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Abstract

This study proposes an anomaly detection framework that combines CNN-LSTM feature extraction with a boosting-based ensemble
strategy to improve the reliability of photovoltaic (PV) system monitoring. Real multi-source PV operational data are first preprocessed
using the ISODATA clustering algorithm, which automatically adjusts the number of clusters and reduces redundancy. Principal
component analysis (PCA) is then applied to lower data dimensionality while retaining key variability. A hybrid CNN-LSTM network is
developed, where CNNs extract spatial features from heterogeneous PV measurements and LSTMs capture temporal dependencies
in power sequences. Based on the learned representations, an ensemble model integrates the outputs of Gaussian Mixture Models
(GMM), Isolation Forest (IF), and Interquartile Range (IQR) through a boosting-inspired weighting mechanism to enhance robustness
under complex operating conditions. Experiments conducted on real PV datasets show that the proposed method achieves nearly
97% anomaly detection accuracy, with an average F1-score of 0.89 + 0.03 and a recall rate of 0.91 + 0.02. Compared with single-

model baselines, the framework provides more stable performance and maintains a false positive rate below 2.1%, demonstrating its

practical value for real-world PV anomaly detection.
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1 Introduction

With the accelerating global transition toward low-car-
bon and sustainable energy systems, PV technology has
become an indispensable pillar of the modern renew-
able-energy portfolio. High-efficiency, green, and scal-
able distributed PV installations now play a central role
in smart-grid and micro-grid architectures, contributing
directly to energy mix optimization, carbon neutrality
objectives, and the long-term transformation of electric-
ity markets [1-3]. The rapid progress in PV module effi-
ciency, the integration of battery-energy-storage systems,
and recent advances in power electronics have further pro-
moted widespread PV deployment across urban, indus-
trial, and rural energy infrastructures [4]. Consequently,
the operational characteristics of PV systems—including
energy conversion efficiency, structural reliability, and
their complex interactions with environmental factors—
have attracted increasing attention from both research-
ers and industry practitioners. These characteristics not
only determine the long-term performance and economic

viability of PV installations but also play a critical role
in ensuring stable power output under diverse and highly
dynamic environmental conditions [5—7]. Ensuring stable,
safe, and optimal performance in increasingly complex
environments has thus become a fundamental challenge
within renewable-energy engineering [8].

However, as PV installations scale up and system archi-
tectures become more sophisticated, their operational sta-
bility is also exposed to a wider range of potential dis-
turbances [9]. Component aging, partial shading, soiling,
module mismatch, inverter degradation, electrical imbal-
ance, and external environmental fluctuations may all
induce anomalous operating behaviors. If not detected
and handled promptly, such anomalies can lead to reduced
power quality, accelerated equipment wear, or even cascad-
ing system failures [10—12]. Real-world PV systems consist
of heterogeneous components with diverse dynamic behav-
iors. Consequently, their monitoring data often contain
strong noise, non-stationarity, nonlinearity, multimodality,
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and time-varying statistics [13—15]. These characteristics
severely limit the effectiveness of traditional anomaly-
detection approaches. Prior research has further empha-
sized that PV data frequently display non-Gaussian distri-
butions, nonlinear irradiance—temperature—performance
couplings, and intricate environmental interactions, all of
which complicate the development of highly accurate and
robust anomaly-detection models [16—18].

Existing anomaly-detection techniques for PV systems
can generally be classified into two categories: statisti-
cal modeling and traditional machine learning. Statistical
methods—such as 3-sigma rules, Copula dependency mod-
eling, and various robust statistical estimators—are val-
ued for their simplicity and interpretability. Nevertheless,
they depend heavily on explicit assumptions about under-
lying data distributions and often fail to capture the non-
linear relationships among environmental factors, hard-
ware conditions, and electrical behaviors [19]. Traditional
machine-learning algorithms, including SVM, kNN, and
basic isolation forests, perform reasonably well in scenar-
ios with low-dimensional features. Yet, their expressive
capacity is limited when encountering high-dimensional,
multi-source PV datasets, and they typically lack mech-
anisms to model complex temporal dependencies [20].
Consequently, many real-world PV systems still suffer
from high false-alarm rates, unstable anomaly recognition,
and weak cross-site generalization—particularly when
models trained on one plant are deployed at another with
different climatic, geographic, or structural conditions [21].

The rapid evolution of artificial intelligence and deep
learning has opened new opportunities for data-driven
PV monitoring, forecasting, and anomaly management,
enabling more accurate modeling of system behavior and
more efficient identification of abnormal operating condi-
tions [22]. CNNs excel at extracting local spatial patterns,
while LSTMs effectively model long-range temporal cor-
relations, making them well-suited for handling heteroge-
neous PV time series. Even so, selecting an appropriate
deep-learning architecture requires careful consideration
of computational cost, model complexity, and practical
deployability. Although ConvLSTM offers strong spatio-
temporal modeling capabilities, its convolution-gate struc-
ture incurs high computational overhead at each recurrent
step, making it more appropriate for dense grid-like data
such as videos [23]. Transformers, on the other hand, han-
dle long sequences efficiently and capture global depen-
dencies, yet their quadratic complexity with respect to
sequence length and substantial data requirements limit

their applicability to resource-constrained PV monitoring
environments [24]. Additionally, the lack of spatial induc-
tive bias in Transformers reduces their effectiveness in
modeling local operational patterns from heterogeneous
sensor data. By comparison, hybrid CNN-LSTM architec-
tures combine spatial and temporal modeling in an effi-
cient manner, ensuring favorable performance in terms of
model complexity, real-time inference, and robustness to
noise—key properties for practical PV monitoring [25].

Despite encouraging progress, current PV anomaly-de-
tection methods continue to face several critical challenges.
First, the intrinsic spatiotemporal coupling structure of
multi-source PV datasets has not been fully exploited.
Second, single-model approaches often struggle to main-
tain robustness under varying weather patterns, hardware
conditions, and environmental disturbances. Third, most
existing models rely on large, high-quality labeled data-
sets, yet anomaly labels in real PV systems are extremely
costly and difficult to obtain. Although recent studies have
introduced unsupervised-learning approaches, advanced
imaging techniques (e.g., electroluminescence and infra-
red thermography), and dynamic thresholding strategies
to enhance detection performance [26], these methods
remain constrained by high hardware costs, sensitivity to
noise, and limited scalability.

To address the challenges of noise interference, distri-
butional variability, and diverse anomaly patterns in PV
operational data, this study proposes an unsupervised
multidimensional anomaly-detection framework that
integrates deep learning—based feature extraction with
ensemble learning to achieve high accuracy, robustness,
and cross-site generalizability. The framework begins with
ISODATA clustering, which performs dynamic group-
ing and redundancy elimination, overcoming the limita-
tions of fixed clustering schemes and uncovering latent
structural relationships within PV data. Subsequently, a
CNN-LSTM network is employed to jointly capture spa-
tial correlations and temporal dependencies, enabling
a more comprehensive and stable representation of PV
time-series behavior. Three complementary unsuper-
vised detectors—GMM (statistical modeling), IF (struc-
tural sparsity), and IQR (distribution deviation)—are then
used to independently assess anomaly likelihood from
heterogeneous perspectives. Finally, a Boosting-inspired
adaptive weighting strategy is introduced to integrate the
outputs of these detectors. By dynamically adjusting the
contribution of each detector according to its reliability
under varying operating conditions, the proposed fusion



mechanism suppresses weak predictions, enhances strong
ones, and significantly improves overall performance and
cross-plant stability.

Compared with existing literature, the novelty of this

work can be summarized as follows:

1. Unlike prior studies on hybrid ConvLSTM or
ConvTransformer models that rely primarily on end-
to-end deep architectures for feature fusion, this
work establishes a three-stage unsupervised frame-
work—feature extraction, multi-detector evaluation,
and Boosting-based adaptive fusion—where each
component contributes independently and transpar-
ently, offering better modularity and interpretability.

2. In contrast to existing hybrid models that often adopt
static or uniform weighting schemes, this study
introduces a Boosting-style dynamic weighting strat-
egy that adjusts detector weights according to their
context-dependent credibility. This represents a key
methodological innovation, substantially improving
robustness under noisy conditions, imbalanced data-
sets, and cross-site deployment scenarios.

3. The multi-detector design emphasizes not only
model heterogeneity but also complementary statisti-
cal principles, enabling the unified detection of both
abrupt failures and gradual degradation—an aspect
that single-model deep learning approaches such as
ConvLSTM or Transformer-based methods gener-
ally struggle to handle simultaneously.

4. The incorporation of adaptive clustering and dimen-
sionality-reduction steps makes the framework more
suitable for real-world PV systems characterized by
diverse devices and varying environmental condi-
tions, thereby enhancing scalability and practical
applicability for large-scale deployments.

In summary, the proposed unsupervised anomaly-detec-
tion framework—integrating CNN-LSTM feature extraction
with a Boosting-based ensemble fusion strategy—advances
beyond the limitations of existing hybrid approaches in
terms of methodological design, adaptive integration, and
cross-station stability. This provides a novel, effective, and
scalable pathway toward intelligent and high-reliability PV
operation-and-maintenance systems.

2 Theories

2.1 ISODATA clustering algorithm

In the context of photovoltaic power generation data
preprocessing, the ISODATA clustering algorithm is
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extensively employed for handling complex and high-di-
mensional datasets due to its dynamic adjustment of
cluster numbers and adaptive splitting-merging mecha-
nisms [27-29]. Unlike the conventional K-means algo-
rithm, the ISODATA exhibits the capability to adaptively
modify the number of clusters during the clustering pro-
cess and contingent upon the characteristics of the data
distribution. Thus, it facilitates more effective identifica-
tion and mitigation of heterogeneity and noise interference
within PV power generation data.

The central tenet of ISODATA is to minimize the sum
of the squared distances between data points and their
respective cluster centroids. Given a dataset in Eq. (1):

X:{xl,xz,...,xn}. (M

Each data point x, € R? is assigned to one of K clusters.
The objective function of ISODATA can be expressed as
depicted in Eq. (2):

J=2 Yl -l @

k=1 x;€C;,

In Eq. (2), C, denotes the k™" cluster, u, = |CL Z X,
k

represents the centroid of cluster C,, and [-1 signifies the

x;€Cy

Euclidean distance.

During the iterative process, ISODATA dynamically
assesses the validity of clusters by computing intra-cluster
variance and inter-cluster distance. Equation (3) defines
the variance of cluster C,.

1
o; :IFk > -l A3)

x;€Cy

Based on this metric, the algorithm dynamically
adjusts the number of clusters in each iteration using the
following rule:

1. Cluster splitting

If the variance o} of a cluster exceeds a predefined
threshold ¢2 , and the number of samples |C|]
within the cluster surpasses the minimum split size
N_.., the cluster is partitioned into two new clus-
ters. The split typically occurs along the principal
direction, which is determined by the eigenvector
v corresponding to the maximum eigenvalue of

the cluster covariance matrix X:
luk,l = l’lk ta- vmax s :uk,2 = :uk —a- vmax : (4)

In Eq. (4), a denotes the step size parameter for
the splitting.
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2. Cluster merging rule
If the distance between the centroids of two clusters,
C, and C/., is less than the minimum distance thresh-
oldd _, then:

min?

et =] < - 5)

As illustrated in Eq. (6), the combined variance:

e 2 el ©)

Y lelHe [éze)

If the value does not exceed the predefined upper limit,
merge clusters C, and C, to form a new cluster C
3. Iteration termination criteria

The algorithm terminates and outputs the final clus-
tering results when the number of clusters remains
stable across successive iterations, or when the mag-
nitude of all cluster center updates “ pl™ — ) “
falls below the convergence threshold e.

To ensure the effectiveness and stability of the ISODATA
algorithm in processing photovoltaic power generation
data, key parameters were set based on extensive exper-
imentation. Specifically, the maximum allowable intra-
cluster variance threshold o was set to 0.5; when the
variance of a cluster exceeds this threshold, a splitting
operation is triggered to maintain compactness and rep-
resentativeness of clusters. This threshold was tuned to
accommodate the heterogeneous characteristics of PV
data. To prevent over-segmentation due to insufficient sam-
ples, the minimum cluster size for splitting N_. was set to
10, ensuring that splits occur only when enough samples
are present, thereby enhancing the stability and reliability
of clustering results. During cluster splitting, the step size
parameter o was set to 0.5 to control the displacement of
new centroids, allowing for refined cluster structures with-
out introducing excessive noise. For cluster merging, the
minimum centroid distance threshold d_ . was set to 0.3,

and the variance upper limit after merging >  was set

to 0.4. Clusters are merged only if both distancekand vari-
ance criteria are met, effectively reducing redundant clus-
ters while avoiding over-partitioning. Finally, the iteration
termination criteria were defined as either the number of
clusters remaining unchanged across consecutive itera-
tions or the movement of all cluster centroids falling below
1 x 10, ensuring convergence and stability.

Leveraging the aforementioned mechanism, ISODATA
exhibits adaptive clustering capabilities, obviating the
need for pre-defined cluster numbers. This attribute is
particularly salient in the context of photovoltaic power

generation data, which frequently manifests significant
heterogeneity and uncertainty. The split-merge rules
inherent to ISODATA substantially enhance the robust-
ness and interpretability of the clustering process.

2.2 Spatiotemporal feature extraction optimized

by CNN-LSTM

It is crucial to extract spatial features from the input data
while also capturing its temporal dependencies. To this
end, this paper introduces a CNN-LSTM joint architecture.
This architecture leverages CNNs to extract local features
from the input data and employs LSTMs to model tempo-
ral relationships, ultimately generating feature vectors that
represent the spatiotemporal information of the data.

2.2.1 Feature extraction capabilities of the CNN
module
As illustrated in Fig. 1, the CNN serves as the model's
front-end module. It is responsible for feature extraction
from the input data, where 7" denotes the time steps, H
and W represent the spatial dimensions and C signifies the
number of channels. Leveraging the local receptive fields
and parameter sharing inherent to convolutional layers, the
CNN effectively extracts spatial features at each time step.
Assuming a convolutional kernel K, the output feature
map Y resulted from the convolution operation which can
be formulated as

;&:f(iKW*X@+Nq. @)

c=1

Herein, * denotes the convolution operation, / represents
the layer number of the convolutional layer, f signifies the
activation function (ReLU activation function) and 5 is
the bias term. Following further dimensionality reduction
via the pooling layer, the feature vector z, is obtained for
each time step.

2.2.2 Temporal modeling capabilities of the LSTM
module

As illustrated in Fig. 2, the LSTM network represents an
advanced variant of Recurrent Neural Networks (RNNs) and
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Fig. 2 Long short-term memory network architecture

designed to manage long-range dependencies via its gating
mechanisms [30]. The feature sequence {z, }zT:l , extracted by
a CNN is subsequently fed into the LSTM. The update equa-
tions for its hidden state are defined as follows:

i, =c(Wz,+Uh_ +b,) ®)
f=c(Wz,+U,h_ +b,) )
o,=c(W,z,+U,h_ +b,) (10)
¢, =f 0Oc_ +iOtanh(W.z,+Unh_ +b.) Q8))
h, =0, Otanh(c, ). (12)

In Egs. (8)—«(12), o denotes the tanh activation function.
The O represents element-wise multiplication and c, is the
cell state. The £, is the hidden state and i , f, o, are correspond-
ing to the input gate, forget gate and output gate, respectively.

2.2.3 The CNN-LSTM hybrid architecture

Based on Sections 1 and 2, it is evident that CNNs are
capable of extracting spatial features from each timestep's
input while LSTMs can model the dynamic evolution of
these features over time. The fusion mechanism lies in
the following: CNNs initially map the raw input sequence
from multidimensional spatiotemporal data to a one-di-
mensional time series feature vector which is then sub-
jected to temporal modeling by the LSTM. Specifically,
the input sequence can be represented as

Xz{xl,xz,...,xT}, x,eRHXWXC. (13)
In Eq. (13), T denotes the timestep. Following CNN fea-

ture extraction and pooling, the input at each timestep ¢ is
mapped to a low-dimensional feature vector:
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2, = fow (%), z,€R". (14)

In Eq. (14), f.\ () denotes the non-linear mapping of the
CNN, and d represents the feature dimension. The feature
vectors from all timesteps are concatenated to generate a
feature sequence:

Z=[z,%.2,] , ZeR™ . (15)

Subsequently, the sequence Z is inputted into the
LSTM, leveraging its gating mechanisms to model tem-
poral dependencies. The hidden state update equations
are presented in Egs. (8)—(12), and the resulting hidden
state sequence is:

H={h,hy...hs}, heR". (16)

In Eq. (16), m denotes the number of hidden units within
the LSTM architecture. The LSTM's capacity to retain
long-term dependencies via the memory cell, ¢, enables
the model to capture not only the local spatial patterns of
the input signal but also to effectively model the dynamic
evolutionary trends across time steps.

Furthermore, the final hidden state /4 of the LSTM can
be fed into subsequent fully connected layers to perform
anomaly detection or prediction tasks as given in Eq. (17).

y=fec(h) (17)

In summary, the core fusion of CNN-LSTM lies in the
decomposition of spatiotemporal signals into spatial fea-
tures by CNN which are then modeled by LSTM across
the temporal dimension, thus enabling efficient learning
of intricate spatiotemporal dependencies.

2.3 Anomaly detection in traditional machine learning
PV power generation data may contain substantial anom-
alies caused by weather fluctuations and equipment mal-
functions or sensor errors [31]. To efficiently identify these
outliers, this paper proposes an ensemble detection frame-
work integrating GMM, IF and IQR methods [32].

2.3.1 Anomaly detection with IF
The IF algorithm constructs isolation trees through ran-
dom partitioning of the sample space whose core premise
is that anomalous instances are more likely to be isolated
during the splitting process. The mathematical formula-
tion of IF is as follows:
» Each isolation tree is constructed by randomly select-
ing a feature f'and a split point § where the splitting
rule g(x,) is defined as
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g(x[)={l’ al/1<0. (18)

0, otherwise

» Asample x, traverses the tree's splitting path until its
partitioned subspace contains only a single data point.

* The path length / (x,) represents the number of splits
required to isolate the sample and has its expected
value E [h(x,. )] calculated through averaging
across multiple isolation trees:

T

E[h(x,)}:%Zh, (x,)- (19)

t=1

* Anomaly scores are computed via normalization

based on path length:
_JE[h(x, )]
Score,, (x,)=2 " . (20)

« In Egs. (18)-(20), c(n):ZH(n—l)—z(n_l),with
n

. . |
H(n) denoting the n*" harmonic number H (n)=>=.

i=1 1

A higher anomaly score suggests that a sample is

more likely to be an outlier.

2.3.2 GMM anomaly detection

GMM represents a probabilistic clustering approach,
where the modeling data distribution by assuming data
points originated from a mixture of Gaussian distribu-
tions. Within anomaly detection, the GMMs aim to iden-
tify outliers by establishing the probability density func-
tion of normal data and subsequently identifying points
that deviate from these distributions [33].

Within the GMM framework, as given in a data-
setx = {x,, x,, ..., x,}, the data points x, are assumed to
be sampled from a mixture of Gaussian distributions.
The objective of the model is to detect anomalies by
learning the underlying mixture distribution of the data.

Model Definition: GMMs are typically defined as a
weighted sum of several Gaussian distributions, mathe-
matically represented in Eq. (21):

p(x):ZK:ﬂkN(x|uk,Zk). (21

In Eq. (21), 7, denotes the weight associated with the k™
Gaussian component, A (x| ,uk,Zk) represents a Gaussian
distribution characterized by a mean of i, and a covariance
matrix of X . The k signifies the total number of Gaussian
components within the mixture model.

To train the model, the Expectation-Maximization
(EM) algorithm is typically employed. This iterative algo-
rithm estimates model parameters through alternating
Expectation (E) and Maximization (M) steps. Specifically,
the E-step computes the probability of each data point
belonging to each Gaussian distribution while the M-step
updates the model parameters based on these probabilities.

Anomaly Detection: following the training of the
GMM, the likelihood of a novel observation sample
x  can be computed within the established model as

new

described in Eq. (22).
K

p(xnew ):ZﬂkN(xnewLuk’zk) (22)
k=1

An observation is flagged as an outlier if its likelihood
falls below a predefined threshold. Typically, a threshold is
denoted as = which is established to differentiate between
normal and anomalous data points. The formal representa-
tion of the decision rule is expressed in Eq. (23):

if p(X,., )<7, then x, is considered an anomaly . (23)

2.3.3 IQR-based anomaly detection
The IQR method identifies outliers by assessing the dis-
tribution range of a dataset. The core principle involves
calculating the first quartile O, and the third quartile Q, of
the data and defining the normal range of the data using
their difference in IQR [34].

The IQR is computed as

IQR = Q3 - Q1 . (24)

In Eq. (24), O, and Q, denote the 25" and 75" percen-
tiles of the data, respectively. The IQR quantifies the dis-
persion of the central 50% of the dataset and serves as a
crucial metric for assessing the data's variability.

In the IQR outlier detection method, the outliers are
defined as data points that fall outside the boundaries of the
data distribution. Specifically, a threshold (typically 1.5 times
the IQR) is used to establish the lower and upper bounds of
the data. As demonstrated in Eqs. (25) and (26), the upper
and lower bounds of the data can be definitively established.

Lower Bound = 0, —1.5xIQR (25)

Upper Bound = Q, +1.5xIQR (26)

Any data point exhibiting a value below the lower
bound or exceeding the upper bound is classified as an
outlier. Consequently, a data point is denoted as x, and the



conditions specified in Eq. (27) are satisfied. Hence, the
data point is classified as an outlier:

x, <0, -1.5xIQR orx, > 0, +1.5xIQR . 27)

2.4 A Boosting-based anomaly scoring and thresholding
To leverage the complementary advantages of the
detectors, this study proposes a lightweight ensemble
fusion mechanism inspired by Boosting principles [35].
Traditional Boosting methods typically rely on ground-
truth labels for training samples to compute error resid-
uals; however, in photovoltaic anomaly detection, data
are predominantly unlabeled or weakly labeled, render-
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weighting strategy to enable adaptive weight allocation
among multiple base learners [36].

Firstly, as illustrated in Fig. 3, the stability of individ-
ual base learners in an unsupervised environment exhibits
noticeable variation. To quantitatively assess this behavior,
this study introduces the concept of the Consistency Score.
For each training sample, the three models separately
produce anomaly detection results, which are combined
through majority voting to generate pseudo-labels PL..
Subsequently, the consistency between each model's out-
put and the pseudo-labels is computed, with the consistency
score of the #" base learner defined according to Eq. (28).

1 & .
ing direct application challenging. Consequently, this G :NZH[M[(I):PL,} (28)
research introduces a custom unsupervised iterative o
Input Data Data Preprocessing

The heterogeneous multivariate
photovoltaic data is carefully
inputted  into  the system,
followed by a comprehensive
analysis to detect and identify
any outliers within the dataset.

=

( 1)First, the photovoltaic data is categorized using the ISODATA
clustering algorithm to enable structured analysis.

(2 ) Next, CNN and LSTM are used to extract deep features,
uncovering intricate patterns.

(3)Finally, advanced anomaly detection models are applied to identify
outliers, ensuring accurate detection of abnormal photovoltaic data.

2

Anomaly Detection Model

Gaussian Mixture Model

Isolated Forest

Box Diagram

( 1) Trains the model using the
G M M algorithm to estimate
parameters.

(2)Flags anomalies by identifying
data points with low probability
density.

(3)Effective for multi-modal data
scenarios.

SCOores .

(1)Calculate the average path length
of each data point across all trees. IQR.
(2)Convert path lengths to anomaly

(3)Set a threshold to flag anomalies .

(1)Calculate the quartiles and

(2) Set the outlier range.
(3) Mark the ponts that exceed
this range as outliers.

2

Boosting-Based Ensemble Anomaly Detection

anomalies.

(1) Independently run multiple base detectors, allowing different models to generate initial anomaly scores.
(2) Assign a performance-based weight to each detector to represent its relative reliability.
(3) Fuse the weighted outputs through a Boosting aggregation and apply a unified threshold to determine the final

Fig. 3 Flowchart of the ensemble learning—based anomaly detection model
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Where M (i) denotes the judgment of the #* model on the
i sample, N represents the total number of samples, and
I[] is an indicator function.

After obtaining the consistency scores, the models are
adaptively weighted according to their scores using a lin-
ear proportional scheme as described in Eq. (29).

o, =— (29)

And by normalization, ensure consistency across
T
Za, =1. The final integrated anomaly score is obtained
=1
by weighted summation of the outputs from each model,
resulting in the sample's anomaly score as expressed
in Eq. (30).

S(i)= Y, x5, (i) (30)

Where S (i) represents the anomaly score assigned by the
" base learner to sample i.

To convert the weighted anomaly score S(7) into a final
anomaly/normal classification, this study employs an
Adaptive Thresholding technique for decision-making.
The specific methodology is as follows:

1. Perform a kernel density estimation of the distribu-

tion of the aggregate anomaly scores S(7).

2. Using the upper bound of the standard distribution

as the threshold:

0=y +ko,. (31

Where 1 and ¢, denote the mean and standard devia-
tion of the composite scores, respectively, and k& rep-
resents the sensitivity coefficient determined based
on the validation set.

3. Conduct final classification for each sample.

1, S(i)>6 (Anomaly)

Label(l') - {O, S(i) <6 (Normal) 32

Based on this methodology, when a sample's compos-
ite anomaly score significantly deviates from the nor-
mal distribution range, it is classified as anomalous data.
This adaptive thresholding approach dynamically adjusts
according to variations in illumination, temperature, and
operational conditions, effectively mitigating false posi-
tives associated with fixed thresholds under complex oper-
ational scenarios.

3 Experimental section

3.1 Dataset characterization

The dataset employed in this study originates from the
2024 Digital China Innovation Contest'. It encompasses
the operational monitoring data from nine photovoltaic
power stations within a specific region over a three-month
period. The data comprises a total of 79,488 records as
sampled at 15-minute intervals. Feature variables are cate-
gorized into two primary groups: meteorological features
(4 dimensions) including atmospheric pressure (hPa), rel-
ative humidity (%), cloud cover (okta) and 10-meter wind
speed (m/s). It is characterized by the external climatic
conditions influencing PV generation variability and oper-
ational features (6 dimensions). It encompasses the DC
output power, AC output power, inverter voltage, current,
frequency and equipment operational status. It reflects
the operational performance and equipment health of the
power stations. Overall, the dataset incorporates 10 feature
dimensions and exhibits a multi-source and heterogeneous
nature. Specifically, variations in monitoring equipment
and data precision across different power stations lead to
distributional differences in similar features. Furthermore,
meteorological factors and operational statuses are derived
from environmental monitoring and power equipment,
respectively. It represents data dimensions with distinct
physical attributes and necessitates the unified preprocess-
ing and feature fusion techniques. Following expert anno-
tation, 4,947 anomalous samples were identified within
the dataset, resulting in an anomaly rate of approximately
6.22%. It provides a robust data foundation for subsequent
anomaly detection and predictive modeling of PV systems.

3.2 Multi-model anomaly detection algorithms and
parameter optimization elaboration
The study initially employs deep learning techniques for
feature extraction from PV data as illustrated in Fig. 4.
Subsequently, anomaly detection is performed using
GMM, IF and IQR. An ensemble learning approach is
incorporated a weighted voting mechanism and is imple-
mented to enhance the accuracy and robustness of anom-
aly detection. The selection and optimization of key

1 The "2024 Digital China Innovation Contest" is a public competition.
The dataset used in this study was obtained by the authors through
participation in this competition in compliance with its regulations.

If readers require access to the experimental data used in this paper,
they may request it by contacting the corresponding author of this arti-

cle, subject to compliance with relevant data usage policies.
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1.1 Input PV heterogeneous data

pqumu adures

1.2 CNN exftraction of features

(1) Convolutional operations: exiracting short-term
localized patterns in photovoltaic data

( 2) Pooling Dimension Reduction: Reducing Data
Dimension and Preserving Key Features
(3)Multi-Level Extraction: extracting local features
from low to high level layer by layer

1.3 LSTM extraction of temporal features

(1) Time-step processing: capturing short- and long-
term dependencies of PV data

(2)Global output: extract global temporal features of
the data

Step [l Perform Anomaly Detection on Extracted Features

Partl Part2

Detection of isolated forest anomalies

Characteristic Importance Matrix ‘

+

Feature 1 Feature 2 Feature n

R T

Gaussian mixture model anomaly detection

Part3
Box diagram anomaly detection

Maximum value

(1)Calculating Quartiles: Calculate the
1st Quartile(0y). 3rd Quartile(Q5), and
Interquartile Range (IQR = Qs-0p)
from the data

(2)Define the abnormal range: make
the rule [Q:1-1.5%JOR .0 s+1.5xIQR]

7 — — Upper quartile 03

Median 0y

. anomaly
Normal or abnormal evaluation results

threshold as abnormal

(1) Fit the data using a Gaussian mixture model to
estimate the mean, variance and weight of each

Q Gaussian  distribution and find the underlyving — — Lower quartile 0; .
o tha are outside the normal range as
® distribution pattern of the data outliers
(2)Calculate the probability: evaluate the probability
* density of each point, with a low probability being an Minimum value

( 3 ) Set Threshold: set a threshold based on the
probability density and mark points below the

define the normal value range
(3)Detect Outliers: Marks data points

Part4 Integration Method (Custom Unsupervised Iterative Weighting Strategy)

(1) Independent models generate initial anomaly scores to capture the detection tendencies of each method.
(2) Model weights are iteratively adjusted in an unsupervised manner based on the consistency and stability of their outputs. allowing more reliable models to receive higher weights.
(3) The final anomaly decision is obtained by fusing the weighted outputs after convergence and applying a unified threshold thereby enhancing overall robustness and detection performance.

Fig. 4 Flowchart of the multi-model anomaly detection algorithm

parameters for each algorithm are detailed. Initially, the
PV data distribution is posited to be a composite of two
components within the GMM framework and normal and
anomalous. Consequently, the number of mixture compo-
nents is set to two. Furthermore, the "full" covariance type
is selected to accommodate the intricate distributional
characteristics of the data.

Subsequently, a boosting-based ensemble learning
framework is employed for training within the IF algo-
rithm. The maximum number of splits for the decision trees
(MaxNumSplits) is configured to 20, aiming to balance com-
putational efficiency and model accuracy. The classification
of samples is performed with samples exhibiting higher
scores being identified as outliers based on the anomaly

scores generated by the model. Finally, the boxplot method
leverages the distributional statistics of the data. It com-
putes the 25" percentile (Q,) and the 75" percentile (Q,)
in conjunction with 1.5 times the IQR to establish upper
and lower bounds for outlier detection. Any data points
exceeding these bounds are classified as anomalies. In the
weighted fusion phase, the outputs of the multiple detectors
were combined using the converged weights obtained from
the unsupervised iterative adjustment process. These adap-
tive weights reflect the relative reliability of each model
under unlabeled conditions. The final anomaly assessment
for each sample was then determined by applying a unified
threshold to the fused anomaly score, thereby improving
the overall detection accuracy and robustness.
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3.3 Evaluation metrics

Comprehensive evaluation of model performance is criti-
cal in anomaly detection. This study adopts accuracy, pre-
cision, recall and F1-score as core metrics.

3.3.1 Accuracy

Accuracy, a commonly used metric in classification tasks,
quantifies the proportion of correctly classified instances
relative to the total number of instances. Within the con-
text of anomaly detection, the accuracy serves as a mea-
sure of the model's overall classification efficacy across
all samples. The formula for calculating accuracy is as
delineated in Eq. (33).

Accuracy = TP+ TN (33)
TP+TN+FP+FN

In this context, TP denotes the count of true positives.
It further represents the instances correctly identified as
anomalous. TN signifies the number of true negatives and
indicates normal instances accurately classified into sev-
eral terms such as FP corresponds to false positives where
normal instances are erroneously flagged as anomalous
and FN represents false negatives. It denotes the anomalous
instances incorrectly classified as normal. A higher accu-
racy value suggests superior overall model performance.

3.3.2 Precision

Precision quantifies the proportion of actual anomalies
among the samples predicted as anomalous by the model.
Within the context of anomaly detection, precision reflects
the accuracy of the model's predictions regarding anoma-
lous instances. The formula for calculating precision is as
delineated in Eq. (34).

.. TP
Precision = —— (34)
TP +FP
A higher precision value suggests superior accuracy in

anomaly detection and reflects a reduced rate of false alarms.

3.3.3 Recall

Recall quantifies the proportion of actual anomalous
instances correctly identified by the model. Within the
context of anomaly detection, it recalls and emphasizes
the model's sensitivity specifically its capacity to detect
as many anomalous samples as possible. The formula for
calculating recall is as delineated in Eq. (35).

TP

Recall= ——— (35)
TP+ FN

A higher recall value suggests and enhances anom-
aly detection efficacy. Also, it is used potentially at the
expense of increased false positives.

3.3.4 F1-score

The Fl-score represents the harmonic meaning of preci-
sion and recall. It integrates the strengths and mitigates the
weaknesses of these metrics. This is particularly pertinent
in scenarios of class imbalance such as anomaly detection
where the ratio of normal to anomalous instances is often
skewed. The formula for calculating F1-score is as delin-
eated in Eq. (36).

Precision x Recall

Fl=2x—— (36)
Precision + Recall

A higher Fl-score indicates a more optimal balance
between Precision and Recall. It is commonly considered
a critical metric for evaluating the performance of classi-
fication models.

3.4 Algorithm of the proposed framework
To enhance reproducibility and to provide a clear overview
of the proposed anomaly detection framework, Section 3.4
summarizes the complete training and testing pipeline in
the form of Algorithm 1. The workflow consists of four
major stages:

1. data preprocessing,

2. CNN-LSTM based feature extraction,

3. training of the ensemble anomaly detection models,

and
4. inference using a weighted decision fusion strategy.

Algorithm 1 Training workflow of the proposed CNN-LSTM
ensemble model

1: J/EEES Data Preprocessing -----

2:  Clean X by removing missing and corrupted samples

3: Normalize features using min-max or z-score scaling

4: Segment X into fixed-length temporal windows

S Split the segmented dataset into training and validation sets
6: /- CNN-LSTM Feature Extraction -----

7: for each window x, in training set do

8: h,= CNN(x,) // extract local spatial patterns

9: f,=LSTM(h,) // capture temporal dependencies
10: Store feature vector f;

11:  end for

12:  Construct feature matrix F = {f;}

13: /) ----- Train Base Anomaly Detectors -----

14:  Train IF model using F — [F_model

15:  Train GMM using F — GMM_model
16:  Compute IQR-based thresholds using F — IQR_model

17 /- Compute Ensemble Weights -----

18:  Evaluate three detectors on the validation set

19:  Convert accuracy scores into normalized weights a, a,, a,
20:  return F(), IF_model, GMM_model, IQR_model, @, @,, a




Algorithm 1 summarizes how raw photovoltaic (PV)
power data are transformed into model-ready feature
embeddings and processed through the multi-model
ensemble to produce final anomaly decisions.

3.4.1 Training workflow of the CNN-LSTM-based
ensemble model
To provide a clearer and more reproducible description of
the proposed method, Section 3.4.1 presents the Algorithm 1
for the training workflow. The training phase aims to
1. extract spatiotemporal representations from raw PV
time-series data using the CNN-LSTM module,
2. train three unsupervised anomaly detectors based on
the extracted features, and
3. compute adaptive ensemble weights according to
model consistency on the validation set.

Algorithm 1 summarizes the complete training pipe-
line, where:
» Input: Raw PV time-series data X;
* Output: a Trained CNN-LSTM encoder F(*); trained
IF, GMM, and IQR detectors;
* Normalized Ensemble Weights o, a,, a,.

3.4.2 Testing workflow for anomaly detection
For completeness, we also provide Algorithm 2 describing
the testing (inference) stage. During testing, the trained
CNN-LSTM network generates feature embeddings for
incoming PV data windows, after which each anom-
aly detector produces an anomaly score. The final detec-
tion result is obtained by applying the learned ensemble
weights to fuse these scores. Algorithm 2 outlines the
complete testing workflow, where:
* Input: New PV data window x; trained CNN-LSTM
encoder F(°);
* IF_model, GMM_model, IQR_model; weights a,,
a,, 0,5

* Output: Final anomaly decision Y prea

Algorithm 2 Testing workflow

J/ Feature Extraction -----
h=CNN(x)

f=LSTM(h)

J/ R Individual Model Predictions -----
v, = IF_model.predict (f)

Youm = GMM_model.predict (f)

Yior = IQR_model.detect (f)

Y/ Weighted Ensemble Fusion -----
SCOre:(Z] ><-yIF-*—aZ ><yGMM-'—a3 Xyl R

0: Vpred = (score > threshold) ? "Anomaly" : "Normal"
1:

return Yorea

1
2
3
4
5
6:
7
8
9
1
1
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Algorithm 2 provides a clear and comprehensive sum-
mary of the proposed end-to-end anomaly detection
workflow. In the training phase, the CNN-LSTM feature
extractor converts raw photovoltaic time-series data into
compact spatiotemporal embeddings, which subsequently
serve as inputs for training the Isolation Forest, GMM, and
IQR detectors. The weights of the ensemble are determined
automatically based on validation consistency, ensuring
that models with more stable detection behavior contribute
more significantly. During testing, each data window is
encoded into a feature vector and independently evaluated
by the three detectors, after which their weighted outputs
are fused to produce the final anomaly decision. This uni-
fied and structured pipeline enhances the interpretability,
reproducibility, and robustness of the entire framework,
providing a reliable basis for deploying the model in real-
world PV monitoring scenarios.

4 Anomaly detection results

4.1 Dataset partitioning

To ensure fair and effective evaluation, the dataset was
split into 80% training set and 20% test set. The dataset
consists of nine independent photovoltaic data sequences,
where the training set is used for model calibration, and
the test set is employed for validation and anomaly detec-
tion performance assessment.

The proposed model adopts an end-to-end joint training
strategy, integrating a CNN and a LSTM into a unified deep
learning framework optimized simultaneously via back-
propagation. During training, the Adam optimizer was used
with an initial learning rate of 0.001, which was decayed by
a factor of 0.1 at the 30" and 60" epochs to improve con-
vergence speed and generalization capability. The model
was trained for a total of 10 epochs with a batch size of
64, balancing training efficiency and GPU memory con-
straints. Experiments were conducted on a computing plat-
form equipped with an NVIDIA GeForce RTX 3080 GPU
and 32 GB of RAM, implemented using the PyTorch frame-
work. This training configuration effectively enables the
model to capture the spatiotemporal features of photovoltaic
data, thereby enhancing anomaly detection performance.

4.2 Baseline model configuration and fairness
guarantees

To ensure fairness in comparing the proposed model with
baseline models, this study standardized parameter tun-
ing procedures for all baseline methods (CNN-LSTM, IF,
GMM, IQR). All methods strictly employed identical data
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preprocessing techniques and identical training/valida-
tion set splits to eliminate performance bias from incon-
sistent data partitioning.

For the deep learning baseline CNN-LSTM, this study
fixed parameters based on prior experimental experience
and commonly used settings in the literature: a convolu-
tion kernel size of 3, 32 channels per convolution layer,
128 hidden units in the LSTM, Adam optimizer, learn-
ing rate of 0.001, and 100 training epochs. All parameters
were selected based on validation set performance to deter-
mine the final configuration. For IF and GMM, grid search
within common parameter ranges was employed to tune the
number of trees (n_estimators) and Gaussian components
(n_components), respectively, selecting the combination
yielding optimal validation set performance. IQR has fewer
parameters and uses the standard threshold of 1.5 x IQR.

To further ensure objectivity in comparisons, all models
were run on identical hardware (NVIDIA RTX 3080 GPU +
32 GB RAM), with complete training and inference times
recorded. Parameters and runtime metrics are detailed in
Table 1. Additionally, this study employed one-way ANOVA
to test the statistical significance of F1 scores across multiple
models. Results indicate that the performance improvement
of the proposed method over baseline methods is statisti-
cally significant (p < 0.05), confirming that the performance
gains are not due to random fluctuations.

4.3 Comparative evaluation of anomaly detection
methods
A comparative analysis of the accuracy rates across photovol-
taic plant samples 1-9 reveals significant disparities among
the various methodologies as illustrated in Fig. 5. The boost-
ing-based ensemble learning approach demonstrated supe-
rior performance across all test scenarios, achieving an aver-
age accuracy of 0.973. This method not only outperformed
others in terms of precision but also exhibited a high degree
of consistency across different PV plants.

In contrast, the Z-score and Transformer models yielded
average accuracies of 0.899 and 0.904, respectively.

The IQR and IF methods exhibited weaker overall perfor-
mance with average accuracies of 0.808 and 0.803, respec-
tively. Most baseline methods achieved accuracy below
0.88 across the PV plants. Overall, the ensemble method
demonstrated enhanced robustness in the presence of multi-
source heterogeneity and noise interference, making it more
suitable for anomaly detection in large-scale PV plants.

The comparative precision results are further under-
scoring the superior anomaly localization capabilities of
the integrated framework as illustrated in Fig. 6. The aver-
age precision achieved is 0.923 and demonstrates the
near-perfect performance across all power stations.

In contrast, the Z-score and Transformer methods exhibit
average precisions of 0.854 and 0.889, respectively. However,
the IQR and IF methods yielded results of only 0.838 and
0.795 with several power stations falling below 0.800. These
findings indicate that the ensemble method significantly out-
performs traditional statistical methods and tree-based mod-
els in the precise identification of anomalous data points.

The recall results indicate that the IF and IQR methods
exhibit a performance advantage in this metric with aver-
age recall rates of 0.916 and 0.939, respectively as depicted
in Fig. 7. Thereby, it captures a greater number of anom-
alies. However, their precision is suboptimal which lim-
its their overall reliability. The ensemble method achieves
an average recall of 0.911, slightly below the aforemen-
tioned methods. So far, it demonstrates more consistent
performance across different power stations. In contrast,
the Z-score method constrained by distributional assump-
tions yields an average recall of only 0.781 which indi-
cates a significant performance decline in complex scenar-
i0s. The Transformer model achieves an average recall of
0.876 with overall performance remaining unsatisfactory.

The F1 score results further validate the integrated meth-
od's advantage in balancing precision and recall as illus-
trated in Fig. 8. The integrated method achieved an average
F1 score of 0.887 and maintained a leading position across
all power stations. It further demonstrates a comprehen-
sive "high precision-high recall" advantage of this system.

Table 1 Summary of baseline model parameter settings and runtime

Model

Core parameter settings

Training/Runtime

Parameter selection method .
duration (s)

Conv channels = 32; kernel size = 3; LSTM hidden units = 64;

CNN-LSTM (Baseline) learning rate = 0.001; Batch = 64 Validation set parameter tuning 148
IF n_estimators = 100; contamination = 0.1 Grid search (50/100/150 Trees) 9.6
GMM n_components = 3; covariance_type = "full" Grid search (2/3/4 Components) 7.3
IQR Threshold = 1.5 x IQR Experience standard 0.04
Ensemble learning methods ~ Employ a custom unsupervised iterative weighting strategy Adaptive weight Assignment 159
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The Transformer method followed its stability which was
insufficient in some power stations with an average F1 score
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Fig. 8 Comparison of F1 scores for different methods

0f 0.876. The average F1 scores for IQR and IF were 0.784
and 0.758, respectively exhibit significant overall fluctua-
tion. The Z-score method had the lowest average F1 score
(at only 0.749) with a noticeable degradation in detection
performance under non-normal data scenarios.

In summary, the ensemble learning approach demon-
strates a comprehensive advantage across the key metrics
of accuracy, precision, recall and Fl-score. It effectively
achieves a synergistic optimization of detection accuracy
and generalization capability through feature fusion and
dynamic weighting mechanisms. The overall performance
significantly surpasses both traditional statistical meth-
ods and single-model baselines as well as the Transformer
framework. These findings underscore the practical value
of ensemble methods in complex photovoltaic scenarios,
offering robust support for the intelligent operation and
maintenance of large-scale power plants.

4.4 Ablation study on model parameters
To further validate the model's sensitivity to key parame-
ters, we designed an ablation study to examine the impact
of the number of CNN layers. The number of LSTM hidden
units and the number of iterations on detection performance
were determined. Hence, this experiment summarizes the
results under different parameter combinations as given
in Table 2. Overall, the model exhibited high accuracy
(96.7%-97.3%) across all configurations, indicating that
the proposed CNN-LSTM framework has good robustness.
Regarding data splitting, we tested two schemes: 70%
training set and 30% test set, and 80% training set and
20% test set. Experiments revealed minimal performance
differences between the two, with the 80/20 split showing
slight advantages across multiple metrics. Therefore, this
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Table 2 Impact of key parameters on model performance

Number of

CNN layers LSTM units Number of iterations ~ Accuracy (%)  Precision (%) Recall (%) Fl-score (%)  Average training time ()
1 64 100 96.7 92.1 91.7 88.8 120
2 64 100 96.8 92.1 91.9 88.9 170
3 64 100 97.0 92.2 92.0 89.0 210
2 32 100 97.2 92.2 92.1 89.1 140
2 128 100 97.3 92.4 92.1 88.7 160
2 64 50 97.1 92.3 92.0 88.8 90
2 64 150 97.3 92.1 91.8 88.7 250

paper adopts the 80/20 split to ensure sufficient training
data and stable test evaluation.

Initially, the model's accuracy increased from 96.7%
to 97.0% as the number of layers increased from 1 to 3
in the comparison of CNN layer numbers. However, the
improvement was limited which indicated that exces-
sively deep convolutional structures do not significantly
enhance the extraction of boundary features from photo-
voltaic data. Subsequently, the model's accuracy slightly
improved (97.2%—-97.3%) in the selection of LSTM hidden
units when the number of units increased from 32 to 128.
Nevertheless, this was accompanied by minor fluctua-
tions in the Fl-score. It further suggested that an excessive
number of hidden units did not substantially improve the
modeling of temporal dependencies. Finally, there was lit-
tle performance difference between 50, 100 and 150 iter-
ations (97.1%-97.3%) regarding the setting of iteration
numbers. It indicated that the model essentially converged
after approximately 50 iterations. Further increasing the
number of iterations primarily was increased by training
costs rather than improving performance.

Comparative analysis reveals that the optimal out-
come is achieved with a configuration of a 2-layer CNN,
128 hidden units and 100 iterations. However, it yields an
accuracy of 97.3%. Nevertheless, the improvement is mar-
ginal, which ranges from 0.1% to 0.3% and does not sig-
nificantly outperform other configurations. Consequently,
this study adopts a 2-layer CNN with 64 hidden units and
100 iterations as a compromise to balance performance,
computational cost and model complexity.

In addition to accuracy evaluation, this study analyzed
the computational complexity and runtime performance of
all methods. The results, summarized in Tables 1 and 2,
show that the baseline models exhibit lower computa-
tional overhead, whereas the proposed ensemble CNN-
LSTM framework requires slightly higher training time
due to deeper feature extraction and iterative weighting

mechanisms. However, the increase in computation is
moderate and proportionate to the performance improve-
ment (1.8%-3.1% in F1-score). Furthermore, inference time
remains within an acceptable range for real-world photo-
voltaic monitoring applications, confirming that the model
is computationally feasible. Overall, the statistical valida-
tion and complexity analysis together provide strong evi-
dence supporting the robustness, reliability, and practical
applicability of the proposed anomaly detection method.

4.5 Confusion matrix analysis

The ensemble learning model demonstrates robust perfor-
mance in distinguishing between normal and anomalous
data across the majority of power plants, as illustrated in
Fig. 9. In Fig. 9 (a), the model achieved 1530 TN, 187 TP,
15 FP and 34 FN has yielded an accuracy of 94.9% corre-
sponding to Plant 1. Similarly, Fig. 9 (b) (Plant 2) shows
1607 TN, 115 TP, 8 FP and 36 FN corresponding to an
accuracy of 96.2% with a minimal false-positive rate.
The model produced 1535 TN, 158 TP, 20 FP and 53 FN
yield as shown in Fig. 9 (c) (Plant 3). It maintains a bal-
anced accuracy of 94.6%.

The advantage of the ensemble approach is further high-
lighted in Fig. 9 (d) (Plant 4), where the results reached
1567 TN and 158 TP. So, 2 FP and 39 FN are yielded
an accuracy exceeding 97% and an exceptionally low
false-positive rate of 0.1%. In Fig. 9 (e) (Plant 5), the model
recorded 1539 TN, 182 TP, 9 FP and 36 FN corresponding
to a detection accuracy of 96.3%. The best overall perfor-
mance was observed in Plant 6 with 1592 TN, 152 TP, 8 FP
and 14 FN as shown in Fig. 9 (f). It achieves an accuracy of
98.2%, precision above 95% and recall above 91%.

Consistent performance was also observed and
obtained in 1542 TN, 176 TP, 16 FP and 32 FN as shown
in Fig. 9 (g) (Plant 7). It results in an accuracy of 96.9%.
Hence, the ensemble model remained robust under more
challenging conditions. For instance, Fig. 9 (h) (Plant 8)
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Fig. 9 The confusion matrices for anomaly detection across various PV plants: (a) photovoltaic power station 1, (b) photovoltaic power station 2,

(c) photovoltaic power station 3, (d) photovoltaic power station 4, (e) photovoltaic power station 5, (f) photovoltaic power station 6, (g) photovoltaic

power station 7, (h) photovoltaic power station 8, (i) photovoltaic power station 9

shows 1487 TN, 196 TP, 41 FP, and 42 FN with accuracy
of 94.0% and a low false-positive rate of 2.7%. Finally,
it demonstrates 1589 TN, 134 TP, 28 FP, and 15 FN with
corresponding to an accuracy of 97.3% as shown in
Fig. 9 (i) (Plant 9). It further confirms the stable perfor-
mance across different operational environments.

Taken together, these results confirm that the ensem-
ble learning methodology consistently achieves high accu-
racy across diverse PV plants (Fig. 9 (a)—(i)). Moreover,
the ensemble approach effectively mitigates overfitting to
noise by aggregating the predictions of multiple models.
It further addresses class imbalance and enhances both
robustness and generalization in anomaly detection.

4.6 Visualization of anomaly distributions

The ensemble learning framework demonstrates robust
anomaly detection across most PV plants, effectively dis-
tinguishing normal (blue) from anomalous (red) data, as
shown in Fig. 10 (a). Normal data cluster in concentrated
regions, whereas anomalous points deviate significantly,
reflecting clear separability.

In Fig. 10 (b), the distribution of anomalies forms sev-
eral distinct clusters corresponding to another PV plant.
These clusters are likely attributable to specific opera-
tional states or environmental influences that introduce
notable fluctuations. Similarly, the anomalies are grouped
within localized regions as shown in Fig. 10 (c). Further,
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Fig. 10 Ensemble learning anomaly detection outcomes, where red and blue points indicating anomalous and normal values, respectively, for the following
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cases: (a) photovoltaic power station 1, (b) photovoltaic power station 2, (¢) photovoltaic power station 3, (d) photovoltaic power station 4, (¢) photovoltaic

power station 5, (f) photovoltaic power station 6, (g) photovoltaic power station 7, (h) photovoltaic power station 8, (i) photovoltaic power station 9

it reinforces the ability of the ensemble approach to high-
light plant-specific abnormal behaviors.

A clearer separation is observed and the anomalies are
sparsely distributed around the periphery of dense normal
data regions as shown in Fig. 10 (d). It shows the ensem-
ble model's sensitivity to subtle deviations. Meanwhile,
Fig. 10 (e) reveals multiple compact clusters of anoma-
lies. It suggests repeated abnormal operating states under
consistent environmental conditions. By contrast, a more
dispersed anomaly distribution has been indicated on a

broader range of abnormal events and potential variability
in detection thresholds as shown in Fig. 10 (f).

The anomalies appear widely scattered across the fea-
ture space and yet the ensemble method still effectively
distinguishes them from the dense core of normal sam-
ples as shown in In Fig. 10 (g). Similarly, as shown in
Fig. 10 (h), a hybrid pattern emerges: some anomalies clus-
ter closely together while others remain more dispersed,
reflecting complex and heterogeneous abnormal behavior.
This is primarily attributed to the significant fluctuations



in meteorological conditions within the station's vicinity.
Local cloud cover, rapid changes in wind speed and tem-
perature, and other factors contribute to increased short-
term fluctuations in the power generation data from this
station, thereby complicating anomaly detection. Finally,
a scenario in which anomalous samples are relatively
scattered but remain consistently separable from the nor-
mal population as shown in Fig. 10 (i). It underscores the
robustness of the ensemble approach.

Additionally, variations in sensor equipment and mainte-
nance conditions across different power plants also impact
data quality. Noise or calibration errors in some sensors lead
to more unstable data collection, causing the distribution of
anomaly samples to exhibit a scattered trend. While filter-
ing and smoothing techniques in data preprocessing can mit-
igate meteorological noise interference to some extent, they
struggle to fully eliminate distribution anomalies caused by
short-term weather fluctuations. To address this, the pro-
posed ensemble anomaly detection model integrates multiple
approaches—including isolated forests, Gaussian mixture
models, and box plots—to extract anomalous features from
diverse perspectives, thereby enhancing the model's ability
to capture complex anomaly patterns. To address long-term
changes in photovoltaic systems and environmental condi-
tions—known as concept drift—the model design incorpo-
rates a dynamic threshold adjustment mechanism and sup-
ports sliding-window-based parameter update strategies. This
enables the model to adapt promptly to shifts in data distri-
bution, maintaining stable and robust detection performance.

Taken together, the visualization results confirm that
ensemble learning not only enhances anomaly detection
precision but also adapts effectively to diverse operational
environments as shown in Fig. 10 (a)—(i). By aggregating
the decisions of multiple models, the framework ensures
robustness against variability in anomaly distribution pat-
terns. Thereby, it achieves reliable identification of poten-
tial anomalous samples across heterogeneous PV plants.

4.7 Limitations and future work

Although the anomaly proportion in this study's dataset is
6.22%, reflecting the scarcity of abnormal events in real-
world operations, the data imbalance issue still poses chal-
lenges for model training and generalization. Future work
will explore employing more sample augmentation tech-
niques or cost-sensitive learning methods to enhance anom-
aly detection capabilities. The current model demonstrates
excellent performance in accuracy and robustness, but it
exhibits high computational complexity and training time.
Subsequent research will focus on model lightweighting
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and online deployment strategies to reduce resource con-
sumption in practical applications. Furthermore, future
plans include extending the proposed method to fault detec-
tion in image or multimodal data domains. For instance,
integrating infrared thermal imaging and visual sensor data
will enrich the input features for anomaly detection, thereby
enhancing the model's detection capability and adaptability
under complex operating conditions.

5 Conclusions

This study proposes a boosting-based ensemble learn-
ing method for anomaly detection in PV power plants.
By integrating multiple models through feature fusion
and dynamic weighting strategies, it achieves high-preci-
sion identification of anomalies in PV data. Experimental
results on multi-plant datasets demonstrate that the pro-
posed method attains an accuracy, precision, recall,
and Fl-score of 0.973, 0.923, 0.911, and 0.887, respec-
tively. This significantly outperforms traditional statis-
tical methods such as Z-score and IQR, as well as sin-
gle machine learning models like IF and Transformer.
Specifically, the Z-score model suffers from distributional
assumption limitations, resulting in an Fl-score below
0.80; the IF model achieves high recall (>0.95) but has
relatively low precision, causing its F1-score to fall below
0.85; the Transformer exhibits instability in certain plant
scenarios. In contrast, the proposed ensemble approach
maintains high stability, robustness, and generalization
across multiple plants, demonstrating its ability to adapt
effectively to the complex operating conditions and strong
noise inherent in PV systems.

From an engineering perspective, the proposed frame-
work can be directly applied to online monitoring sys-
tems of PV plants for screening abnormal power points,
early detection of equipment degradation, and support-
ing operation and maintenance (O&M) decision-making.
By reducing false alarms and missed detections, it can
lower O&M costs and improve power generation revenue.
Moreover, the method is extendable to anomaly diagnosis
in other renewable energy scenarios such as wind power
and energy storage, providing a technical foundation for
intelligent multi-energy monitoring.

Future work will focus on several directions:

1. Model lightweighting — employing pruning, quan-
tization, and knowledge distillation to reduce infer-
ence latency and improve deployment efficiency;

2. Feature enhancement and domain adaptation —
incorporating heterogeneous features (e.g., weather,
component parameters, plant geographical data)
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and using transfer learning to improve cross-plant
generalization;

. Online learning and adaptive weighting mecha-

nisms — dynamically updating model weights to
quickly respond to changing operating conditions;

. Multi-source data association analysis — integrat-

ing SCADA, 1V curve, infrared thermography, and
meteorological data to model anomaly propagation
mechanisms;

. Joint detection-scheduling optimization — embed-

ding anomaly detection results into virtual power
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