their performance. The  acoustic coefficient 
matrix is concatenated into a single  vector to generate 
the input vector.

The final system had an accuracy rate of 64.69%. 
By  applying the maximum likelihood criterion, the sys-
tem shows a significant performance improvement with an 
accuracy of 87.97%. CNN/ML outperforms conventional 
models. We also demonstrated the effectiveness of the pro-
posed model using the TIMIT speech corpus. This vali-
dates its implementation in real-world applications.

Future work will focus on increasing the suggested sys-
tem's performance by combining it with another system 
or by improving the extraction of acoustic parameters. 
Furthermore, it will investigate its performance in real 
world noise contexts and telephone speech signals.

Fig. 9 CNN/ML performance with TIMIT corpora

Table 3 Comparative analysis of elapsed time

Method Model Order Training/speaker Recognition

CNN 5 epochs 313 s 1.43 s

VQ 128 156 s 3.55 s

GMM 128 97 s 6.90 s

Table 4 Comparative analysis of different architecture

Ref Model Accuracy (%)

[12]

CNN 72.97

SincNet 78.39

RANet/Adam 79.51

RANet/SGDM 82.57

This work

VQ 72.47

GMM 72.09

CNN 64.69

CNN/ML 87.97
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