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Abstract

This study proposes an anomaly detection framework that combines CNN–LSTM feature extraction with a boosting-based ensemble 

strategy to improve the reliability of photovoltaic (PV) system monitoring. Real multi-source PV operational data are first preprocessed 

using the ISODATA clustering algorithm, which automatically adjusts the number of clusters and reduces redundancy. Principal 

component analysis (PCA) is then applied to lower data dimensionality while retaining key variability. A hybrid CNN-LSTM network is 

developed, where CNNs extract spatial features from heterogeneous PV measurements and LSTMs capture temporal dependencies 

in power sequences. Based on the learned representations, an ensemble model integrates the outputs of Gaussian Mixture Models 

(GMM), Isolation Forest (IF), and Interquartile Range (IQR) through a boosting-inspired weighting mechanism to enhance robustness 

under complex operating conditions. Experiments conducted on real PV datasets show that the proposed method achieves nearly 

97% anomaly detection accuracy, with an average F1-score of 0.89 ± 0.03 and a recall rate of 0.91 ± 0.02. Compared with single-

model baselines, the framework provides more stable performance and maintains a false positive rate below 2.1%, demonstrating its 

practical value for real-world PV anomaly detection.
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1 Introduction
With the accelerating global transition toward low-car-
bon and sustainable energy systems, PV technology has 
become an indispensable pillar of the modern renew-
able-energy portfolio. High-efficiency, green, and scal-
able distributed PV installations now play a central role 
in smart-grid and micro-grid architectures, contributing 
directly to energy mix optimization, carbon neutrality 
objectives, and the long-term transformation of electric-
ity markets  [1–3]. The rapid progress in PV module effi-
ciency, the integration of battery-energy-storage systems, 
and recent advances in power electronics have further pro-
moted widespread PV deployment across urban, indus-
trial, and rural energy infrastructures  [4]. Consequently, 
the operational characteristics of PV systems—including 
energy conversion efficiency, structural reliability, and 
their complex interactions with environmental factors—
have attracted increasing attention from both research-
ers and industry practitioners. These characteristics not 
only determine the long-term performance and economic 

viability of PV installations but also play a critical role 
in ensuring stable power output under diverse and highly 
dynamic environmental conditions [5–7]. Ensuring stable, 
safe, and optimal performance in increasingly complex 
environments has thus become a fundamental challenge 
within renewable-energy engineering [8].

However, as PV installations scale up and system archi-
tectures become more sophisticated, their operational sta-
bility is also exposed to a wider range of potential dis-
turbances  [9]. Component aging, partial shading, soiling, 
module mismatch, inverter degradation, electrical imbal-
ance, and external environmental fluctuations may all 
induce anomalous operating behaviors. If not detected 
and handled promptly, such anomalies can lead to reduced 
power quality, accelerated equipment wear, or even cascad-
ing system failures [10–12]. Real-world PV systems consist 
of heterogeneous components with diverse dynamic behav-
iors. Consequently, their monitoring data often contain 
strong noise, non-stationarity, nonlinearity, multimodality, 
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and time-varying statistics  [13–15]. These characteristics 
severely limit the effectiveness of traditional anomaly- 
detection approaches. Prior research has further empha-
sized that PV data frequently display non-Gaussian distri-
butions, nonlinear irradiance–temperature–performance 
couplings, and intricate environmental interactions, all of 
which complicate the development of highly accurate and 
robust anomaly-detection models [16–18].

Existing anomaly-detection techniques for PV systems 
can generally be classified into two categories: statisti-
cal modeling and traditional machine learning. Statistical 
methods—such as 3-sigma rules, Copula dependency mod-
eling, and various robust statistical estimators—are val-
ued for their simplicity and interpretability. Nevertheless, 
they depend heavily on explicit assumptions about under-
lying data distributions and often fail to capture the non-
linear relationships among environmental factors, hard-
ware conditions, and electrical behaviors [19]. Traditional 
machine-learning algorithms, including SVM, kNN, and 
basic isolation forests, perform reasonably well in scenar-
ios with low-dimensional features. Yet, their expressive 
capacity is limited when encountering high-dimensional, 
multi-source PV datasets, and they typically lack mech-
anisms to model complex temporal dependencies  [20]. 
Consequently, many real-world PV systems still suffer 
from high false-alarm rates, unstable anomaly recognition, 
and weak cross-site generalization—particularly when 
models trained on one plant are deployed at another with 
different climatic, geographic, or structural conditions [21].

The rapid evolution of artificial intelligence and deep 
learning has opened new opportunities for data-driven 
PV monitoring, forecasting, and anomaly management, 
enabling more accurate modeling of system behavior and 
more efficient identification of abnormal operating condi-
tions [22]. CNNs excel at extracting local spatial patterns, 
while LSTMs effectively model long-range temporal cor-
relations, making them well-suited for handling heteroge-
neous PV time series. Even so, selecting an appropriate 
deep-learning architecture requires careful consideration 
of computational cost, model complexity, and practical 
deployability. Although ConvLSTM offers strong spatio-
temporal modeling capabilities, its convolution-gate struc-
ture incurs high computational overhead at each recurrent 
step, making it more appropriate for dense grid-like data 
such as videos [23]. Transformers, on the other hand, han-
dle long sequences efficiently and capture global depen-
dencies, yet their quadratic complexity with respect to 
sequence length and substantial data requirements limit 

their applicability to resource-constrained PV monitoring 
environments [24]. Additionally, the lack of spatial induc-
tive bias in Transformers reduces their effectiveness in 
modeling local operational patterns from heterogeneous 
sensor data. By comparison, hybrid CNN-LSTM architec-
tures combine spatial and temporal modeling in an effi-
cient manner, ensuring favorable performance in terms of 
model complexity, real-time inference, and robustness to 
noise—key properties for practical PV monitoring [25].

Despite encouraging progress, current PV anomaly-de-
tection methods continue to face several critical challenges. 
First, the intrinsic spatiotemporal coupling structure of 
multi-source PV datasets has not been fully exploited. 
Second, single-model approaches often struggle to main-
tain robustness under varying weather patterns, hardware 
conditions, and environmental disturbances. Third, most 
existing models rely on large, high-quality labeled data-
sets, yet anomaly labels in real PV systems are extremely 
costly and difficult to obtain. Although recent studies have 
introduced unsupervised-learning approaches, advanced 
imaging techniques (e.g., electroluminescence and infra-
red thermography), and dynamic thresholding strategies 
to enhance detection performance  [26], these methods 
remain constrained by high hardware costs, sensitivity to 
noise, and limited scalability.

To address the challenges of noise interference, distri-
butional variability, and diverse anomaly patterns in PV 
operational data, this study proposes an unsupervised 
multidimensional anomaly-detection framework that 
integrates deep learning–based feature extraction with 
ensemble learning to achieve high accuracy, robustness, 
and cross-site generalizability. The framework begins with 
ISODATA clustering, which performs dynamic group-
ing and redundancy elimination, overcoming the limita-
tions of fixed clustering schemes and uncovering latent 
structural relationships within PV data. Subsequently, a 
CNN–LSTM network is employed to jointly capture spa-
tial correlations and temporal dependencies, enabling 
a more comprehensive and stable representation of PV 
time-series behavior. Three complementary unsuper-
vised detectors—GMM (statistical modeling), IF (struc-
tural sparsity), and IQR (distribution deviation)—are then 
used to independently assess anomaly likelihood from 
heterogeneous perspectives. Finally, a Boosting-inspired 
adaptive weighting strategy is introduced to integrate the 
outputs of these detectors. By dynamically adjusting the 
contribution of each detector according to its reliability 
under varying operating conditions, the proposed fusion 
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mechanism suppresses weak predictions, enhances strong 
ones, and significantly improves overall performance and 
cross-plant stability.

Compared with existing literature, the novelty of this 
work can be summarized as follows:

1.	 Unlike prior studies on hybrid ConvLSTM or 
ConvTransformer models that rely primarily on end-
to-end deep architectures for feature fusion, this 
work establishes a three-stage unsupervised frame-
work—feature extraction, multi-detector evaluation, 
and Boosting-based adaptive fusion—where each 
component contributes independently and transpar-
ently, offering better modularity and interpretability.

2.	 In contrast to existing hybrid models that often adopt 
static or uniform weighting schemes, this study 
introduces a Boosting-style dynamic weighting strat-
egy that adjusts detector weights according to their 
context-dependent credibility. This represents a key 
methodological innovation, substantially improving 
robustness under noisy conditions, imbalanced data-
sets, and cross-site deployment scenarios.

3.	 The multi-detector design emphasizes not only 
model heterogeneity but also complementary statisti-
cal principles, enabling the unified detection of both 
abrupt failures and gradual degradation—an aspect 
that single-model deep learning approaches such as 
ConvLSTM or Transformer-based methods gener-
ally struggle to handle simultaneously.

4.	 The incorporation of adaptive clustering and dimen-
sionality-reduction steps makes the framework more 
suitable for real-world PV systems characterized by 
diverse devices and varying environmental condi-
tions, thereby enhancing scalability and practical 
applicability for large-scale deployments.

In summary, the proposed unsupervised anomaly-detec-
tion framework—integrating CNN-LSTM feature extraction 
with a Boosting-based ensemble fusion strategy—advances 
beyond the limitations of existing hybrid approaches in 
terms of methodological design, adaptive integration, and 
cross-station stability. This provides a novel, effective, and 
scalable pathway toward intelligent and high-reliability PV 
operation-and-maintenance systems.

2 Theories
2.1 ISODATA clustering algorithm
In the context of photovoltaic power generation data 
preprocessing, the ISODATA clustering algorithm is 

extensively employed for handling complex and high-di-
mensional datasets due to its dynamic adjustment of 
cluster numbers and adaptive splitting-merging mecha-
nisms  [27–29]. Unlike the conventional K-means algo-
rithm, the ISODATA exhibits the capability to adaptively 
modify the number of clusters during the clustering pro-
cess and contingent upon the characteristics of the data 
distribution. Thus, it facilitates more effective identifica-
tion and mitigation of heterogeneity and noise interference 
within PV power generation data. 

The central tenet of ISODATA is to minimize the sum 
of the squared distances between data points and their 
respective cluster centroids. Given a dataset in Eq. (1): 

X � �� �x x xn1 2
, , , .	 (1)

Each data point xi ∈ d is assigned to one of K clusters. 
The objective function of ISODATA can be expressed as 
depicted in Eq. (2): 

J xi k
x Ck

K

i k

� �
��
�� � 2

1

.	 (2)

In Eq.  (2), Ck denotes the kth cluster, �k
k

i
x CC

x
i k

�
�
�1  

represents the centroid of cluster Ck , and ⋅  signifies the 

Euclidean distance.
During the iterative process, ISODATA dynamically 

assesses the validity of clusters by computing intra-cluster 
variance and inter-cluster distance. Equation  (3) defines 
the variance of cluster Ck .

� �k
k

i k
x CC

x
i k

2 21
� �

�
� 	 (3)

Based on this metric, the algorithm dynamically 
adjusts the number of clusters in each iteration using the 
following rule:

1.	 Cluster splitting
If the variance σ2

k of a cluster exceeds a predefined 
threshold σ2

max , and the number of samples |Ck| 
within the cluster surpasses the minimum split size 
Nmin , the cluster is partitioned into two new clus-
ters. The split typically occurs along the principal 
direction, which is determined by the eigenvector 
vmax corresponding to the maximum eigenvalue of 
the cluster covariance matrix Σ:

� � � � � �k k k k, max , max
,

1 2
� � � � � �v v .	 (4)

In Eq.  (4), α denotes the step size parameter for 
the splitting.
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2.	Cluster merging rule
If the distance between the centroids of two clusters, 
Ci and Cj , is less than the minimum distance thresh-
old dmin , then:

� �i j d� �
min

.	 (5)

As illustrated in Eq. (6), the combined variance: 

� �i j
i j

i j
x C CC C

x
i j

� �
�� ��

�
�

��2
21 .	 (6)

If the value does not exceed the predefined upper limit, 
merge clusters Ci and Cj to form a new cluster Ci∪j .

3.	 Iteration termination criteria
The algorithm terminates and outputs the final clus-
tering results when the number of clusters remains 
stable across successive iterations, or when the mag-
nitude of all cluster center updates � �k

t
k
t�� � � ��1   

falls below the convergence threshold ϵ.

To ensure the effectiveness and stability of the ISODATA 
algorithm in processing photovoltaic power generation 
data, key parameters were set based on extensive exper-
imentation. Specifically, the maximum allowable intra- 
cluster variance threshold σmax was set to 0.5; when the 
variance of a cluster exceeds this threshold, a splitting 
operation is triggered to maintain compactness and rep-
resentativeness of clusters. This threshold was tuned to 
accommodate the heterogeneous characteristics of PV 
data. To prevent over-segmentation due to insufficient sam-
ples, the minimum cluster size for splitting Nmin was set to 
10, ensuring that splits occur only when enough samples 
are present, thereby enhancing the stability and reliability 
of clustering results. During cluster splitting, the step size 
parameter α was set to 0.5 to control the displacement of 
new centroids, allowing for refined cluster structures with-
out introducing excessive noise. For cluster merging, the 
minimum centroid distance threshold dmin was set to 0.3, 
and the variance upper limit after merging σ2

merge was set 
to 0.4. Clusters are merged only if both distance and vari-
ance criteria are met, effectively reducing redundant clus-
ters while avoiding over-partitioning. Finally, the iteration 
termination criteria were defined as either the number of 
clusters remaining unchanged across consecutive itera-
tions or the movement of all cluster centroids falling below 
1 × 10−4, ensuring convergence and stability.

Leveraging the aforementioned mechanism, ISODATA 
exhibits adaptive clustering capabilities, obviating the 
need for pre-defined cluster numbers. This attribute is 
particularly salient in the context of photovoltaic power 

generation data, which frequently manifests significant 
heterogeneity and uncertainty. The split-merge rules 
inherent to ISODATA substantially enhance the robust-
ness and interpretability of the clustering process.

2.2 Spatiotemporal feature extraction optimized 
by CNN-LSTM
It is crucial to extract spatial features from the input data 
while also capturing its temporal dependencies. To this 
end, this paper introduces a CNN-LSTM joint architecture. 
This architecture leverages CNNs to extract local features 
from the input data and employs LSTMs to model tempo-
ral relationships, ultimately generating feature vectors that 
represent the spatiotemporal information of the data.

2.2.1 Feature extraction capabilities of the CNN 
module
As illustrated in Fig.  1, the CNN serves as the model's 
front-end module. It is responsible for feature extraction 
from the input data, where T denotes the time steps, H 
and W represent the spatial dimensions and C signifies the 
number of channels. Leveraging the local receptive fields 
and parameter sharing inherent to convolutional layers, the 
CNN effectively extracts spatial features at each time step.

Assuming a convolutional kernel K, the output feature 
map Y resulted from the convolution operation which can 
be formulated as 

Y K Xt
l l

c

C

t
c lf b� � � �

�

� � � �� � ��

�
�

�

�
��

1

.	 (7)

Herein, * denotes the convolution operation, l represents 
the layer number of the convolutional layer, f signifies the 
activation function (ReLU activation function) and b(l) is 
the bias term. Following further dimensionality reduction 
via the pooling layer, the feature vector zt is obtained for 
each time step.

2.2.2 Temporal modeling capabilities of the LSTM 
module
As illustrated in Fig.  2, the LSTM network represents an 
advanced variant of Recurrent Neural Networks (RNNs) and 

Fig. 1 Network architecture of the CNN layer
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designed to manage long-range dependencies via its gating 
mechanisms [30]. The feature sequence zt t

T� � �1
, extracted by 

a CNN is subsequently fed into the LSTM. The update equa-
tions for its hidden state are defined as follows: 

i W U h bt i t i t i� � �� ��� z 1 	 (8)

f W U h bt f t f t f� � �� ��� z 1 	 (9)

o W U h bt o t o t o� � �� ��� z 1 	 (10)

c f c i W U h bt t t t c t c t c� � � �� �� � 

1 1
tanh z 	 (11)

h o ct t t� � � tanh .	 (12)

In Eqs.  (8)–(12), σ denotes the tanh activation function. 
The  represents element-wise multiplication and ct is the 
cell state. The ht is the hidden state and it , ft , ot are correspond-
ing to the input gate, forget gate and output gate, respectively.

2.2.3 The CNN-LSTM hybrid architecture
Based on Sections  1 and  2, it is evident that CNNs are 
capable of extracting spatial features from each timestep's 
input while LSTMs can model the dynamic evolution of 
these features over time. The fusion mechanism lies in 
the following: CNNs initially map the raw input sequence 
from multidimensional spatiotemporal data to a one-di-
mensional time series feature vector which is then sub-
jected to temporal modeling by the LSTM. Specifically, 
the input sequence can be represented as 

X � �� � � � �x x x xT t
H W C

1 2
, , , , 

.	 (13)

In Eq. (13), T denotes the timestep. Following CNN fea-
ture extraction and pooling, the input at each timestep t is 
mapped to a low-dimensional feature vector:

z zt t t
df x� �� �CNN

, 
.	 (14)

In Eq. (14), fCNN(∙) denotes the non-linear mapping of the 
CNN, and d represents the feature dimension. The feature 
vectors from all timesteps are concatenated to generate a 
feature sequence: 

Z z z z Z� �� � � �
1 2
, , , ,T

T dT


.	 (15)

Subsequently, the sequence Z is inputted into the 
LSTM, leveraging its gating mechanisms to model tem-
poral dependencies. The hidden state update equations 
are presented in Eqs.  (8)–(12), and the resulting hidden 
state sequence is: 

H h h h hT t
m� �� � �

1 2
, , , , 

.	 (16)

In Eq. (16), m denotes the number of hidden units within 
the LSTM architecture. The LSTM's capacity to retain 
long-term dependencies via the memory cell, ct  enables 
the model to capture not only the local spatial patterns of 
the input signal but also to effectively model the dynamic 
evolutionary trends across time steps.

Furthermore, the final hidden state hT of the LSTM can 
be fed into subsequent fully connected layers to perform 
anomaly detection or prediction tasks as given in Eq. (17).

y f hT� � �FC
	 (17)

In summary, the core fusion of CNN-LSTM lies in the 
decomposition of spatiotemporal signals into spatial fea-
tures by CNN which are then modeled by LSTM across 
the temporal dimension, thus enabling efficient learning 
of intricate spatiotemporal dependencies.

2.3 Anomaly detection in traditional machine learning
PV power generation data may contain substantial anom-
alies caused by weather fluctuations and equipment mal-
functions or sensor errors [31]. To efficiently identify these 
outliers, this paper proposes an ensemble detection frame-
work integrating GMM, IF and IQR methods [32].

2.3.1 Anomaly detection with IF
The IF algorithm constructs isolation trees through ran-
dom partitioning of the sample space whose core premise 
is that anomalous instances are more likely to be isolated 
during the splitting process. The mathematical formula-
tion of IF is as follows: 

•	 Each isolation tree is constructed by randomly select-
ing a feature f and a split point θ where the splitting 
rule g( xi ) is defined as 

Fig. 2 Long short-term memory network architecture
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g x
x f

i
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�
�

1

0

,

,

if

otherwise

� .	 (18)

•	 A sample xi traverses the tree's splitting path until its 
partitioned subspace contains only a single data point.

•	 The path length ht( xi ) represents the number of splits 
required to isolate the sample and has its expected 
value E h xi� ��� ��  calculated through averaging 
across multiple isolation trees: 

 h x
T

h xi t i
t

T
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�
�1

1

.	 (19)

•	 Anomaly scores are computed via normalization 
based on path length: 

Score
IF
xi

h x
c n

i
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�

� ��� ��
� �

2



.	 (20)

•	 In Eqs. (18)–(20), c n H n
n
n

� � � �� � �
�� �

2 1
2 1

, with 

H(n) denoting the nth harmonic number H n
ii

n

� � �
�
�1

1
 . 

A higher anomaly score suggests that a sample is 

more likely to be an outlier.

2.3.2 GMM anomaly detection
GMM represents a probabilistic clustering approach, 
where the modeling data distribution by assuming data 
points originated from a mixture of Gaussian distribu-
tions. Within anomaly detection, the GMMs aim to iden-
tify outliers by establishing the probability density func-
tion of normal data and subsequently identifying points 
that deviate from these distributions [33].

Within the GMM framework, as given in a data-
set x = { x1 , x2 , …, xn }, the data points xi are assumed to 
be sampled from a mixture of Gaussian distributions. 
The  objective of the model is to detect anomalies by 
learning the underlying mixture distribution of the data.

Model Definition: GMMs are typically defined as a 
weighted sum of several Gaussian distributions, mathe-
matically represented in Eq. (21): 

p x xk
k

K

k k� � � � �
�
�� �

1

 ,�� .	 (21)

In Eq. (21), πk denotes the weight associated with the kth 
Gaussian component,  x k k� ,��� �  represents a Gaussian 
distribution characterized by a mean of μk and a covariance 
matrix of Σk . The k signifies the total number of Gaussian 
components within the mixture model.

To train the model, the Expectation-Maximization 
(EM) algorithm is typically employed. This iterative algo-
rithm estimates model parameters through alternating 
Expectation (E) and Maximization (M) steps. Specifically, 
the E-step computes the probability of each data point 
belonging to each Gaussian distribution while the M-step 
updates the model parameters based on these probabilities.

Anomaly Detection: following the training of the 
GMM, the likelihood of a novel observation sample 
xnew can be computed within the established model as 
described in Eq. (22).

p x xk
k

K

k knew new� � � � �
�
�� �

1

 ,�� 	 (22)

An observation is flagged as an outlier if its likelihood 
falls below a predefined threshold. Typically, a threshold is 
denoted as τ which is established to differentiate between 
normal and anomalous data points. The formal representa-
tion of the decision rule is expressed in Eq. (23): 

if , then is considered an anomaly
new new

p x x� � � � .	 (23)

2.3.3 IQR-based anomaly detection
The IQR method identifies outliers by assessing the dis-
tribution range of a dataset. The core principle involves 
calculating the first quartile Q1 and the third quartile Q3 of 
the data and defining the normal range of the data using 
their difference in IQR [34].

The IQR is computed as 

IQR � �Q Q
3 1

.	 (24)

In Eq. (24), Q1 and Q3 denote the 25th and 75th percen-
tiles of the data, respectively. The IQR quantifies the dis-
persion of the central 50% of the dataset and serves as a 
crucial metric for assessing the data's variability.

In the IQR outlier detection method, the outliers are 
defined as data points that fall outside the boundaries of the 
data distribution. Specifically, a threshold (typically 1.5 times 
the IQR) is used to establish the lower and upper bounds of 
the data. As demonstrated in Eqs.  (25) and (26), the upper 
and lower bounds of the data can be definitively established.

Lower Bound IQR� � �Q
1

1 5. 	 (25)

Upper Bound IQR� � �Q
3

1 5. 	 (26)

Any data point exhibiting a value below the lower 
bound or exceeding the upper bound is classified as an 
outlier. Consequently, a data point is denoted as xi and the 
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conditions specified in Eq.  (27) are satisfied. Hence, the 
data point is classified as an outlier: 

x Q x Qi i� � � � ��
1 3

1 5 1 5. .IQR or IQR .	 (27)

2.4 A Boosting-based anomaly scoring and thresholding
To leverage the complementary advantages of the 
detectors, this study proposes a lightweight ensemble 
fusion mechanism inspired by Boosting principles  [35]. 
Traditional Boosting methods typically rely on ground-
truth labels for training samples to compute error resid-
uals; however, in photovoltaic anomaly detection, data 
are predominantly unlabeled or weakly labeled, render-
ing direct application challenging. Consequently, this 
research introduces a custom unsupervised iterative 

weighting strategy to enable adaptive weight allocation 
among multiple base learners [36].

Firstly, as illustrated in Fig.  3, the stability of individ-
ual base learners in an unsupervised environment exhibits 
noticeable variation. To quantitatively assess this behavior, 
this study introduces the concept of the Consistency Score. 
For each training sample, the three models separately 
produce anomaly detection results, which are combined 
through majority voting to generate pseudo-labels PLi . 
Subsequently, the consistency between each model's out-
put and the pseudo-labels is computed, with the consistency 
score of the tth base learner defined according to Eq. (28).

c
N

M i PLt
i

N

t i� � � ��� ��
�
�1

1
 	 (28)

Fig. 3 Flowchart of the ensemble learning–based anomaly detection model
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Where Mt(i) denotes the judgment of the tth model on the 
ith sample, N represents the total number of samples, and 
 �� �  is an indicator function.

After obtaining the consistency scores, the models are 
adaptively weighted according to their scores using a lin-
ear proportional scheme as described in Eq. (29).

�t
t

k
k

T

c

c
�

�
�

1

	 (29)

And by normalization, ensure consistency across 

�t
t

T

�
� �

1
1 . The final integrated anomaly score is obtained 

by weighted summation of the outputs from each model, 
resulting in the sample's anomaly score as expressed 
in Eq. (30).

S i S it
t

T

t� � � � � �
�
��

1

	 (30)

Where St(i) represents the anomaly score assigned by the 
tth base learner to sample i.

To convert the weighted anomaly score S(i) into a final 
anomaly/normal classification, this study employs an 
Adaptive Thresholding technique for decision-making. 
The specific methodology is as follows: 

1.	 Perform a kernel density estimation of the distribu-
tion of the aggregate anomaly scores S(i).

2.	Using the upper bound of the standard distribution 
as the threshold: 

� � �� �s sk .	 (31)

Where μs and σs denote the mean and standard devia-
tion of the composite scores, respectively, and k rep-
resents the sensitivity coefficient determined based 
on the validation set.

3.	 Conduct final classification for each sample.
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S i
S i
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Based on this methodology, when a sample's compos-
ite anomaly score significantly deviates from the nor-
mal distribution range, it is classified as anomalous data. 
This adaptive thresholding approach dynamically adjusts 
according to variations in illumination, temperature, and 
operational conditions, effectively mitigating false posi-
tives associated with fixed thresholds under complex oper-
ational scenarios.

3 Experimental section
3.1 Dataset characterization
The dataset employed in this study originates from the 
2024 Digital China Innovation Contest1. It encompasses 
the operational monitoring data from nine photovoltaic 
power stations within a specific region over a three-month 
period. The data comprises a total of 79,488  records as 
sampled at 15-minute intervals. Feature variables are cate-
gorized into two primary groups: meteorological features 
(4 dimensions) including atmospheric pressure (hPa), rel-
ative humidity (%), cloud cover (okta) and 10-meter wind 
speed (m/s). It is characterized by the external climatic 
conditions influencing PV generation variability and oper-
ational features (6  dimensions). It encompasses the DC 
output power, AC output power, inverter voltage, current, 
frequency and equipment operational status. It  reflects 
the operational performance and equipment health of the 
power stations. Overall, the dataset incorporates 10 feature 
dimensions and exhibits a multi-source and heterogeneous 
nature. Specifically, variations in monitoring equipment 
and data precision across different power stations lead to 
distributional differences in similar features. Furthermore, 
meteorological factors and operational statuses are derived 
from environmental monitoring and power equipment, 
respectively. It represents data dimensions with distinct 
physical attributes and necessitates the unified preprocess-
ing and feature fusion techniques. Following expert anno-
tation, 4,947  anomalous samples were identified within 
the dataset, resulting in an anomaly rate of approximately 
6.22%. It provides a robust data foundation for subsequent 
anomaly detection and predictive modeling of PV systems.

3.2 Multi-model anomaly detection algorithms and 
parameter optimization elaboration
The study initially employs deep learning techniques for 
feature extraction from PV data as illustrated in Fig. 4. 

Subsequently, anomaly detection is performed using 
GMM, IF and IQR. An ensemble learning approach is 
incorporated a weighted voting mechanism and is imple-
mented to enhance the accuracy and robustness of anom-
aly detection. The selection and optimization of key 

1 The "2024 Digital China Innovation Contest" is a public competition. 
The dataset used in this study was obtained by the authors through 
participation in this competition in compliance with its regulations. 
If readers require access to the experimental data used in this paper, 
they may request it by contacting the corresponding author of this arti-
cle, subject to compliance with relevant data usage policies.
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parameters for each algorithm are detailed. Initially, the 
PV data distribution is posited to be a composite of two 
components within the GMM framework and normal and 
anomalous. Consequently, the number of mixture compo-
nents is set to two. Furthermore, the "full" covariance type 
is selected to accommodate the intricate distributional 
characteristics of the data.

Subsequently, a boosting-based ensemble learning 
framework is employed for training within the IF algo-
rithm. The maximum number of splits for the decision trees 
(MaxNumSplits) is configured to 20, aiming to balance com-
putational efficiency and model accuracy. The classification 
of samples is performed with samples exhibiting higher 
scores being identified as outliers based on the anomaly 

scores generated by the model. Finally, the boxplot method 
leverages the distributional statistics of the data. It com-
putes the 25th percentile ( Q1 ) and the 75th percentile ( Q3 ) 
in conjunction with 1.5  times the IQR to establish upper 
and lower bounds for outlier detection. Any data points 
exceeding these bounds are classified as anomalies. In the 
weighted fusion phase, the outputs of the multiple detectors 
were combined using the converged weights obtained from 
the unsupervised iterative adjustment process. These adap-
tive weights reflect the relative reliability of each model 
under unlabeled conditions. The final anomaly assessment 
for each sample was then determined by applying a unified 
threshold to the fused anomaly score, thereby improving 
the overall detection accuracy and robustness.

Fig. 4 Flowchart of the multi-model anomaly detection algorithm
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3.3 Evaluation metrics
Comprehensive evaluation of model performance is criti-
cal in anomaly detection. This study adopts accuracy, pre-
cision, recall and F1-score as core metrics.

3.3.1 Accuracy
Accuracy, a commonly used metric in classification tasks, 
quantifies the proportion of correctly classified instances 
relative to the total number of instances. Within the con-
text of anomaly detection, the accuracy serves as a mea-
sure of the model's overall classification efficacy across 
all samples. The  formula for calculating accuracy is as 
delineated in Eq. (33).

Accuracy
TP TN

TP TN FP FN
�

�
� � �

	 (33)

In this context, TP denotes the count of true positives. 
It further represents the instances correctly identified as 
anomalous. TN signifies the number of true negatives and 
indicates normal instances accurately classified into sev-
eral terms such as FP corresponds to false positives where 
normal instances are erroneously flagged as anomalous 
and FN represents false negatives. It denotes the anomalous 
instances incorrectly classified as normal. A higher accu-
racy value suggests superior overall model performance.

3.3.2 Precision
Precision quantifies the proportion of actual anomalies 
among the samples predicted as anomalous by the model. 
Within the context of anomaly detection, precision reflects 
the accuracy of the model's predictions regarding anoma-
lous instances. The formula for calculating precision is as 
delineated in Eq. (34).

Precision
TP

TP FP
�

�
	 (34)

A higher precision value suggests superior accuracy in 
anomaly detection and reflects a reduced rate of false alarms.

3.3.3 Recall
Recall quantifies the proportion of actual anomalous 
instances correctly identified by the model. Within the 
context of anomaly detection, it recalls and emphasizes 
the model's sensitivity specifically its capacity to detect 
as many anomalous samples as possible. The formula for 
calculating recall is as delineated in Eq. (35).

Recall
TP

TP FN
�

�
	 (35)

A higher recall value suggests and enhances anom-
aly detection efficacy. Also, it is used potentially at the 
expense of increased false positives.

3.3.4 F1-score
The F1-score represents the harmonic meaning of preci-
sion and recall. It integrates the strengths and mitigates the 
weaknesses of these metrics. This is particularly pertinent 
in scenarios of class imbalance such as anomaly detection 
where the ratio of normal to anomalous instances is often 
skewed. The formula for calculating F1-score is as delin-
eated in Eq. (36).

F
Precision Recall

Precision Recall
1 2� �

�
�

	 (36)

A higher F1-score indicates a more optimal balance 
between Precision and Recall. It is commonly considered 
a critical metric for evaluating the performance of classi-
fication models.

3.4 Algorithm of the proposed framework
To enhance reproducibility and to provide a clear overview 
of the proposed anomaly detection framework, Section 3.4 
summarizes the complete training and testing pipeline in 
the form of Algorithm  1. The workflow consists of four 
major stages: 

1.	 data preprocessing, 
2.	CNN-LSTM based feature extraction, 
3.	 training of the ensemble anomaly detection models, 

and 
4.	 inference using a weighted decision fusion strategy. 

Algorithm 1 Training workflow of the proposed CNN-LSTM 
ensemble model

1:
2:
3:
4:
5:
6:
7:
8:
9:
10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:

// ----- Data Preprocessing -----
Clean X by removing missing and corrupted samples
Normalize features using min-max or z-score scaling
Segment X into fixed-length temporal windows
Split the segmented dataset into training and validation sets
// ----- CNN-LSTM Feature Extraction -----
for each window xi in training set do

hi = CNN( xi )                 // extract local spatial patterns
fi = LSTM( hi )               // capture temporal dependencies
Store feature vector fi

end for
Construct feature matrix F = { fi }
// ----- Train Base Anomaly Detectors -----
Train IF model using F                           → IF_model
Train GMM using F                                → GMM_model
Compute IQR-based thresholds using F → IQR_model
// ----- Compute Ensemble Weights -----
Evaluate three detectors on the validation set
Convert accuracy scores into normalized weights α1 , α2 , α3
return F(·), IF_model, GMM_model, IQR_model, α1 , α2 , α3
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Algorithm  1 summarizes how raw photovoltaic (PV) 
power data are transformed into model-ready feature 
embeddings and processed through the multi-model 
ensemble to produce final anomaly decisions.

3.4.1 Training workflow of the CNN-LSTM–based 
ensemble model
To provide a clearer and more reproducible description of 
the proposed method, Section 3.4.1 presents the Algorithm 1 
for the training workflow. The training phase aims to 

1.	 extract spatiotemporal representations from raw PV 
time-series data using the CNN-LSTM module, 

2.	 train three unsupervised anomaly detectors based on 
the extracted features, and 

3.	 compute adaptive ensemble weights according to 
model consistency on the validation set. 

Algorithm  1 summarizes the complete training pipe-
line, where: 

•	 Input: Raw PV time-series data X;
•	 Output: a Trained CNN-LSTM encoder F(·); trained 

IF, GMM, and IQR detectors;
•	 Normalized Ensemble Weights α1 , α2 , α3 .

3.4.2 Testing workflow for anomaly detection
For completeness, we also provide Algorithm 2 describing 
the testing (inference) stage. During testing, the trained 
CNN-LSTM network generates feature embeddings for 
incoming PV data windows, after which each anom-
aly detector produces an anomaly score. The final detec-
tion result is obtained by applying the learned ensemble 
weights to fuse these scores. Algorithm  2 outlines the 
complete testing workflow, where:

•	 Input: New PV data window x; trained CNN-LSTM 
encoder F(·);

•	 IF_model, GMM_model, IQR_model; weights α1 , 
α2 , α3 ;

•	 Output: Final anomaly decision ypred .

Algorithm 2 provides a clear and comprehensive sum-
mary of the proposed end-to-end anomaly detection 
workflow. In the training phase, the CNN-LSTM feature 
extractor converts raw photovoltaic time-series data into 
compact spatiotemporal embeddings, which subsequently 
serve as inputs for training the Isolation Forest, GMM, and 
IQR detectors. The weights of the ensemble are determined 
automatically based on validation consistency, ensuring 
that models with more stable detection behavior contribute 
more significantly. During testing, each data window is 
encoded into a feature vector and independently evaluated 
by the three detectors, after which their weighted outputs 
are fused to produce the final anomaly decision. This uni-
fied and structured pipeline enhances the interpretability, 
reproducibility, and robustness of the entire framework, 
providing a reliable basis for deploying the model in real-
world PV monitoring scenarios.

4 Anomaly detection results
4.1 Dataset partitioning
To ensure fair and effective evaluation, the dataset was 
split into 80% training set and 20% test set. The dataset 
consists of nine independent photovoltaic data sequences, 
where the training set is used for model calibration, and 
the test set is employed for validation and anomaly detec-
tion performance assessment.

The proposed model adopts an end-to-end joint training 
strategy, integrating a CNN and a LSTM into a unified deep 
learning framework optimized simultaneously via back-
propagation. During training, the Adam optimizer was used 
with an initial learning rate of 0.001, which was decayed by 
a factor of 0.1 at the 30th and 60th epochs to improve con-
vergence speed and generalization capability. The model 
was trained for a total of 10  epochs with a batch size of 
64, balancing training efficiency and GPU memory con-
straints. Experiments were conducted on a computing plat-
form equipped with an NVIDIA GeForce RTX 3080 GPU 
and 32 GB of RAM, implemented using the PyTorch frame-
work. This training configuration effectively enables the 
model to capture the spatiotemporal features of photovoltaic 
data, thereby enhancing anomaly detection performance.

4.2 Baseline model configuration and fairness 
guarantees
To ensure fairness in comparing the proposed model with 
baseline models, this study standardized parameter tun-
ing procedures for all baseline methods (CNN-LSTM, IF, 
GMM, IQR). All methods strictly employed identical data 

Algorithm 2 Testing workflow

1:
2:
3:
4:
5:
6:
7:
8:
9:
10:
11:

// ----- Feature Extraction -----
h = CNN(x)
f = LSTM(h)
// ----- Individual Model Predictions -----
yIF = IF_model.predict ( f )
yGMM = GMM_model.predict ( f )
yIQR = IQR_model.detect ( f )
// ----- Weighted Ensemble Fusion -----
score = α1 × yIF + α2 × yGMM + α3 × yIQR
ypred = (score > threshold) ? "Anomaly" : "Normal"
return ypred
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preprocessing techniques and identical training/valida-
tion set splits to eliminate performance bias from incon-
sistent data partitioning.

For the deep learning baseline CNN-LSTM, this study 
fixed parameters based on prior experimental experience 
and commonly used settings in the literature: a convolu-
tion kernel size of 3, 32  channels per convolution layer, 
128  hidden units in the LSTM, Adam optimizer, learn-
ing rate of 0.001, and 100 training epochs. All parameters 
were selected based on validation set performance to deter-
mine the final configuration. For IF and GMM, grid search 
within common parameter ranges was employed to tune the 
number of trees (n_estimators) and Gaussian components 
(n_components), respectively, selecting the combination 
yielding optimal validation set performance. IQR has fewer 
parameters and uses the standard threshold of 1.5 × IQR.

To further ensure objectivity in comparisons, all models 
were run on identical hardware (NVIDIA RTX 3080 GPU + 
32 GB RAM), with complete training and inference times 
recorded. Parameters and runtime metrics are detailed in 
Table 1. Additionally, this study employed one-way ANOVA 
to test the statistical significance of F1 scores across multiple 
models. Results indicate that the performance improvement 
of the proposed method over baseline methods is statisti-
cally significant (p < 0.05), confirming that the performance 
gains are not due to random fluctuations.

4.3 Comparative evaluation of anomaly detection 
methods
A comparative analysis of the accuracy rates across photovol-
taic plant samples 1–9 reveals significant disparities among 
the various methodologies as illustrated in Fig. 5. The boost-
ing-based ensemble learning approach demonstrated supe-
rior performance across all test scenarios, achieving an aver-
age accuracy of 0.973. This method not only outperformed 
others in terms of precision but also exhibited a high degree 
of consistency across different PV plants.

In contrast, the Z-score and Transformer models yielded 
average accuracies of 0.899 and 0.904, respectively. 

The IQR and IF methods exhibited weaker overall perfor-
mance with average accuracies of 0.808 and 0.803, respec-
tively. Most baseline methods achieved accuracy below 
0.88 across the PV plants. Overall, the ensemble method 
demonstrated enhanced robustness in the presence of multi-
source heterogeneity and noise interference, making it more 
suitable for anomaly detection in large-scale PV plants.

The comparative precision results are further under-
scoring the superior anomaly localization capabilities of 
the integrated framework as illustrated in Fig. 6. The aver-
age precision achieved is 0.923 and demonstrates the 
near-perfect performance across all power stations.

In contrast, the Z-score and Transformer methods exhibit 
average precisions of 0.854 and 0.889, respectively. However, 
the IQR and IF methods yielded results of only 0.838 and 
0.795 with several power stations falling below 0.800. These 
findings indicate that the ensemble method significantly out-
performs traditional statistical methods and tree-based mod-
els in the precise identification of anomalous data points.

The recall results indicate that the IF and IQR methods 
exhibit a performance advantage in this metric with aver-
age recall rates of 0.916 and 0.939, respectively as depicted 
in Fig. 7. Thereby, it captures a greater number of anom-
alies. However, their precision is suboptimal which lim-
its their overall reliability. The ensemble method achieves 
an average recall of 0.911, slightly below the aforemen-
tioned methods. So far, it demonstrates more consistent 
performance across different power stations. In contrast, 
the Z-score method constrained by distributional assump-
tions yields an average recall of only 0.781 which indi-
cates a significant performance decline in complex scenar-
ios. The Transformer model achieves an average recall of 
0.876 with overall performance remaining unsatisfactory.

The F1 score results further validate the integrated meth-
od's advantage in balancing precision and recall as illus-
trated in Fig. 8. The integrated method achieved an average 
F1 score of 0.887 and maintained a leading position across 
all power stations. It further demonstrates a comprehen-
sive "high precision-high recall" advantage of this system. 

Table 1 Summary of baseline model parameter settings and runtime

Model Core parameter settings Parameter selection method Training/Runtime 
duration (s)

CNN-LSTM (Baseline) Conv channels = 32; kernel size = 3; LSTM hidden units = 64; 
learning rate = 0.001; Batch = 64 Validation set parameter tuning 148

IF n_estimators = 100; contamination = 0.1 Grid search (50/100/150 Trees) 9.6

GMM n_components = 3; covariance_type = "full" Grid search (2/3/4 Components) 7.3

IQR Threshold = 1.5 × IQR Experience standard 0.04

Ensemble learning methods Employ a custom unsupervised iterative weighting strategy Adaptive weight Assignment 159
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The Transformer method followed its stability which was 
insufficient in some power stations with an average F1 score 

of 0.876. The average F1 scores for IQR and IF were 0.784 
and 0.758, respectively exhibit significant overall fluctua-
tion. The Z-score method had the lowest average F1 score 
(at only 0.749) with a noticeable degradation in detection 
performance under non-normal data scenarios.

In summary, the ensemble learning approach demon-
strates a comprehensive advantage across the key metrics 
of accuracy, precision, recall and F1-score. It effectively 
achieves a synergistic optimization of detection accuracy 
and generalization capability through feature fusion and 
dynamic weighting mechanisms. The overall performance 
significantly surpasses both traditional statistical meth-
ods and single-model baselines as well as the Transformer 
framework. These findings underscore the practical value 
of ensemble methods in complex photovoltaic scenarios, 
offering robust support for the intelligent operation and 
maintenance of large-scale power plants.

4.4 Ablation study on model parameters
To further validate the model's sensitivity to key parame-
ters, we designed an ablation study to examine the impact 
of the number of CNN layers. The number of LSTM hidden 
units and the number of iterations on detection performance 
were determined. Hence, this experiment summarizes the 
results under different parameter combinations as given 
in Table  2. Overall, the model exhibited high accuracy 
(96.7%–97.3%) across all configurations, indicating that 
the proposed CNN-LSTM framework has good robustness.

Regarding data splitting, we tested two schemes: 70% 
training set and 30% test set, and 80% training set and 
20% test set. Experiments revealed minimal performance 
differences between the two, with the 80/20 split showing 
slight advantages across multiple metrics. Therefore, this 

Fig. 5 Comparison of accuracy for different methods

Fig. 6 Comparison of precision rates for different methods

Fig. 7 Comparison of recall rates for different methods

Fig. 8 Comparison of F1 scores for different methods
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paper adopts the 80/20 split to ensure sufficient training 
data and stable test evaluation.

Initially, the model's accuracy increased from 96.7% 
to 97.0% as the number of layers increased from 1 to 3 
in the comparison of CNN layer numbers. However, the 
improvement was limited which indicated that exces-
sively deep convolutional structures do not significantly 
enhance the extraction of boundary features from photo-
voltaic data. Subsequently, the model's accuracy slightly 
improved (97.2%–97.3%) in the selection of LSTM hidden 
units when the number of units increased from 32 to 128. 
Nevertheless, this was accompanied by minor fluctua-
tions in the F1-score. It further suggested that an excessive 
number of hidden units did not substantially improve the 
modeling of temporal dependencies. Finally, there was lit-
tle performance difference between 50, 100 and 150 iter-
ations (97.1%–97.3%) regarding the setting of iteration 
numbers. It indicated that the model essentially converged 
after approximately 50 iterations. Further increasing the 
number of iterations primarily was increased by training 
costs rather than improving performance.

Comparative analysis reveals that the optimal out-
come is achieved with a configuration of a 2-layer CNN, 
128 hidden units and 100 iterations. However, it yields an 
accuracy of 97.3%. Nevertheless, the improvement is mar-
ginal, which ranges from 0.1% to 0.3% and does not sig-
nificantly outperform other configurations. Consequently, 
this study adopts a 2-layer CNN with 64 hidden units and 
100  iterations as a compromise to balance performance, 
computational cost and model complexity.

In addition to accuracy evaluation, this study analyzed 
the computational complexity and runtime performance of 
all methods. The results, summarized in Tables 1 and 2, 
show that the baseline models exhibit lower computa-
tional overhead, whereas the proposed ensemble CNN-
LSTM framework requires slightly higher training time 
due to deeper feature extraction and iterative weighting 

mechanisms. However, the increase in computation is 
moderate and proportionate to the performance improve-
ment (1.8%–3.1% in F1-score). Furthermore, inference time 
remains within an acceptable range for real-world photo-
voltaic monitoring applications, confirming that the model 
is computationally feasible. Overall, the statistical valida-
tion and complexity analysis together provide strong evi-
dence supporting the robustness, reliability, and practical 
applicability of the proposed anomaly detection method.

4.5 Confusion matrix analysis
The ensemble learning model demonstrates robust perfor-
mance in distinguishing between normal and anomalous 
data across the majority of power plants, as illustrated in 
Fig. 9. In Fig. 9 (a), the model achieved 1530 TN, 187 TP, 
15 FP and 34 FN has yielded an accuracy of 94.9% corre-
sponding to Plant 1. Similarly, Fig. 9 (b) (Plant 2) shows 
1607  TN, 115  TP, 8  FP and 36  FN corresponding to an 
accuracy of 96.2% with a minimal false-positive rate. 
The model produced 1535 TN, 158 TP, 20 FP and 53 FN 
yield as shown in Fig. 9 (c) (Plant 3). It maintains a bal-
anced accuracy of 94.6%.

The advantage of the ensemble approach is further high-
lighted in Fig.  9  (d) (Plant  4), where the results reached 
1567  TN and 158  TP. So, 2  FP and 39  FN are yielded 
an accuracy exceeding 97% and an exceptionally low 
false-positive rate of 0.1%. In Fig. 9 (e) (Plant 5), the model 
recorded 1539 TN, 182 TP, 9 FP and 36 FN corresponding 
to a detection accuracy of 96.3%. The best overall perfor-
mance was observed in Plant 6 with 1592 TN, 152 TP, 8 FP 
and 14 FN as shown in Fig. 9 (f). It achieves an accuracy of 
98.2%, precision above 95% and recall above 91%.

Consistent performance was also observed and 
obtained in 1542 TN, 176 TP, 16 FP and 32 FN as shown 
in Fig. 9 (g) (Plant 7). It results in an accuracy of 96.9%. 
Hence, the ensemble model remained robust under more 
challenging conditions. For instance, Fig. 9  (h) (Plant 8) 

Table 2 Impact of key parameters on model performance

Number of 
CNN layers LSTM units Number of iterations Accuracy (%) Precision (%) Recall (%) F1-score (%) Average training time (s)

1 64 100 96.7 92.1 91.7 88.8 120

2 64 100 96.8 92.1 91.9 88.9 170

3 64 100 97.0 92.2 92.0 89.0 210

2 32 100 97.2 92.2 92.1 89.1 140

2 128 100 97.3 92.4 92.1 88.7 160

2 64 50 97.1 92.3 92.0 88.8 90

2 64 150 97.3 92.1 91.8 88.7 250
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 9 The confusion matrices for anomaly detection across various PV plants: (a) photovoltaic power station 1, (b) photovoltaic power station 2, 
(c) photovoltaic power station 3, (d) photovoltaic power station 4, (e) photovoltaic power station 5, (f) photovoltaic power station 6, (g) photovoltaic 

power station 7, (h) photovoltaic power station 8, (i) photovoltaic power station 9

shows 1487 TN, 196 TP, 41 FP, and 42 FN with accuracy 
of 94.0% and a low false-positive rate of 2.7%. Finally, 
it demonstrates 1589 TN, 134 TP, 28 FP, and 15 FN with 
corresponding to an accuracy of 97.3% as shown in 
Fig. 9  (i) (Plant 9). It further confirms the stable perfor-
mance across different operational environments.

Taken together, these results confirm that the ensem-
ble learning methodology consistently achieves high accu-
racy across diverse PV plants (Fig.  9  (a)–(i)). Moreover, 
the ensemble approach effectively mitigates overfitting to 
noise by aggregating the predictions of multiple models. 
It further addresses class imbalance and enhances both 
robustness and generalization in anomaly detection.

4.6 Visualization of anomaly distributions
The ensemble learning framework demonstrates robust 
anomaly detection across most PV plants, effectively dis-
tinguishing normal (blue) from anomalous (red) data, as 
shown in Fig. 10 (a). Normal data cluster in concentrated 
regions, whereas anomalous points deviate significantly, 
reflecting clear separability.

In Fig. 10 (b), the distribution of anomalies forms sev-
eral distinct clusters corresponding to another PV plant. 
These clusters are likely attributable to specific opera-
tional states or environmental influences that introduce 
notable fluctuations. Similarly, the anomalies are grouped 
within localized regions as shown in Fig. 10 (c). Further, 
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Fig. 10 Ensemble learning anomaly detection outcomes, where red and blue points indicating anomalous and normal values, respectively, for the following 
cases: (a) photovoltaic power station 1, (b) photovoltaic power station 2, (c) photovoltaic power station 3, (d) photovoltaic power station 4, (e) photovoltaic 

power station 5, (f) photovoltaic power station 6, (g) photovoltaic power station 7, (h) photovoltaic power station 8, (i) photovoltaic power station 9

(a) (b) (c)

(d) (e) (f)

(g) (i)(h)

it reinforces the ability of the ensemble approach to high-
light plant-specific abnormal behaviors.

A clearer separation is observed and the anomalies are 
sparsely distributed around the periphery of dense normal 
data regions as shown in Fig. 10 (d). It shows the ensem-
ble model's sensitivity to subtle deviations. Meanwhile, 
Fig.  10  (e) reveals multiple compact clusters of anoma-
lies. It suggests repeated abnormal operating states under 
consistent environmental conditions. By contrast, a more 
dispersed anomaly distribution has been indicated on a 

broader range of abnormal events and potential variability 
in detection thresholds as shown in Fig. 10 (f).

The anomalies appear widely scattered across the fea-
ture space and yet the ensemble method still effectively 
distinguishes them from the dense core of normal sam-
ples as shown in In Fig.  10  (g). Similarly, as shown in 
Fig. 10 (h), a hybrid pattern emerges: some anomalies clus-
ter closely together while others remain more dispersed, 
reflecting complex and heterogeneous abnormal behavior. 
This is primarily attributed to the significant fluctuations 
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in meteorological conditions within the station's vicinity. 
Local cloud cover, rapid changes in wind speed and tem-
perature, and other factors contribute to increased short-
term fluctuations in the power generation data from this 
station, thereby complicating anomaly detection. Finally, 
a scenario in which anomalous samples are relatively 
scattered but remain consistently separable from the nor-
mal population as shown in Fig. 10 (i). It underscores the 
robustness of the ensemble approach.

Additionally, variations in sensor equipment and mainte-
nance conditions across different power plants also impact 
data quality. Noise or calibration errors in some sensors lead 
to more unstable data collection, causing the distribution of 
anomaly samples to exhibit a scattered trend. While filter-
ing and smoothing techniques in data preprocessing can mit-
igate meteorological noise interference to some extent, they 
struggle to fully eliminate distribution anomalies caused by 
short-term weather fluctuations. To address this, the pro-
posed ensemble anomaly detection model integrates multiple 
approaches—including isolated forests, Gaussian mixture 
models, and box plots—to extract anomalous features from 
diverse perspectives, thereby enhancing the model's ability 
to capture complex anomaly patterns. To address long-term 
changes in photovoltaic systems and environmental condi-
tions—known as concept drift—the model design incorpo-
rates a dynamic threshold adjustment mechanism and sup-
ports sliding-window-based parameter update strategies. This 
enables the model to adapt promptly to shifts in data distri-
bution, maintaining stable and robust detection performance.

Taken together, the visualization results confirm that 
ensemble learning not only enhances anomaly detection 
precision but also adapts effectively to diverse operational 
environments as shown in Fig. 10 (a)–(i). By aggregating 
the decisions of multiple models, the framework ensures 
robustness against variability in anomaly distribution pat-
terns. Thereby, it achieves reliable identification of poten-
tial anomalous samples across heterogeneous PV plants.

4.7 Limitations and future work
Although the anomaly proportion in this study's dataset is 
6.22%, reflecting the scarcity of abnormal events in real-
world operations, the data imbalance issue still poses chal-
lenges for model training and generalization. Future work 
will explore employing more sample augmentation tech-
niques or cost-sensitive learning methods to enhance anom-
aly detection capabilities. The current model demonstrates 
excellent performance in accuracy and robustness, but it 
exhibits high computational complexity and training time. 
Subsequent research will focus on model lightweighting 

and online deployment strategies to reduce resource con-
sumption in practical applications. Furthermore, future 
plans include extending the proposed method to fault detec-
tion in image or multimodal data domains. For instance, 
integrating infrared thermal imaging and visual sensor data 
will enrich the input features for anomaly detection, thereby 
enhancing the model's detection capability and adaptability 
under complex operating conditions.

5 Conclusions
This study proposes a boosting-based ensemble learn-
ing method for anomaly detection in PV power plants. 
By integrating multiple models through feature fusion 
and dynamic weighting strategies, it achieves high-preci-
sion identification of anomalies in PV data. Experimental 
results on multi-plant datasets demonstrate that the pro-
posed method attains an accuracy, precision, recall, 
and F1-score of 0.973, 0.923, 0.911, and 0.887, respec-
tively. This significantly outperforms traditional statis-
tical methods such as Z-score and IQR, as well as sin-
gle machine learning models like IF and Transformer. 
Specifically, the Z-score model suffers from distributional 
assumption limitations, resulting in an F1-score below 
0.80; the IF model achieves high recall (>0.95) but has 
relatively low precision, causing its F1-score to fall below 
0.85; the Transformer exhibits instability in certain plant 
scenarios. In contrast, the proposed ensemble approach 
maintains high stability, robustness, and generalization 
across multiple plants, demonstrating its ability to adapt 
effectively to the complex operating conditions and strong 
noise inherent in PV systems.

From an engineering perspective, the proposed frame-
work can be directly applied to online monitoring sys-
tems of PV plants for screening abnormal power points, 
early detection of equipment degradation, and support-
ing operation and maintenance (O&M) decision-making. 
By reducing false alarms and missed detections, it can 
lower O&M costs and improve power generation revenue. 
Moreover, the method is extendable to anomaly diagnosis 
in other renewable energy scenarios such as wind power 
and energy storage, providing a technical foundation for 
intelligent multi-energy monitoring.

Future work will focus on several directions: 
1.	 Model lightweighting — employing pruning, quan-

tization, and knowledge distillation to reduce infer-
ence latency and improve deployment efficiency; 

2.	Feature enhancement and domain adaptation — 
incorporating heterogeneous features (e.g., weather, 
component parameters, plant geographical data) 
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and using transfer learning to improve cross-plant 
generalization; 

3.	 Online learning and adaptive weighting mecha-
nisms  — dynamically updating model weights to 
quickly respond to changing operating conditions; 

4.	 Multi-source data association analysis — integrat-
ing SCADA, IV curve, infrared thermography, and 
meteorological data to model anomaly propagation 
mechanisms; 

5.	 Joint detection-scheduling optimization  — embed-
ding anomaly detection results into virtual power 

plant and multi-plant coordinated scheduling frame-
works, developing intelligent optimization strategies 
considering O&M cost constraints to enhance over-
all system economy and reliability.
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