
Ŕ periodica polytechnica

Electrical Engineering

and Computer Science

58/1 (2014) 23–27

doi: 10.3311/PPee.6993

Creative Commons Attribution

RESEARCH ARTICLE

Derivation of Equations for Conductor

and Sag Curves of an Overhead Line

Based on a Given Catenary Constant

Alen Hatibovic

Received 2013-08-01, revised 2013-09-15, accepted 2013-09-16

Abstract

When the spans of an overhead line are large (for instance

over 400 metres) the conductor curve cannot be considered as a

parabola, since in that case the difference in comparison to the

catenary cannot be neglected. At such times the exact calcula-

tion has to be applied, i.e. the conductor curve has to be consid-

ered as a catenary (hyperbolic cosine). The catenary based cal-

culation does not have limitations, it can be used for small and

large spans as well, but in comparison to the parabola method

it is significantly more complicated. This article shows the way

of derivation of new equations for the conductor and sag curves

based on a known catenary constant, which refers to the cho-

sen conductor type, span length, tension and temperature of the

overhead line. The shown formulas ensure exact computing of

the conductor height and sag at any point of the span, avoid-

ing errors generated by the approximation of the catenary by a

parabola.
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1 Introduction

The catenary based calculation is generally used for high volt-

age overhead line (OHL) design, but in case of a medium or low

voltage network it is rarely done. A typical high voltage OHL is

shown in Figure 1.

Fig. 1. High voltage overhead line

The existing professional literatures give a complete proce-

dure for solving the equation of state and determination of the

catenary constant [2]. However, a coordinate system which has

an origin set at the vertex point of the conductor curve is gen-

erally in use, so the distance toward the left-hand or right-hand

side support of the span is measured from the vertex, in both di-

rections with a positive sign [7]. This method is mathematically

not optimal for OHL design. For that reason this article uses a

new coordinate system with an origin set on the line of the left-

hand side support, on the elevation of the bottom of the lower-

standing support of the span. This way, the y-coordinate of the

conductor curve presents the conductor height related to the x-

axis, but its x-coordinate presents a horizontal distance from the
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Fig. 2. Catenary curves

left-hand side support. In addition, this approach will help to

recognize some mathematical similarities and differences easily

between the catenary and parabola. This is one of the advan-

tages of the new coordinate system applied in this article.

There is a basic condition in connection with the definition

of the catenary, which says that the catenary constant should be

positive (c > 0). The catenary curve y1 shown in Figure 2 has

the following equation:

y1 = c · ch

(
x

c

)
, x ∈ (−∞,∞) (1)

Hence the vertex of the catenary curve y1 is not located in the

origin (0; 0), as in the basic case of the parabola (y = x2), but it

is in point (0; c). If y1 curve is replaced so that its vertex is set in

the origin [1], the equation of the replaced curve y2 is given by

(2).

y2 = c · ch

(
x

c

)
− c, x ∈ (−∞,∞) (2)

In order to present the conductor curve in a mathematically

convenient coordinate system for OHL design, the catenary

curve y2 has to be appropriately replaced both horizontally and

vertically [6], as it is shown in Figure 3 . The inclined span

has been deliberately chosen instead of the levelled one, so the

developed algorithm will be universal.

The following symbols are used in Figure 3:

• A(0; h1) – left-hand side suspension point

• B(S ; h2) – right-hand side suspension point

• MIN(xMIN ; yMIN) – catenary’s low point

• C(xc; yc) – conductor’s point with a maximal sag

• S – span length

• Dmax – maximal sag

• y(x) – conductor curve (catenary)

Fig. 3. Catenary curve in an inclined span

• yline(x) – straight line between the suspension points

• Ψ – angle of the span inclination

The basic equation for the conductor curve in Figure 3 is the

following in the interval [0, S ]:

y(x) = c · ch

(
x − xMIN

c

)
− c + yMIN , x ∈ [0, S ] (3)

Another version of the previous equation is (4) , but its expo-

nential version is (5).

y(x) = 2c · sh2 x − xMIN

2c
+ yMIN , x ∈ [0, S ] (4)

y(x) =
c

2

(
e

x−xMIN
c + e−

x−xMIN
c

)
− c + yMIN , x ∈ [0, S ] (5)

All three equations are universal, i.e. they can be applied for

inclined and levelled spans as well, but for a concrete usage the

vertex point, i.e. the lowest point of the curve has to be de-

termined previously. In comparison to the parabolic (quadratic)

equation for the conductor curve there is a significant difference,

since it can be defined even without knowing the vertex point of

the conductor curve [4].

2 Determination of the vertex point

The coordinates of the catenary’s vertex point can be deter-

mined on the basis of the following input data: S , h1, h2, c. By

points A and B two equations in two unknowns can be written,

then the first equation has to be subtracted from the second one.

h1 = c · ch
−xMIN

c
− c + yMIN (6)

h2 = c · ch
S − xMIN

c
− c + yMIN (7)

h2 − h1 = c ·

(
ch

S − xMIN

c
− ch

−xMIN

c

)
(8)
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By the help of the identity (9) [8, 10] xMIN can be defined as

(11).

ch(x) − ch(y) = 2 sh
x + y

2
sh

x − y

2
(9)

h2 − h1 = 2c · sh
S − 2xMIN

2c
sh

S

2c
(10)

xMIN =
S

2
− c · arsh

h2 − h1

2c · sh(S/2c)
(11)

Using (11), the yMIN is obtained from (6) and transformed

into (14).

yMIN = h1 − c ·

(
ch
−xMIN

c
− 1

)
(12)

yMIN = h1 − 2c · sh2 xMIN

2c
(13)

yMIN = h1 − 2c · sh2

{
1

2
·

[
S

2c
− arsh

h2 − h1

2c · sh(S/2c)

]}
(14)

Since the xMIN and yMIN are determined, the basic equation

(4) for the conductor curve can be completed to (15), but the fi-

nal catenary equation is given by the expression (16). The actual

interval is [0, S ].

y(x) = 2c · sh2 x − xMIN

2c
+ h1 − 2c · sh2 xMIN

2c
, x ∈ [0, S ] (15)

y(x) = 2c ·

(
sh2

{
1

2c

[
x −

S

2
+ c · arsh

h2 − h1

2c · sh(S/2c)

]}
−

sh2

{
1

2
·

[
S

2c
− arsh

h2 − h1

2c · sh(S/2c)

]})
+ h1,

x ∈ [0, S ] (16)

With the help of the previous equation the conductor height

related to x-axis can be computed at any point of the span. Since

the terrain within the span frequently differs from x-axis, the

height of the terrain related to x-axis has to be taken into con-

sideration when computing the ground clearance of the OHL.

Another important usage of the equation (16) is drawing the con-

ductor curve.

The vertex point of the catenary is generally identical to the

lowest point of the conductor. However, there are special cases

of inclined spans when the vertex is out of the span and hence

differs from the lowest point of the conductor. At such times

the latter point is identical to the lower suspension point of the

span, but the coordinates of the catenary’s vertex are still given

by (11), (14). However, the equation (16) is applicable in any

case, so it proves its universality.

3 Sag equation and characteristic sags

3.1 Derivation of the Sag Equation

The conductor sag is the distance measured vertically from

the conductor to the straight line (chord) joining two suspension

points of a span. Actually the sag varies in the interval of the

Fig. 4. Sag curve

span, i.e. increases from zero to maximum then decreases to

zero, going from the left-hand side support to the right-hand side

one. It can be appropriately described by the sag equation D(x)

as the function of x, where x varies from zero to the span length,

x ∈ [0, S ].

By the use of the equation for the conductor curve, the equa-

tion for the sag curve (shortly called as sag equation) can also

be obtained. It is necessary for the determination of the max-

imal sag location (xc) within the span and its value (Dmax). In

order to obtain that, first the equation of the straight line (yline)

passing through the suspension points A and B has to be defined

in the interval [0, S ], than subtract (3). The result provided is

the sag equation D(x), which is usable for the sag calculation at

any point of the span.

yline =
h2 − h1

S
+ h1, x ∈ [0, S ] (17)

D(x) = yline(x) − y(x), x ∈ [0, S ] (18)

D(x) =
h2 − h1

S
x + h1−

c · ch
x − xMIN

c
+ c − yMIN , x ∈ [0, S ] (19)

The sag curve is shown in Figure 4. Differently to the con-

ductor curve it has a maximum point.

3.2 Location of the maximal sag

Finding the first derivative of (19) and then solving the equa-

tion (21), the maximal sag location (xc) within the span is ob-

tained, then given by (24).

d D(x)

dx
=

h2 − h1

S
− sh

x − xMIN

c
(20)

d D(x)

dx
= 0 ⇒ xc (21)

h2 − h1

S
− sh

xc − xMIN

c
= 0 (22)

xc = xMIN + c · arsh
h2 − h1

S
(23)

xc =
S

2
+ c·

[
arsh

h2 − h1

S
− arsh

h2 − h1

2c · sh(S/2c)

]
(24)
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From (24) it is obvious that the maximal sag of the catenary

in an inclined span is not located at a mid-span, but it is moved

toward one of the two suspension points. Now there is a question

whether it is moved toward the higher or the lower one. The

answer to this question will be given here without the use of

numerical computation.

Denoting the second summand in (24) by q it gives the ex-

pression (25):

xc =
S

2
+ q (25)

Now let us assume that the maximal sag is moved from the

mid-span toward the higher suspension point and that the right-

hand side one is higher than the left-hand side one, i.e. assume

that relation (26) is valid and then check it mathematically step

by step.

if h1 < h2 ⇒ q > 0 (26)

The initial conditions are given: S > 0, c > 0, h1 > 0, h2 > 0.

The main steps for checking the validity of the assumption given

by (26) are shown in the following lines:

c ·

[
arsh

h2 − h1

S
− arsh

h2 − h1

2c · sh(S/2c)

]
> 0 (27)

arsh
h2 − h1

S
> arsh

h2 − h1

2c · sh(S/2c)
(28)

The inverse hyperbolic sine is a monotonic, strictly increasing

function [9], so

if x2 > x1 ⇒ arsh(x2) > arsh(x1) (29)

Applying (29) in (28) gives (30) which can deduce (32)

h2 − h1

S
>

h2 − h1

2c · sh(S/2c)
(30)

1

S
>

1

2c · sh(S/2c)
(31)

S/2c < sh(S/2c) (32)

Since S/2c > 0 and taking into the consideration relation

(33), the previous one is valid.

if x > 0 ⇒ x < sh(x) (33)

In this way the validity of the assumption (26) is also proved.

The same process applied for cases h1 > h2 and h1 = h2 gives

further two relations:

if h1 > h2 ⇒ q < 0 (34)

if h1 = h2 ⇒ q = 0 (35)

Thus the above question of the movement of Dmax has been

satisfactory answered. The previous relation refers to a levelled

span when there is no movement of Dmax.

Summarizing (26), (34) and (35) the final conclusion of the

location of Dmax related to a mid-span, proved mathematically

here, is the following:

The maximal sag of the catenary conductor curve in a levelled

span is located at a mid-span, but in an inclined span it is moved

from a mid-span toward a higher suspension point.

This is one essential difference in comparison to the parabola,

since the maximal sag of the parabolic conductor curve is always

located at a mid-span, both in levelled and inclined spans as

well [3]. This feature effectively simplifies the parabola based

algorithms for overhead line design.

3.3 Characteristic sags

Putting xc into a sag equation the maximal sag is obtained.

The main steps of the deduction are the following:

Dmax = D(xc) = yline(xc) − y(xc) (36)

Dmax =
h2 − h1

S
xc + h1 − c · ch

xc − xMIN

c
+ c − yMIN (37)

Dmax = 2c ·

(
h2 − h1

2S

[
S

2c
− arsh

h2 − h1

2c · sh(S/2c)
+ arsh

h2 − h1

S

]
−

sh2

(
1

2
arsh

h2 − h1

S

)
+ sh2

{
1

2
·

[
S

2c
− arsh

h2 − h1

2c · sh(S/2c)

]})
(38)

The previous expression is a formula for calculating the max-

imal sag of the catenary conductor curve in an inclined span.

Similarly, formulas (39) and (40) for the other characteristic sags

can be defined by the use of the basic sag equation (19).

Mid-span sag:

D(S/2) =
h2 − h1

2
− 2c ·

(
sh2

[
1

2
arsh

h2 − h1

2c · sh(S/2c)

]
−

sh2

{
1

2
·

[
S

2c
− arsh

h2 − h1

2c · sh(S/2c)

]})
(39)

Sag at the lowest point of the conductor:

D(xMIN) = 2c ·

(
h2 − h1

2S

[
S

2c
− arsh

h2 − h1

2c · sh(S/2c)

]
+

sh2

(
1

2
·

{
S

2c
− arsh

h2 − h1

2c · sh(S/2c)

}))
,

∀0 ≤ xMIN ≤ S (40)

4 Levelled spans

In a levelled span the suspension points are on the same eleva-

tion (h1 = h2 = h). Actually, it is a simplification of an inclined

span. In this special case the equations for the conductor curve

(41), (42), (43) are simpler than the adequate ones in an inclined

span, since the lowest point (44) of the conductor is located at a

mid-span.
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y(x) = c ·

(
ch

x − S/2

c
− ch

S

2c

)
+ h, x ∈ [0, S ] (41)

y(x) = 2c ·

(
sh2 x − S/2

2c
− sh2 S

4c

)
+ h, x ∈ [0, S ] (42)

y(x) =
c

2
·

[(
e

x−S/2
2c − e−

x−S/2
2c

)2

−
(
e

S
4c − e−

S
4c

)2
]

+ h, x ∈ [0, S ]

(43)

MIN

(
S

2
; h − 2c · sh2 S

4c

)
(44)

The equation for the conductor sag in a levelled span is given

by the expressions (45), (46) or (47), but the formula for the

calculation of the maximal sag is (48).

D(x) = c ·

(
ch

S

2c
− ch

x − S/2

c

)
, x ∈ [0, S ] (45)

D(x) = 2c ·

(
sh2 S

4c
− sh2 x − S/2

2c

)
, x ∈ [0, S ] (46)

D(x) =
c

2
·

[(
e

S
4c − e−

S
4c

)2
−

(
e

x−S/2
2c − e−

x−S/2
2c

)2
]
, x ∈ [0, S ] (47)

Dmax = D(S/2) = D(xMIN) = 2c · sh2 S

4c
(48)

5 Future work

Complementing the existing knowledge, the shown formulas

provided in the new coordinate system give an opportunity for

further important research and mathematical analysis useful for

precise OHL design and more efficient education of the elec-

trical network designers. There is a possibility for the further

works: finding the relationship between sags in levelled and in-

clined spans, a parabolic approximation of the catenary in in-

clined spans, inclined span modelling by a given levelled span,

etc.

6 Conclusions

Beside the determination of the new equations for the con-

ductor and sag curves some characteristic differences between

the catenary and parabola have been revealed. Pre-eminently it

should be mentioned that the method referring to defining the

equation for the conductor curve significantly differs in the case

of parabolic and catenary approach. While for the catenary the

coordinates of the vertex point are necessary initial data, for

parabola they are not.

It has been shown that by the use of the new catenary equation

the direction of the catenary’s maximal sag movement from the

mid-span can be determined with symbolic computation.

By the help of the basic sag equation provided in the article

for sag calculation at an arbitrary point of a span, the special

sag formulas are obtained for computing of characteristic sags:

maximal sag, mid-span sag and low point sag. On the basis

of the presented catenary sag formulas the last three sags are

different in an inclined span, but they are all equal in a levelled

span.

The following very important feature of the catenary is iden-

tified: the sag function of its curve replaced from interval [0, S ]

to [−S/2, S/2] is an even function in case of a levelled span, but

in an inclined span it is neither an even nor odd function. Com-

paring it to the parabola this is another special difference, since

the adequate feature of the latter function says [5]: the parabolic

(quadratic) sag function of its curve replaced from interval [0, S ]

to [−S/2, S/2] is an even function both in case of levelled and

inclined spans.
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