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Abstract

Fighting tumors is one of the most important problems of

medical research. In this paper, antiangiogenic cancer ther-

apy is investigated through its mathematical model. This tumor

treatment method targets the endothelium of a growing tumor

and belongs to the targeted molecular therapies. The aim of the

therapy is not to eliminate the entire tumor, but to decrease the

tumor to a minimal volume. An advantage of applying antian-

giogenic treatment is that tumor cells show lower tendency of

becoming resistant to the applied drugs. Adaptive fuzzy con-

trol is implemented for a simplified model to elaborate a control

technique which is able to handle the effects of parameter per-

turbations and uncertainties while keeping the daily and total

inhibitor inlet under a given limit.
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1 Introduction

Cancer treatment is one of the most rapidly developing re-

search fields of medicine. Modern techniques including tar-

geted molecular therapies target only cancerous cells opposed

to conventional therapies, e.g. chemotherapy or radiotherapy

where both tumorous and normal cells are affected by the ap-

plied drugs. In this paper, antiangiogenic therapy is investigated,

this method inhibits the tumor from growing own blood ves-

sel cappilaries which serve the tumor to nourish from the host

body [1, 2]. The most important advantage of the therapy is that

patients do not have to suffer from severe side-effects during an-

tiangiogenic treatment, and tumor cells do not develop intrinsic

resistance to the angiogenic inhibitors.

Philip Hahnfeldt et al. proposed a biologically validated, pop-

ulation based model described by ordinary differential equations

in 1999 [3]. Since then, the mathematical model was modified

and reformulated many times [4, 5]. In this paper a simplified

second order model is used to investigate adaptive fuzzy control

methodology. For the same model, bang-singular-bang control

was designed in [6] and optimal linear control was implemented

in [7]. A set-valued protocol was elaborated in [8].

More different approaches were used to handle the nonlinear-

ity of the system. Working point linearization was performed

to design and analyze state-space and robust control in former

papers [7, 9, 10], flatness based technique was proposed in [11]

for the original model using constant Hurwitz polinomial, and

in [12] for the simplified model using tumor volume dependent

Hurwitz polinomials. Linear controllers could not handle the

nonlinearity of the system appropriately, since the magnitude

of the control input was infeasible, and the avascular state of

the tumor was not attained. Flatness based techniques were not

efficient when nominal model parameters changed due to para-

metric uncertainties. In this paper, adaptive fuzzy control is de-

signed, that can handle both the nonlinearity of the system and

the effects of model parameter perturbations.

Section 2 focuses on the biomedical background of tumor

growth and applied treatments. Section 3 presents the nonlin-

ear model of tumor growth under angiogenic inhibition. In Sec-

tion 4, the theoretical background of fuzzy control is shortly in-
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troduced, and Section 5 details the controller design and related

simulations. The paper ends with the conclusions in Section 6.

2 Biomedical background

Medical practice [13] refers to chemotherapy [14], radiother-

apy [15] and surgical intervention [16] as conventional treat-

ments. These therapies aim to prevent cell division and the

rapid proliferation of tumors. However, these techniques in-

clude many non-desired side effects: affecting normal tissue and

the development of intrinsic resistance (pre-existing resistance)

to the applied drugs in the case of chemotherapy, the damage of

healthy tissue DNA in the case of radiotherapy, and the injury of

nearby normal tissue in the case of curative surgary. Resistance

to the drugs applied during chemotherapy already exists before

the treatment in approximately 50% of cancer cases [17].

An in vivo tumor, after passing the initial avascular state at

a volume of 1-2 mm3, starts to recruit own blood vessels in or-

der to take up nutritiants and oxygen. This phenomenon, called

tumor-induced angiogenesis [2], is captured and inhibited by

the antiangiogenic therapy [1, 18]. Antiangiogenic drugs are

able to block and disrupt the vascular endothelial growth of the

tumor, thus tumor regresses until reaching an avascular state

which can be maintained using nontoxic inhibitor concentra-

tions [19, 20]. Another advantage of antiangiogenic treatments

is that these evoke only aquired resistance (resistance induced

by the drug) instead of intrinsic resistance. New results of medi-

cal research give alternative solutions to overcome drug induced

resistance [21], which makes these cancer treatment methods

more prosperous.

Prevalent angiogenic inhibitors are endostatin [22] and beva-

cizumab [23]. The model formulation presented in this paper is

based on therapies which used endostatin.

3 Dynamical model of tumor growth

The mathematical formalism describing tumor growth dy-

namics under angiogenic signaling was posed by Philip Han-

hfeldt et al. [3]. The model was biologically validated through

animal experiments in which mice were injected with carcinoma

cells. The differential equations which describe the model are

the following:

ẋ1 = −λ1x1 ln

(
x1

x2

)
(1)

ẋ2 = b̃x1 − d̃x
2
3

1
x2 − ẽx2x3 (2)

ẋ3 =

t∫
0

u(t′) exp
(
−λ3(t − t′)

)
dt′ (3)

where x1 is the tumor volume (mm3), x2 is the supporting vascu-

lature volume (mm3) which refers to the volume of the endothe-

lium, x3 is the inhibitor serum level (mg/kg), and u is the in-

hibitor administration rate (mg/kg/day). The parameters charac-

teristic for the animals and the Lewis lung carcinoma are: λ1 =

0.192 (day−1), b̃ = 5.85 (day−1), d̃ = 0.00873 (day−1mm−2), the

Fig. 1. Growth of untreated tumor

parameters characteristic for the applied inhibitor (endostatin)

are: ẽ = 0.66 (day−1(mg/kg)−1), λ3 = 1.3 (day−1). The nonlinear

model involves the following phenomenologies: tumor growth

slowdown, as tumor cells tax all available support; intrinsic

stimulation and inhibition originating from the tumor cells; inhi-

bition due to the applied drug; and the clearance of the inhibitor.

The latter effect is not described by the simplified model, since

zero-order pharmacokinetics is used instead of first-order phar-

macokinetics. The second order system chosen for controller

design and simulations is the following:

ẋ1 = −λx1 ln

(
x1

x2

)
(4)

ẋ2 = b̃x1 − d̃x
2
3

1
x2 − ẽx2u (5)

y = x1 (6)

where x1 is the tumor volume (mm3), x2 is the vasculature vol-

ume (mm3), and u is the serum level of the administered in-

hibitor (mg/kg). The model parameter λ equals to λ1 in (1)–(3).

The measured output of the system is the tumor volume (6). The

nonlinear behavior of the system without angiogenic inhibition

is presented in Fig. 1.

4 Adaptive fuzzy design

The elaboration of fuzzy control was inspired by human logic

and decision-making. Instead of calculating the control in-

put based on crisp values, the algorithm uses fuzzy sets [24],

which model both the uncertainty of the measured output value

(measurement noises, disturbances etc.) and the uncertainty of

decision-making in certain parts of the control input domain.

The steps of the algorithm are the following [25]:

1 Normalization

2 Fuzzyfication of the crisp input

3 Calculation of the controller output based on fuzzy rules and

the input and the output fuzzy sets
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4 Defuzzyfication of the fuzzy output

5 Denormalization

In our approach, rules are defined in the natural domain of the

input (tumor volume) and the output (serum level), thus normal-

ization and denormalization can be eliminated, however domain

limits have to be considered.

In soft computing theory, there are different types of adaptive

fuzzy control. According to control characteristics, indirect or

direct control, and according to parameter tuning method, 1st

type and 2nd type control can be distinguished [26]:

• Indirect: simultaneously model identification is performed,

and the corresponding control input is determined.

• Direct: control input is calculated without performing model

identification.

• 1st type: only output membership function parameters are

tuned.

• 2nd type: both input and output membership function param-

eters are tuned.

In this study, 1st type direct adaptive fuzzy control is presented.

Direct method is chosen instead of indirect one, since estima-

tion can be given to the model related control parameters. 1st

type was chosen instead of 2nd type, since input membership

functions can be posed based on a priori information without

parameter tuning.

The expected differential equation of the system is in the form

of

y(n) = f (x) + g(x)u (7)

under the constraint that lower order derivatives of y do not de-

pend on u explicitly. The constraint is fulfilled, related calcula-

tions were published in [12]. The notations are the following: n

is the differential order of the system (n = 2), f (x) ∈ R, g(x) ∈ R
(since the controlled system is a single-input single-output sys-

tem), and g(x) > 0. The latter condition is not valid for the

tumor growth model, since g(x) = −ẽx2 where ẽ > 0 and x2 ≥ 0.

Thus, the following concept has to be used in adaptive control

design:

y(n) = f (x) + |g(x)|(−u) (8)

which means that the control input is calculated according to the

equations of direct adaptive fuzzy control, however the additive

inverse of the calculated control input is sent to the nonlinear

system.

The reference signal and its derivatives are:

yre f (t) = (xinit − 1)e
−t
T + 1

ẏre f (t) = −
1

T
(xinit − 1)e

−t
T

ÿre f (t) =
1

T 2
(xinit − 1)e

−t
T (9)

which describes exponential decrease (T = 1/0.35 day) from the

initial tumor volume (xinit = 2000 mm3) to the desired plateau

(1 mm3), since tumor volume can not be decreased to zero phys-

iologically, tumor regresses only to a minimal volume, at which

it is able to nourish from the host body without growing own

vascular endothelium.

4.1 Stability

Error dynamics of the closed-loop system can be prescribed

using the ki coefficients, collected in k̄ =
[

k1 . . . kn

]
, and

the tracking error (e = yre f − y) and its e(i) derivatives, collected

in ē =
[

e(n−1) . . . e
]
. The differential order of the error

dynamics is equal to the differential order of the system. The

error dynamics is described by

0 = e(n) + k1e(n−1) + · · · + kne. (10)

In our case, the differential order of the error dynamics is n = 2.

If f (x) and g(x) were known exactly, the control input could

be determined as follows:

u∗ = g−1
(
y

(n)

re f
− f + < k̄, ē >

)
, (11)

which secures the exponential decrease of the tracking error.

In a general case, when f (x) and g(x) are unknown, the con-

trol input has two components: uc is the controller output of the

direct fuzzy controller, and us is the controller output of the su-

pervisory control, which secures the stability of the closed-loop

system, hence

u = uc + us = u∗ + (uc + us − u∗), (12)

in the last term u∗ is the ideal control. The differential equation

of the system and error dynamics can be calculated in a general

case as follows:

y(n) = y
(n)

re f
+ < k̄, ē > +g(uc + us − u∗) (13)

e(n) = y
(n)

re f
− y(n) = − < k̄, ē > −g(uc + us − u∗) (14)

˙̄e = Λcē + bcg(u∗ − uc − us) (15)

where

Λc =


0 1 . . . 0

...
...

. . .

0 0 1

−kn −kn−1 . . . −k1

 bc =


0

...

0

1

 (16)

To guarantee the stability of the closed-loop system, Lyapunov

stability has to be investigated. For the current system, the Lya-

punov equation is

ΛT
c P + PΛc = −Q (17)

where Q > 0 prescribes the transient behavior of the system,

and the symmetric P > 0 is the solution of the Lyapunov equa-

tion. Since the biomedical model is a nonlinear system, further

Model-based Angiogenic Inhibition of Tumor Growth using Adaptive Fuzzy Techniques 312014 58 1



analyzis is necessary: we have to find an appropriate Lyapunov

function, and prove that its derivative is negative in the entire do-

main. The Lyapunov function is constructed from the solution

of the Lyapunov equation and the tracking error:

V =
1

2
< Pē, ē > (18)

whose derivative has to be calculated to investigate closed-loop

stability,

dV

dt
=

1

2
< P ˙̄e, ē > +

1

2
< Pē, ˙̄e >

= −
1

2
< Qē, ē > + < bT

c Pē, g(u∗ − uc) >

− < bT
c Pē, gus > . (19)

If the following constraints are known, 0 < gl ≤ g(x) ≤ gu

(in our approach 0 < gl ≤ |g(x)| ≤ gu) and | f (x)| < fu, then

according to (11)

|u∗| ≤ g−1
l

(
|y

(n)

re f
| + fu + | < k̄, ē > |

)
(20)

hence, an upper estimation can be given to the derivative of

the (19) Lyapunov function in order to investigate the condition
dV
dt
< 0, which guarantees closed-loop stability,

dV

dt
≤ −

1

2
< Qē, ē >

+ |bT
c Pē|g

{
|uc| + g−1

l

(
|y

(n)

re f
| + fu + | < k̄, ē > |

)}
− < bT

c Pē, gus > (21)

and since gg−1
l
> 1, the supervisory control can be determined

accordingly [25]

us := sgn(bcPē)
{
|uc| + g−1

l

(
|y

(n)

re f
| + fu + | < k̄, ē > |

)}
. (22)

The supervisory control is active only if V > V0; the threshold

V0 has to be customized to the problem. If the expression of the

supervisory control is substituted into (21), the result is

dV

dt
≤ −

1

2
< Qē, ē >, (23)

thus the condition of Lyapunov stability is fulfilled, the stability

of the closed-loop system is guaranteed.

4.2 Adaptation law

The nominal control uc, based on a zero-order Sugeno-

system [27], can be calculated according to the fuzzy relations,

uc = ϕT (x)ϑ (24)

[
ϕ(x)

]
k =

n∏
i=1

exp

−  xi − x̄k
i

σk
i

2


M∑
l=1

n∏
i=1

exp

−  xi − x̄l
i

σl
i

2


(25)

where
[
ϕ(x)

]
k weights the ϑk output membership function pa-

rameter with the distance between the current xi and the ex-

pected value of the input membership functions x̄k
i
. In the ob-

served case, n = 2 and x1 = e is the tracking error, x2 = ė is

the derivative of the error; M stands for the number of relations

which equals to the number of output parameters to be tuned.

The best approximation of the ideal control input is

u∗c = ϕT (x)ϑ∗ (26)

ϑ∗ := arg min
ϑ

sup
x

|ϕT (x)ϑ − u∗(x)|. (27)

To create the adaptation law, the Lyapunov equation has to be

improved considering the error of the ϑ parameter tuning, which

can be penalized with the γ coefficient as follows. Let

w = u∗ − u∗c, (28)

then

u∗ − uc = u∗ − u∗c + u∗c − uc

= w − ϕT (x)(ϑ∗ − ϑ)

= w − ϕT (x)∆ϑ, (29)

and the differential equation of the tracking error becomes

˙̄e = Λcē + bcg{w − ϕT (x)∆ϑ − us}. (30)

Thus, the Lyapunov function is

V =
1

2
< Pē, ē > +

1

2γ
< ∆ϑ,∆ϑ >, (31)

whose derivative has to be examined to investigate the effects of

parameter tuning on the stability of the closed-loop system. The

derivative of the Lyapunov function is

dV

dt
=

1

2
< P ˙̄e, ē > +

1

2
< Pē, ˙̄e > +

1

γ
< ∆ϑ̇,∆ϑ > . (32)

Substituting (30), the expression becomes

dV

dt
=

1

2
< (ΛT

c P + PΛc)ē, ē >︸                     ︷︷                     ︸
<0

+< bT
c Pē, gw >︸           ︷︷           ︸

=O(w)

− < bcPē, gus >︸              ︷︷              ︸
<0

+
1

γ
< ∆ϑ̇ − γϕgbT

c Pē,∆ϑ > (33)

where the last term can be turned to zero to secure closed-loop

stability with the appropriate adaptation law as

∆ϑ̇ = ϑ̇ := γϕgbT
c Pē. (34)

Since g(x) is unknown, 0 < gl ≤ |g(x)| = g0 constant approxi-

mation is needed, thus the adaptation law becomes

ϑ̇ = γg0ϕbT
c Pē = γ̃ϕbT

c Pē, (35)

where γ̃ is the chosen step size of the adaptation.

The architecture of the closed-loop system and the structure

of the adaptive fuzzy controller is detailed in Fig. 2.
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Fig. 2. The interconnection of the closed-loop system

4.3 Simulation Parameters

The error dynamics of the closed-loop system is prescribed

based on the results of operating point linearization [9], the poles

of the linearized model are 6.2526 and −0.3436. Error dynamics

and the time constant of the reference signal (9) are set faster

than the stable pole of the system at the initial working point,

and the Q matrix is set faster accordingly, since the eigenvalues

of the Q matrix determine the stability related system transients.

k1 = 1.2 k2 = 0.35

s1 = −0.5 s2 = −0.7

Q =

 0.8 0

0 1

 T = 1/0.35

(36)

The input variables are the tracking error and its derivative.

The parameters (expected value and variation) of the Gaussian

input membership functions and the initial values of the out-

put membership functions to be tuned are presented in Fig. 3.

The controller is active only if the tracking error is non-positive,

since positive tracking error means that the tumor volume de-

creased under the prescribed reference value during treatment,

which is advantageous in the observed case. The input mem-

bership functions of the tracking error were developed accord-

ing to two aspects: we expect that tracking error varies in the

[ −50 0 ] mm3 domain, thus membership functions are set up

more dense in this domain to achieve a sensitive controller; on

the other hand, the controller must be prepared to handle larger

deteriorations caused by parametric changes, which is secured

by the membership functions in the [ −800 −50 ] mm3 do-

main. In the case of the derivative related membership func-

tions, the Gaussian which fires during interference shows only

the direction of the tracking error change (increase, decrease, no

change).

The initial values of the consequent parts of the relations (the

output membeship functions) are set based on a priori informa-

tion, these are the additive inverses of the reasonable serum lev-

Fig. 3. Input membership functions and the initial values of the output mem-

bership functions

els (50 mg/kg is the upper limit and 8.85 mg/kg is the lower

limit according to [10]), the negative values are needed because

the control design is carried out to determine −u according to

(8).

The initial fuzzy rules, whose consequence parts will be adap-

tated, are presented in Table 1. E refers to the tracking error

related membership functions, and DE refers to the derivative

related membership functions. The characteristics of the E/DE

Gaussian are presented in the form: E/DE[µ σ], where µ is the

expected value, and σ stands for the variation. The interpreta-

tion of Table 1 is: if e is near the E Gaussian in the ith row, and

ė is near the DE Gaussian in the jth column, then the output u

is the (i, j) cell of the table. Rules can be represented through

an example as follows: if the tracking error is near the domain

of the membership function E[−45 5.5] and its derivative is near

the domain of the membership function DE[−200 100], then the

output serum level is −40 mg/kg. Each rule which fires during

the interference, influences the value of the controller output and

will be adaptated. In general, rules express that

• if the tracking error is large, then u is as high as possible

• if the tracking error is in the medium or low range and in-

creases, then u is higher

• if the tracking error is in the medium or low range and does

not change, then u does not change (the serum level is main-

tained which is able to compensate the error)

• if the tracking error is in the medium or low range and de-

creases, then u is lower.

We can summarize these rules such that if the tracking error is

not large, and changes in the right direction (decreases), then

the controller output can be decreased, otherwise the controller

output has to be increased or at least left unchanged.

The adaptation law and the supervisory control related param-

eters were set according to results of exact linearization [12].
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Tab. 1. The initial fuzzy rules to be adaptated

DE[200 100] DE[0 100] DE[−200 100]

E[−400 150] -50 -50 -50

E[−150 30] -50 -50 -50

E[−80 7] -50 -50 -50

E[−50 7] -50 -50 -45

E[−45 5.5] -45 -45 -40

E[−40 5.5] -35 -30 -25

E[−35 5.5] -30 -25 -20

E[−30 5.5] -25 -25 -20

E[−20 5.5] -20 -20 -15

E[−10 5.5] -15 -10 -10

E[0 5.5] -10 -8.85 -8.85

The real-valued functions of the system transformed into the

form of (7) are

f (x) = (λ ln
x1

x2

+ λ)λx1 ln
x1

x2

+ λx1

1

x2

(b̃x1 − d̃x
2
3

1
x2) (37)

g(x) = −ẽλx1, (38)

where the value of |g| varies in [0.1267 253], the average value

of |g|was set accordingly, fu was found to be 5 ·106, which influ-

ences the magnitude of the controller output of the supervisory

control. The threshold of the supervisory control activization is

set as high as possible, since if it is active, the controller output

is increased with orders of magnitude which is opposed to the

physiological constraints. The numerical values of these param-

eters are chosen as follows:

g0 = 50 gl = 0.1267 gu = 253

γ = 5 · 10−4 fu = 5 · 106 V0 = 106.
(39)

5 Simulation results

During the simulations, the observed tumor domain is in the

range of 0–2000 mm3. Since antiangiogenic therapy is only able

to reduce the vascular endothelium grown by the tumor itself,

the possible minimal tumor volume is set to 1 mm3. The tu-

mor reaches this minimal volume in an avascular state which

can be maintained with a relatively low constant serum level

(8.85 mg/kg), the exact value of the mentioned serum level

can be derived from the steady-state equations of the model as

in [10].

We expect that tumor volume decreases to the minimal vol-

ume as fast as possible such that the applied serum level does

not exceed 50-55 mg/kg while keeping the total inhibitor inlet

as low as possible.

Simulation results are shown in Fig. 4, and Fig. 5 represents

how output parameters change in course of the adaptation. Tu-

mor regresses to 1% of initial tumor volume after 21 days, fast

regression is achieved and the control input exceeds 40 mg/kg

only for 7 days. After the first 40 days tumor reaches 5 mm3,

and the minimal volume reached in 50 days is 3.5 mm3. The

total inhibitor inlet is 996.8 mg/kg. The control input varies be-

tween 9 mg/kg and 50 mg/kg, and no saturation was needed to

Fig. 4. Tumor regression and control input under adaptive fuzzy control

Fig. 5. Adaptation of output parameters

fulfill the physiological constraints opposed to the control inputs

in [7, 9].

In terms of daily and total inlet, adaptive fuzzy control out-

performed the controllers presented in [6, 8], and the plateau

reached is far lower as well. The therapy presented in this pa-

per causes less strain on the body since control input exceeds

40 mg/kg only for 7 days, not for 22 days as in [9]. Total ini-

hibitor inlet is not significantly lower than in [7, 9, 10], however

the need of saturation could be totally eliminated. The minimal

volume plateau was reached, the controller performed better in

this aspect as well than the controllers presented in [7, 9, 10].

5.1 The effect of parameter perturbation

Model related parameters (λ, b̃, d̃, ẽ) were perturbed inde-

pendently with a variability of ±25% to investigate the effects

of model parametric changes. Simulations show that the perfor-

mance of tumor regression does not change significantly, which

is a prosperous result. Observing Fig. 6 and Fig. 7, one can see

that in some cases the effects of model parametric changes turn
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Fig. 6. Tumor regression and control inputs in the case of model parameter

perturbation with a variability of ±25%

Fig. 7. Total inhibitor inlet in the case of model parameter perturbation with

a variability of ±25%

to be advantageous, since both daily and total inlet decreased

compared to the original case. The latter phenomenon, that the

controller does not exceed the optimal serum level, can be ex-

plained with the efficiency of the adaptation. The inhibitor in-

lets of the disadvantegous cases are still far lower than the in-

lets in [6, 8] and close to the inlets of the controllers presented

in [7,9], and physiological constraints were satisfied without the

necessity of external saturation. Thus, better performance was

achieved even in the perturbed cases.

6 Conclusion

In this paper, adaptive fuzzy control design was carried out to

attain tumor regression using low inhibitor serum levels.

Fast tumor regression and low daily and total inhibitor inlets

were achieved. As a benefit of the adaptation, the performance

of tumor regression does not significantly change because of pa-

rameter perturbations even with a relatively high variability. The

designed controller outperformed control strategies published

by the authors [7, 9, 10] and other researchers [6, 8] in the as-

pects investigated in this paper.

However, the controller was not able to reach the minimal

volume (1 mm3) in 50 days as controllers in [11,12]; the plateau

can be attained after 100 days.

The effects of model parameter perturbations were investi-

gated, since the advantage of adaptive fuzzy methodology is that

controller design can be carried out without knowing the exact

model formulation using appropriate estimation. On the other

hand, if the nominal model parameters change during the con-

trol process, the controller is able to adaptate to the changes.

The aim of further research is to pose a new biologically val-

idated mathematical model which involves more complex char-

acteristics of tumor growth dynamics.
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