
Ŕ periodica polytechnica

Electrical Engineering

and Computer Science

56/1 (2012) 21–28

doi: 10.3311/PPee.7075

http://periodicapolytechnica.org/ee

Creative Commons Attribution

RESEARCH ARTICLE

A simplified approach to parameter

estimation and selection of sparse,

mean reverting portfolios

Norbert Fogarasi / János Levendovszky

Received 2011-11-24, accepted 2012-09-22

Abstract

In this paper, we study the problem of finding sparse, mean

reverting portfolios in multivariate time series. This can be ap-

plied to developing profitable convergence trading strategies by

identifying portfolios which can be traded advantageously when

their prices differ from their identified long-term mean. Assum-

ing that the underlying assets follow a VAR(1) process, we pro-

pose simplified, dense parameter estimation techniques which

also provide a goodness of model fit measure based on historical

data. Using these dense estimated parameters, we describe an

exhaustive method to select an optimal sparse mean-reverting

portfolio which can be used as a benchmark to evaluate faster,

heuristic methods such as greedy search. We also present a sim-

ple and very fast heuristic to solve the same problem, based on

eigenvector truncation. We observe that convergence trading us-

ing these portfolio selection methods is able to generate profits

on historical financial time series.

Keywords

mean reversion · sparse estimation · convergence trading ·

parameter estimation · VAR(1) model · covariance selection ·

financial time series

Norbert Fogarasi

Department of Networked Systems and Services, BME, H-1117 Budapest,

Magyar Tudósok körútja 2., Hungary

e-mail: fogarasi@hit.bme.hu

János Levendovszky

Department of Networked Systems and Services, BME, H-1117 Budapest,

Magyar Tudósok körútja 2., Hungary

e-mail: levendov@hit.bme.hu

1 Introduction

Mean reversion, as a classic indicator of predictability in fi-

nancial markets, has received a lot of attention over the last few

decades. It has been shown that equity excess returns over long

horizons are mean-reverting and therefore contain an element of

predictability [8,10,13]. Convergence trading, by estimating the

parameters of mean reverting portfolios has also been proposed

and studied in a number of previous research publications [2, 7]

In his recently published article, d’Aspremont in [5] posed the

problem of finding mean-reverting portfolios which are sparse.

While there exist simple and reliable methods to identify mean

reversion in univariate time series, selecting portfolios from

multivariate data which exhibit this property is a much more dif-

ficult problem. This can be approached by the Box-Tiao proce-

dure [3] to extract cointegrated vectors by solving a generalized

eigenvalue problem. On the other hand, sparseness, he argues,

is desirable for reducing transaction costs associated with con-

vergence trading as well as for increasing the interpretability of

the resulting portfolio. He developed a new approach to solve

the problem by using semidefinite relaxation and compared the

efficiency of this solution to the simple greedy algorithm in a

number of markets.

In this paper, we further extend their work by developing a

new approach to identifying parameters of the stationary first

order vector autoregressive VAR(1) model and we propose a

new benchmark for evaluating their proposed polynomial time

heuristics to this NP hard problem. Our proposed benchmark is

the computationally expensive, but optimal, exhaustive solution.

This is an important step missing in [5] which shows the overall

reliability and performance of the investigated methods.

The structure of the paper is as follows.

• In Section 2, after giving a formal presentation of the problem

and we explain how the optimal solution can be found by ex-

haustive search and introduce the truncation method as a very

fast alternative to greedy search.

• In section 3, a simplified approach for the estimation of the

model parameters of a VAR(1) model is discussed and a new

measure is also developed which shows the goodness of fit of
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the data to the model.

• In section 4, the methodology on generated VAR(1) data is

validated and significant trading gains are demonstrated on

historical time series of real data, the daily close prices of

stocks comprising the S&P 500 index.

• Finally, in section 5 some conclusions are drawn and direc-

tions for future research are outlined.

2 Sparse mean reverting portfolio selection

In this section the model is described together with the foun-

dations of identifying mean reverting portfolios. Our approach

follows the one published in [5], however, in section 2.3 we de-

velop novel heuristic approaches to fulfill the cardinality con-

straint.

2.1 Mean reverting portfolios

Low frequency trading is based on identifying mean revert-

ing portfolios which follow the so-called Ornstein-Uhlenbeck

process [12]. This process is characterized by the following

stochastic differential equation

dp(t) = λ(µ − p(t))dt + σ dW(t) (1)

where W(t) is a Wiener process and λ (mean reversion coeffi-

cient), µ (long-term mean) and σ (volatility) are constants. By

using the Ito-Doeblin formula [9], one can obtain the following

solution:

p(t) = p(0)e−λt + µ
(
1 − e−λt

)
+

∫ t

0

σe−λ(t−s)dW(s) (2)

which implies that

E[p(t)] = p(0)e−λt + µ
(
1 − e−λt

)
(3)

and asymptotically

lim
t→∞

p(t) ∼ N

µ,
√
σ2

2λ

 (4)

For trading, λ is a key parameter, as it determines how fast the

process gets back to the mean, as well as inversely indicating the

level of uncertainty around the mean (via the standard deviation

of the asymptotic Gaussian distribution). Hence, the larger the

λ , the more suitable is the mean reverting portfolio for conver-

gence trading, as it quickly returns to the mean and it contains

a minimum amount of uncertainty around the mean. Therefore,

we will be concerned with finding sparse portfolios which are

optimal in the sense that they maximize λ.

2.2 Mean reverting portfolio as a generalized eigenvalue

problem

In this section we view the asset prices as a stationary, first

order, vector autoregressive VAR(1) process. Let si,t denote the

price of asset i at time instant t, where i = 1, . . . , n and t are

positive integers and assume that sT
t = (s1,t, . . . , sn,t) is subject

to a first order vector autoregressive process, VAR(1), defined as

follows:

st = Ast−1 + Wt, (5)

where A is an n × n matrix and Wt ∼ N(0, σI) are i.i.d. noise

terms for some σ > 0

One can introduce a portfolio vector xT = (x1, . . . , xn), where

component xi denotes the amount of asset i held. In practice,

assets are traded in discrete units, so xi ∈ {0, 1, 2, . . .} but for

the purposes of our analysis we allow xi to be any real number,

including negative ones which denote the ability to short sell

assets. We seek the optimal portfolio vector exhibiting mean

reverting property under sparseness constraint, i.e. card(x) ≤ L

where card denotes the number of non-zero components and L

is a given positive integer 1 ≤ L ≤ n. Multiplying both sides

with vector x (in the inner product sense), we obtain

sT
t x = sT

t−1Ax + WT
t x (6)

Defining the predictability factor

ν(x) :=
E(xT sT

t−1
AT Ast−1x)

E(xT sts
T
t x)

, (7)

which we can take as a proxy for the portfolio’s mean reversion.

Maximizing this expression will yield the following optimiza-

tion problem for finding the best portfolio vector xopt

xopt : max
x
ν(x) ∼ maxx

xT AT GAx

XT Gx
(8)

under the constraint card(x) ≤ L , where G is the stationary

covariance matrix of the st process. Based on (8) we can see

that the problem is equivalent to finding the eigenvector corre-

sponding to the maximum eigenvalue in the following general-

ized eigenvalue problem [5]:

AT GAx = λGx (9)

which can then be solved as

det
(
AT GA − λG

)
= 0 (10)

under the cardinality constraint. Note that this can be trans-

formed into a traditional eigenvalue problem by introducing the

variable u := G1/2x so that we have

G−1/2ATGAG−1/2u = λu (11)

where the cardinality constraint is now placed upon G−1/2u.

2.3 Sparse portfolio selection

In the previous section we have outlined how to select a port-

folio which maximizes predictability by solving a generalized

eigenvalue problem. However, the cardinality constraint poses

an additional computational challenge as the number of sub-

spaces into which the optimality must be checked grows expo-

nentially. In fact, Natarjan shows that this problem is equivalent
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to the subset selection problem which is proven to be NP-hard

[11]. However, as a benchmark metric, we can compute the op-

timal solution which, depending on the level of sparsity and the

total number of assets, could be computationally feasible. We

also describe a polynomial time heuristic algorithm for an ap-

proximate solution of this problem.

Fig. 1. ‖Â − A‖ vs. t for n=8, σ =0.1, 0.3, 0.5, generating 100 independent

time series for each t and plotting the average norm of error

2.3.1 Exhaustive search method

The brute force approach of constructing all
(

n!
L!(n−L)!

)
L-

dimensional submatrices of G and AT GA and then solving all

the corresponding eigenvalue problems to find the theoretical

optimum is, in general, computationally infeasible. However,

for relatively small values of n and L , or as a benchmark com-

puted off-line, this method can provide a very useful basis of

comparison. Indeed, for the practical applications considered in

[5] (selecting sparse portfolios of n=8 U.S. swap rates and n=14

FX rates), this method is fully applicable and can be used to see

the level of sub-optimality of other proposed methods.

2.3.2 Greedy method

A reasonably fast heuristic, first presented by d’Aspermont in

[5] is the so-called greedy method which we will briefly explain.

Let Ik the set of indices belonging to the k (or smaller number)

non-zero components of x. One can then develop following re-

cursion for constructing Ik with respect to k.

When k = 1, we simply find

l1 = arg max
(AT GA)ii

Gii

, i ∈ [1, n]. Suppose now that we have a good approximate

solution with support set Ik given by

(x)k = arg max
x∈Rn:xIc

k
=0

xT AT GAx

xT Gx

where Ic
k

is the complement of the set Ik. This can be solved

as a generalized eigenvalue problem of size k. We seek to add

one variable with index ik+1 to the set Ik to produce the largest

increase in predictability by scanning each of the remaining in-

dices in Ic
k
. The index ik+1 is then given by

ik+1 = arg max
i∈Ic

k

max
x∈Rn:xJi

=0

xT AT GAx

xT Gx

where Ji = Ic
k ?? {i} (12)

which amounts to solving (n − k) generalized eigenvalue prob-

lems of size k + 1. We then define Ik+1 = Ik

⋃
{ik+1}, and repeat

the procedure until k = n. Naturally, the optimal solutions of the

problem might not have increasing support sets Ik ⊂ Ik+1, hence

the solutions found by this recursive algorithm are potentially

far from optimal. However, the cost of this method is relatively

low: with each iteration costing O(k2(n − k)), the complexity of

computing solutions for all target cardinalities k is O(n4). This

recursive procedure can also be repeated forward and backward

to improve the quality of the solution.

2.3.3 Truncation method

A simple and very fast heuristic that we can apply is the fol-

lowing. First, compute xopt , the unconstrained, n-dimensional

solution of the optimization problem in (8) by solving the gen-

eralized eigenvalue problem in (9). Next, consider the L largest

values of xopt and construct L × L dimensional submatrices G′

and (AT GA)′ corresponding to the L largest dimensions. Solv-

ing the generalized eigenvalue problem in this reduced space

and padding the resulting x′opt with 0’s will yield a feasible so-

lution xtrunc
opt to the original constrained optimization problem.

The big advantage of this method is that with just two maxi-

mum eigenvector computations, we can determine an estimate

for the optimal solution. The intuition behind this heuristic is

that the heaviest dimensions in the solution of the unconstrained

optimization problem could provide, in most cases, a reason-

able guess for the dimensions of the constrained problem. This

is clearly not the case in general, but nonetheless, the truncation

method has proven to be a very quick and useful benchmark for

evaluating other methods.

3 Estimation of model parameters

As explained in the preceding sections, in the knowledge of

the parameters G and A, we can apply various heuristics to

approximate the L-dimensional optimal sparse mean-reverting

portfolio. However, these matrices must be estimated from the

historical observations of the random process st. There is a vast

literature on the topic of parameter estimation of VAR(1) pro-

cesses, recent research has focused on sparse and regularized

covariance estimation [1, 4, 14]. However, our approach will be

to gain a dense estimate for G which best describes the observed

historical data and to deal with dimensionality reduction with

the more sophisticated apparatus outlined in Section 2. Another
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Fig. 2. ‖Ĝ1−Ĝ2‖ vs. t for n=8, σ =0.1, 0.3, 0.5, generating 100 independent

time series for each t and plotting the average norm of error

important objective that we pose for the parameter fitting is to

provide a measure of "goodness of fit" of the real time series to

VAR (1) model, which we can use in the portfolio selection and

trading parts of our overall algorithm.

3.1 Estimation of matrix A

We recall from our earlier discussion that we assume st fol-

lows a stationary, first order autoregressive process as in equa-

tion (5). We first observe that if the number of assets n is greater

than or equal to the length of the observed time series, then A

can be estimated by simply solving the linear system of equa-

tions:

Âst−1 = st. (13)

This gives a perfect VAR(1) fit for our time series for cases

where we have a large portfolio of potential assets (e.g. consid-

ering all 500 stocks which make up the S&P 500 index), from

which a sparse mean-reverting subportfolio is to be chosen.

In most practical applications, however, the length of the

available historical time series is greater than the number of

assets considered, so A is estimated using, for example, least

squares estimation techniques, as in

Â : min
A

T∑
t=2

‖st − Ast−1‖
2 (14)

where ‖ · ‖2 denotes the Euclidian norm.

Equating to zero the partial derivatives of the above expres-

sion with respect to each element of the matrix A, we obtain the

following system of equations:

n∑
k=1

Âi,k

T∑
t=2

st−1,kst−1, j =

T∑
t=2

st,ist−1, j

∀i, j = 1, . . . , n (15)

Solving for Â and switching back to vector notation for s, we

obtain

Â =

T∑
t=2

(
sT

t−1st−1

)+ (
sT

t−1st

)
, (16)

where M+ denotes the Moore-Penrose pseudoinverse of matrix

M. Note that the Moore-Penrose pseudoinverse is preferred to

regular matrix inversion, in order to avoid problems which may

arise due to potential singularity of sT
t−1

st−1.

3.2 Estimation of the covariance matrix of W

Assuming that the noise terms in equation (5) are i.i.d. with

Wt ∼ N(0, σI) for someσ > 0, we obtain the following estimate

for σ using Â from (16) :

σ̂ =

√√√
1

n(T − 1)

T∑
t=2

‖st − Âst−1‖
2. (17)

In the more general case that the terms of Wt are correlated,

we can estimate the covariance matrix K, of the noise as follows:

K̂ =
1

K − 1

T∑
t=2

(st − Ast−1) T
(
st − Âst−1

)
(18)

This noise covariance estimate will be used below in the estima-

tion of the covariance matrix.

3.3 Estimation of covariance matrix G

There are two independent approaches to estimating the co-

variance of a VAR(1) process based on a sample time series.

On the one hand, the sample covariance and various maximum

likelihood-based regularizations thereof can provide a simple es-

timate and have been studied extensively for the more general

case of multivariate Gaussian distributions [1, 4, 6, 14]. In our

treatment, we take the approach of using the sample covariance

matrix directly without any reguralization or finding structure

via maximum likelihood, as sparsifying and structure finding

will be left for the more sophisticated apparatus of the sparse

portfolio selection, explained in Section 2. As such, we will

define Ĝ1 as the sample covariance defined as

Ĝ1 :=
1

T − 1

T∑
t=1

(st − s̄)T (st − s̄), (19)

where s̄ is the sample mean vector of the assets defined as

s̄ :=
1

T

T∑
t=1

si (20)

On the other hand, starting from the description of the VAR(1)

process in (5) and assuming the more general case that the terms

of Wt are correlated with covariance matrix K, we must have

Gt = AT Gt−1A + K, (21)

which implies that in the stationary case

G = AT GA + K. (22)
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Fig. 3. Sample covariance and recursive covariance estimates over sliding

windows of size 50 over 5000 samples for σ =0.1, 0.3, 0.5, 1 (note the differ-

ences in scaling of the plots)

Having estimated A and K, as in the previous sections, this is

a Lyapunov equation with unknown G and can be solved ana-

lytically to obtain an independent covariance estimate Ĝ2. One

potential issue with this approach is that Ĝ2 is not necessarily

positive definite and, as such, it may not be a permissible co-

variance estimate. In order to overcome this issue, in case the

solution of the Lyapunov equation is non-positive-definite, the

following iterative numerical method can be used to obtain a

permissible covariance estimate Ĝ2 :

G(k + 1) = G(k) − δ(G(k) − AT G(k)A −K), (23)

where δ is a constant between 0 and 1, G(i) is the covariance ma-

trix estimate on iteration i. Provided that the starting point for

the numerical method, G(0), is positive definite (eg. the sam-

ple covariance matrix) and since our estimate of K is positive

definite, by construction, this iterative method will produce an

estimate which will be positive definite. It can also be seen that

with appropriate choice of δ and stopping condition, this nu-

merical estimate will converge to the solution of the Lyapunov

equation in (22), in case that is positive definite.

In Section 4, some numerical results are presented which

show that for generated VAR(1) data, these two covariance es-

timates are equivalent, provided that appropriately sized sample

data is available for the given level of noise. However, for his-

torical financial data, the two estimates can vary significantly. A

large difference between the two estimates indicates a poor fit of

the data to the VAR(1) model, hence we can define the following

measure of model fit:

β := ‖Ĝ1 − Ĝ2‖, (24)

where ‖M‖ denotes the largest singular value of matrix M.

4 Performance analysis

In this section, we will review some results of the numerical

tests which were produced for validating the methods outlined

earlier. We first tested the model parameter estimation meth-

ods on generated data to show their viability and observe their

limitations. We then compared the effectiveness of the greedy

search to the theoretically optimal exhaustive method on gener-

ated time series.

4.1 Performance of parameter estimation

In order to test our estimate Â as defined in (16), we generated

n=8-dimensional data with random A matrix using equation (5)

with i.i.d. noise Wt ∼ N(0, σI). Note that for stability of the re-

sulting st generated time series, we ensured that all eigenvalues
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Fig. 4. Comparison of portfolio selection methods of various cardinality on

10-dimensional generated VAR(1) data.

of A were smaller than 1. Then, for increasing sizes of t, we ran

a number of independent tests and looked at the average error in

norm. Figure 1 shows that our estimate gets progressively better

with the size of the available time series and that it is remarkably

resilient to increasing values of σ.

In a similar fashion, we compared the covariance estimate Ĝ1

as defined in (19) to Ĝ2 , the solution of the Lyapunov equation,

substituting Â and σ as estimated from the data into equation

(22). We then considered the proximity of these two estimates

on increasing sample sizes and increasing values of σ, taking

the average of a number of independent tests. Figure 2 shows

the results.

We see that there is good agreement between the two esti-

mates of covariance even for relatively small amounts of data

(100-300 data points) which gets increasingly better with the

growth of the sample size. Note also that there is significant

difference between the different amounts of noise on the pro-

cess, smaller noise implies a better agreement between the two

covariance indicators.

In our next numerical test, we used fixed sized sliding win-

dows of various sizes over the generated VAR(1) sequence and

we compared the sample covariance in the current time window

with the current value of the recursive relation in (21). Figure 3

shows the values of the two estimates for varying levels of σ.

We can see that both measures converge to the same level, but

the covariance estimate obtained from (21) is more resistant to

noise in the sample data.

4.2 Performance of portfolio selection and trading

In order to compare the portfolio selection methods outlined

in Section 2, we again generated VAR(1) data with random A

matrix and noise with covariance matrix K. We then used the

methods of Section 3 to compute the estimates Â , K̂ and Ĝ

and computed optimal sparse portfolios, maximizing the mean-

reversion coefficient λ . We found that in a large number of

Fig. 5. CPU runtime (in seconds) versus total number of assets n, to compute

a full set of sparse portfolios, with cardinality ranging from 1 to n, using the

different algorithms.

cases, the greedy method yields portfolios whose mean rever-

sion is close to the theoretical best, produced by the Exhaustive

method. Having run 1000 simulations on independently gener-

ated VAR(1) data, we observed that the exhaustive method pro-

duced better mean reversion than the greedy method in 59.3% of

the cases and outperformed the truncation method in 99.8% of

the cases. The greedy method produced lambdas which were, on

average, 2.26% worse than the optimal lambda found by the ex-

haustive search while truncation produced lambdas which were

7.34% worse on average. We also found a number of examples

where greedy yielded significantly suboptimal portfolios where

other polynomial time heuristic methods could be found to im-

prove upon this. (for an example, see Figure 4).

In order to examine the runtime of the portfolio selection al-

gorithms, we ran repeated simulations of selecting sparse port-

folios from n assets for all cardinalities from 1 to n and plot-

ting the total CPU time taken against n for each of the proposed

methods (Figure 5). We observe that the truncation method is

the fastest, taking less than 3 seconds on a Pentium 4, 3.80 GHz

machine to select all 100 subportfolios of 100 assets. The same

took over 30 seconds for the greedy method which suggests that

while the truncation method is well suited for real-time algo-

rithmic trading where sub-second algorithms are required for a
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Fig. 6. Comparison of minimum return (G_min), maximum return

(G_max), average return (G_avg) and final return (G_final) on S&P500 histori-

cal data of the truncation and greedy methods for sparse mean-reverting portfo-

lios of size 1, 2, 3, 4, 5, 7 and 10.

given cardinality, the greedy method could also be used for in-

traday electronic trading. The exhaustive search could also be

viable for intraday trading for asset populations of 20 or under,

but the run times become hours on our test hardware beyond 22

assets.

Finally, in order to test the economic viability of the method-

ology, we developed a simple converge trading methodology on

historical time series, following the methodology of [5]. We

consider daily close prices of the 500 stocks which make up the

S&P500 index from July 2009 until July 2010. We use the meth-

ods of section 3 to estimate the model parameters on a sliding

window of 8 observations and select sparse, mean reverting port-

folios using the algorithms of Section 2. Considering portfolios

of sparseness 3 and 4, the methods produced annual returns in

the range of 23-34% (note that the return on the S&P500 index

was 11.6% for this reference period). Detailed results are pre-

sented on Figure 6.

5 Conclusions and directions for future research

In this paper, we have examined the problem of selecting

optimal sparse mean-reverting portfolios based on observed or

generated time series. We have suggested new, more exact ap-

proaches for estimating the parameters A,G and K and intro-

duced a measure, β of goodness of fit to the model. We also

introduced and analyzed the performance of the exhaustive port-

folio selection method and the truncation based heuristic method

as compared to the greedy method suggested by earlier research.

We have shown that the exhaustive method can be a viable prac-

tical alternative for smaller number of assets and it significantly

outperforms the greedy method in some cases. We have also

shown that the truncation method is significantly faster than the

greedy method and therefore could be applied for real-time algo-

rithmic trading where sub-second response times are required.

We have demonstrated the economic viability of these meth-

ods by showing excess returns on historical daily close prices

of stocks making up the S&P500 index.

Given the demonstrated relative suboptimality of the greedy

heuristic, a fertile area of future research is the identification of

other polynomial time heuristic algorithms which could improve

upon the greedy solution. Furthermore, the practical viability of

these heuristics could be further shown by constructing more

complex trading methodologies and backtesting on a larger set

of historical financial time series.
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