
Ŕ periodica polytechnica

Electrical Engineering

and Computer Science

56/3 (2012) 71–82

doi: 10.3311/PPee.7078

http://periodicapolytechnica.org/ee

Creative Commons Attribution

RESEARCH ARTICLE

Replaying Execution Trace Models for

Dynamic Modeling Languages

Ábel Hegedüs / István Ráth / Dániel Varró

Received 2012-06-13, revised 2012-11-06, accepted 2012-12-18

Abstract

Back-end analysis tools aiming to carry out model-based

verification and validation of dynamic behavioral models fre-

quently produce sequences of simulation steps (called execution

traces) as their output. In order to support back-annotation of

such traces, we need to store and replay them within a modeling

environment (outside the analysis tool). In the paper, we present

a technique for replaying recorded execution traces of dynamic

modeling languages. Our approach complements static and

dynamic metamodels by introducing a generic execution trace

metamodel which is used to replay completed executions of a

simulation directly over the dynamic model. Furthermore, we

present a technique to drive a simulation according to execution

trace models. Our approach will be exemplified by the modeling

language and trace information of the SAL model checker and

BPEL business processes.

Keywords

execution traces · simulation · dynamic modeling languages

Acknowledgement

This work was partially supported by the CERTIMOT (ERC

HU-09-1-2010-0003) project, the grant TAMOP (4.2.2.B-10/1-

2010-0009) and the Janos Bolyai Scholarship.

Ábel Hegedüs

Department of Measurement and Information Systems, BME, H-1111 Budapest,

Magyar tudósok körútja 2., Hungary

e-mail: hegedusa@mit.bme.hu

István Ráth

Dániel Varró

Department of Measurement and Information Systems, BME, H-1111 Budapest,

Magyar tudósok körútja 2., Hungary

1 Introduction

Model-driven analysis aims at revealing conceptual flaws

early in the design process. In the typical approach, high-level

design models (UML [31], BPEL [28], SysML [30], etc.) are

automatically transformed into mathematical models (e.g. Petri

nets [36], transition systems [49], process algebras [21]) to carry

out system analysis by formal methods. The results of the analy-

sis are then back-annotated to the original source model to high-

light flaws directly in the design models.

In case of dynamic modeling languages (e.g. statecharts,

workflows, live sequence charts [26]), the back-end formal anal-

ysis tools frequently carry out simulation or model checking to

ensure the functional correctness of the design using analysis

models like Petri nets, process algebras or labeled transition sys-

tems. As a result, back-end analysis tools produce an execution

trace of the system as a designated or counter example.

However, in order to support the back-annotation of a com-

plex counter example generated by an analysis tool, the corre-

sponding execution trace needs to be replayed within a modeling

environment (like Eclipse). Unfortunately, each back-end anal-

ysis tool uses a different, tool-specific textual trace representa-

tion, which requires a significant development effort for trace

integration.

In the paper, we provide a generic replay mechanism for ex-

ecution traces in dynamic modeling languages with a specific

focus on those traces created by model checkers and simulation

tools. We assume that a dynamic modeling language is defined

by a combination of static, dynamic and (execution) trace meta-

models while the availability of precise operational semantics is

not required. This metamodeling approach was first introduced

in the book presenting the results of the Sensoria project [16].

In the current paper, we extend upon the concept of a generic

execution trace metamodel [19] and define high-level and ele-

mentary operations to support the replay of such traces within a

general purpose modeling environment (i.e. outside the original

analysis tool).

Our techniques will be first exemplified on the language and

execution traces of the SAL model checker [5] then we show

how the same technique can be applied to replaying execution

Replaying Execution Trace Models for Dynamic Modeling Languages 712012 56 3

http://periodicapolytechnica.org/ee
http://creativecommons.org/licenses/by/3.0/


of BPEL business processes (first demonstrated as a tool [20]).

The paper is structured as follows. First, related work is dis-

cussed in Sec. 2 and we give a conceptual overview of our ap-

proach in Sec. 3 Sec. 4 provides a brief introduction to the lan-

guage of the SAL model checker and to static, dynamic and

execution traces metamodels. Sec. 5 discusses how an execu-

tion trace model can be replayed to update the dynamic model.

Sec. 6 illustrates the approach on BPEL processes, while Sec. 7

lists limitations. Finally, Sec. 8 concludes our paper.

2 Related work

Traces have been extensively researched in previous years

as a means to represent and store information regarding (i) the

dynamic behavior of a system or (ii) correspondences between

models. To separate the models of these significantly different

concerns, we refer to execution traces in the first case and trace-

ability connections in the second case. Note that the current

paper focuses execution traces and their replaying, therefore re-

lated work regarding traceability is not detailed. Approaches

regarding traceability models [11, 39, 48] generally define static

traceability models which record the correspondence between

various model structures and suggest techniques, methods and

tools for generating, managing or processing such models.

Problem-specific execution traces Execution traces are used

in many cases, for understanding distributed systems [27], re-

covering behavior [17] and improving performance [33]. Dy-

namic traces were defined for individual languages such as UML

sequence diagrams [44], UML Activity Diagrams [38], Concur-

rent Object-Oriented Petri Nets [32]. These approaches are usu-

ally developed for a single language or system and offer detailed

representation and generation capabilities. Since they are highly

specialized for a given domain, it would be difficult to apply

them to a different domain. In the current paper, we define a

generic, domain-independent representation for execution traces

and a replaying framework for traces stored in this representa-

tion.

Recording and visualizing execution traces M3Actions [41]

is a framework to develop execution semantics for MOF meta-

models. It consists of a graphical editor for defining the structure

and behavior of models, a generic interpreter and debugger for

executing them and a trace recorder for storing executions. The

framework focuses on support for modeling operational seman-

tics and the recorded traces are low-level.

Traviando [23] is a tool package for analyzing and visualizing

traces exported from a number of supported tools (e.g Möbius).

It supports model checking (using LTL properties) on imported

traces and is able to display traces as Message Sequence charts

or a tree-type visualization for investigating state information.

Contrary to our method, this tool represent traces as simple se-

quences (as opposed to our hierarchical approach) and does not

contain any replay capabilities.

Harel [26] represent traces for state-based models and reac-

tive systems as scenarios which include atomic model changes

similarly to delta steps in the generic trace metamodel described

in the current paper. It also supports generation, analysis, visu-

alization and interaction through the live sequence chart formal-

ism. The approach focuses on reactive systems and their exe-

cution traces, while in the current paper we focus on dynamic

modeling languages and an alternative approach to generic re-

playing of traces.

A recent approach [2] builds on the Metaviz trace visualiza-

tion framework to provide model-based definition on creating

high-level views from complex execution traces created during

validation. The main motivation for the approach is to improve

the practical usage of model validation tools.

It is common in these approaches that they focus on record-

ing and visualizing runtime information of programs or dynamic

models into execution traces, while in the current paper we use

existing trace models to replay the dynamic behavior of models.

Furthermore, traces recorded by these methods could be mapped

into our generic trace metamodel thus adding trace replaying to

their capabilities.

Metamodels for execution traces Alawneh [3] introduces

metamodels for execution traces (as a standalone domain) to

record runtime information of program executions. They pro-

pose to build the metamodel on KDM [29] and identify several

trace types on the programming language level. Similarly to this

approach, we argue for a metamodel for execution traces to rep-

resent the dynamic behavior of modeling languages.

The objective of [38] is to define a Tool-Independent Perfor-

mance Model for mapping design and architectural models to

performance models (used for design-time analysis of system

performance). The introduced workbench is designed to include

simulation and analysis capabilities and to derive execution se-

quences (scenarios) from UML activity diagrams for driving the

simulation. This approach also shows that it is important to in-

troduce a generic method that is usable for a particular task (e.g.

performance analysis) with different domains. We describe a

similar technique using a generic trace replaying framework for

dynamic modeling languages.

The main contribution of our approach in comparison to ex-

isting work is that the proposed execution trace models are in-

dependent from the underlying simulation tool. Therefore, the

execution of the analysis or simulation that creates traces can

be completely separated from processing and evaluating these

traces. Furthermore, persisted execution traces can be replayed

in a modeling environment without using (external) simulators

and model checkers.

3 Execution Traces in DMLs

Our overall goal is to provide a generic framework for re-

playing an execution trace, generated by a back-end analysis

tool, within a general modeling framework (e.g. EMF [45] or

V2 [47]). The replay mechanism is generic enough to be

reusable and easily adaptable for various discrete event-based

dynamic modeling languages (DML) used in analysis tools. The

Per. Pol. Elec. Eng. and Comp. Sci.72 Ábel Hegedüs / István Ráth / Dániel Varró



Fig. 2. Replaying framework for dynamic modeling languages

trace replaying framework would also significantly reduce the

cost of back-annotation for different pairs of source and target

languages as demonstrated in our previous papers [16, 19].

Metamodels for dynamic languages In our framework, we

assume the existence of various metamodels in the context of a

DML, which are exemplified in Fig. 1a.

First, a static metamodel MMstat defines the static structure

of a language including possible types of model elements, their

main attributes and relations with other model elements. An

instance of this metamodel is called the static model (Mstat).

Next, a dynamic metamodel MMdyn uses and extends the

static meta-model MMstat for storing information related to the

dynamic behavior (e.g. current state, value, configuration) of a

structural element. The dynamic model (Mdyn) is an instance of

MMdyn .

This way, a trace metamodel (MMtrc) is defined for the

language to represent simulation executions of Mdyn . MMtrc

uses MMdyn for recording how the dynamic model changed and

MMstat for describing which static element is concerned. A

trace model (Mtrc) is an instance of MMtrc , e.g. the sequence

of execution steps.

Operational semantics for dynamic models The simulation

of a DML is performed in accordance to the operational seman-

tics of the language, defined by simulation rules. In our frame-

work we assume that simulation rules are defined as intra-model

transformations (see also [9, 13, 34]).

The execution of a rule r in the transformation MTsym : (Mstat

, Mdyn)
r
−→ M′

dyn
modifies Mdyn by also taking into account Mstat

and results in a new M′
dyn

as illustrated in Fig. 1b. During a

simulation execution, the changes of the dynamic model are

recorded as a sequence of execution steps as part of the derived

trace model Mtrc . Furthermore, the complex manipulation steps

in Mtrc are in direct correspondence to the transformation rules

fired during the simulation execution.

Replaying execution traces of dynamic languages In our

proposed framework, the execution traces of analysis models are

persisted in a modeling environment using the output generated

by back-end simulator or model checker tools (see Fig. 2). The

model Mtrc can be used to replay the execution of a specific

simulation execution.

The execution of step sr in the trace replaying transformation

MTrep : (Mdyn,Mtrc)
sr

−→ Mdyn modifies the Mdyn , after which

the model state (M′
dyn

) will be the same as after the execution

of a simulation rule r. The persisted traces can be replayed in

the modeling environment using generic replaying operations

through a trace manipulation interface. However, the main ad-

vantage of providing trace replay functionality appears when

analysis traces are back-annotated into a source (design or en-

gineering) model where a simulator may not be available. The

back-annotated trace can also be replayed by the same generic

replay framework.

In the current paper we exclusively focus on replaying simula-

tion traces persisted as trace models, while the back-annotation

of execution traces is discussed in our other papers [18, 19].

4 Definition of Dynamic Modeling Languages

We provide a brief introduction to the language of the SAL

model checker, which serves as the running example of the paper

(Sec. 4.1). Then we discuss how dynamic SAL models can be

integrated in a modeling framework using dynamic metamodel-

ing [14] techniques (Sec. 4.2). Finally, we specify an execution

trace metamodel (Sec. 4.3).

4.1 The SAL language

Symbolic Analysis Laboratory (SAL) [5] is a framework for

combining different tools to calculate properties of concurrent

systems and it includes a simulator and advanced tools for sym-

bolic and bounded model checking. These tools are used on

input models captured as a transition system using a language

also called SAL. Models written in the SAL language consist of

three parts: the variable type definitions, the module specifica-

tions and the requirements. Fig. 3 shows a simplified MMstat

and MMdyn for SAL on the left and an example SAL system (in

the textual syntax) on the right.

The SAL structure (Static Metamodel) The variable types

can be finite types (e.g. boolean, tuple), infinite types (e.g. num-

bers) or subtypes. For the current paper, we will restrict our

examples to tuples where the type declaration defines a finite

number of possible values (see lines 2-3). The specification of a

SAL module consists of state variable declarations(see lines 5-

6), variable initializations and the transitions part. The state of

the system model is defined by the current value of the variables,

while the evolution of the system is specified by transitions.

For variable initialization, SAL uses definitions, which are of

the form x = expression or x ∈ set (nondeterministic choice).

The x′ form refers to the new value of variable x in a transition.

The initialization of variables (see line 8) is given as a com-

bination of definitions [5]. Transitions are guarded commands

defined in the form g → S where g is a boolean guard (see line

10) and S is a list of definitions (assignments, see line 11).

The SAL Dynamic Metamodel A guarded command is en-

abled if the boolean guard evaluates to true based on the ac-

tual state of the system. The executed command is chosen from

the set of enabled commands nondeterministically. The execu-

tion consists of applying the definitions in S by setting the new

value of the referenced variables. In the metamodel we define

Command State elements which store the dynamic state of the

command. A Command State can be disabled (when the guard

condition is false), enabled (when the guard condition is true),

Replaying Execution Trace Models for Dynamic Modeling Languages 732012 56 3



(a) Metamodels for dynamic languages [19] (b) Simulation and replaying

Fig. 1. Execution trace models

Fig. 3. Example transition system

or executed (to denote that the command has just fired). The

Variable State element records the current values of the corre-

sponding variable.

4.2 Dynamic metamodeling for behavioral models

Dynamic metamodeling (DMM) [14] aims at specifying the

dynamic behavior of executable modeling languages by com-

bining metamodeling with rule based formalisms to capture op-

erational semantics. In DMM, the dynamic (behavioral) seman-

tics of the language is defined by transformation rules that mod-

ify the instances of the dynamic metamodel. These operational

rules are frequently formalized by graph transformation (GT)

techniques [12].

In GT, graph patterns [46, p. 218] represent conditions that

have to be fulfilled by a part of the model, this part is called a

match. GT rules are specified by a precondition (or left-hand

side - LHS) pattern determining the applicability of the rule and

a postcondition (or right-hand side - RHS) pattern that specifies

the result model declaratively. In the paper, we use the transfor-

mation language of V2 [46] which essentially follows the

single-pushout approach with injective matches.

The applicability of each GT rule is first checked by graph

pattern matching techniques. Then a rule is applied for a se-

lected match (if any exists), which updates the underlying Mdyn

to result in a new (dynamic) state. This selection can be nonde-

terministic or user-driven. Simulation rules can be fired as long

as an enabled rule is found. This form of simulation is widely

used in graph transformation tools (such as A [43], ATM3

[8], V [24] or V2 [15]).

Simulation rule example The dynamic metamodeling is il-

lustrated by describing the semantics for transition systems of

SAL using graph transformation rules. The execution of a com-

mand can be defined in a transformation rule using the transfor-

mation language of the V2 framework (left part of Fig. 4)

based on the semantics of the SAL system when firing a guarded

command. The right part shows a graph transformation rule for

applying an assignment definition.

First, one command Cmd is chosen non-deterministically

from the enabled commands (where pattern matching returns

a match). Then, all the assignments Asnt of Cmd are enumer-

ated (as defined by all matches of CmdsAsnt pattern) by modify-

ing the current value relation of variables to the state defined by

Asnt. The applyAsnt transformation rule (right part of Fig. 4)

is applied on a match of the LHS pattern and changes the target

of the current relation of the corresponding Variable, as defined

by the RHS pattern.

4.3 Execution Trace Models

An execution trace model captures the changes between two

subsequent states of Mdyn . This way, the execution trace meta-

model (see left part of Fig. 5) complements the existing MMstat

and MMdyn as well.

Per. Pol. Elec. Eng. and Comp. Sci.74 Ábel Hegedüs / István Ráth / Dániel Varró



Fig. 4. SAL system model and command execution transformation rule

Fig. 5. Execution trace metamodel and instance model

Trace is the root element of the execution trace model which

contains the (top-level) steps of the recorded execution. The last

relation specifies the last step that was executed in the simulation

(i.e. the last change that occurred). The first relation defines the

beginning of the trace (wrt. a specific execution).

Step is an abstract representation of one or more dynamic

model changes which occur within the same atomic transac-

tion. The sequence of changes happening after each other de-

fines an ordering between the steps represented by the next rela-

tion (where the source step precedes the target in the trace).

Traces created by various back-end analysis tools are fre-

quently organized into a step hierarchy. As a consequence, we

distinguish between CompoundSteps, which represent complex

model manipulations and contain further steps (as represented

by substep aggregation) and SimpleSteps representing elemen-

tary changes (i.e. the dynamic state before and after the modifi-

cation denoted by the old value and new value relations, respec-

tively) specific to a certain model element in Mdyn (called the

scope of the step) as recorded by the model checker or simulator

in an execution trace. This representation is similar to change

operations used in change-driven model transformations [6,35].

Dynamic model elements The relations existing between the

execution trace metamodel and the dynamic execution model

have two kind of targets. Either they are elements of the dy-

namic model, or values which may be either model elements or

attributes (e.g. string, integer, boolean, double, float).

Trace model example A concrete trace model instance is

shown in the right part of Fig. 5. The selA_fired compound

step contains the atomic step thread_work which has variable

TVS as a scope, and process and work as old and new values.

The trace metamodel in Fig. 5 was derived based on our

investigation of the following analysis tools: GROOVE [37],

SPIN [22], UPPAAL [4], INA [42], SAL [40], Möbius [10],

and LTSA [25]. Each tool has either simulation or verification

capabilities that provide execution traces. We also examined

the BPEL Designer [1] as a design tool and explored other lan-

guages (e.g. UML statecharts).

4.3.1 Trace model level of detail

In the generic trace replaying framework, trace models store

each atomic model manipulation in order to include all required

information to replay the execution trace without the original

analysis tool or simulator. Thus, it is possible to replay traces of

dynamic modeling languages where precise operational seman-

tics are not available. For example, the execution trace models

of such languages can be generated by model transformations

using traces created by formal analysis or simulation of an other

language [19].

Note that an execution trace could be replayed without storing

atomic modifications if the executed simulation rule is identifi-

able and its internal behavior is completely determined by the

the input parameters. However, there are languages that do not

meet this criteria. For example, the simulation rule may include

random choices and variable value assignments depending on

the exact environment of the tool (e.g. current time). In such

cases it is insufficient to store only the executed rule and the pa-

rameters to generate a replayable trace and each atomic model

manipulation should be recorded instead. However, as in the

case of SAL, the stored trace model can contain the information

about the executed rules in addition to the atomic model manip-

Replaying Execution Trace Models for Dynamic Modeling Languages 752012 56 3



ulations (e.g. the transition firing steps).

4.3.2 Extendible trace metamodel

The presented generic trace metamodel is able to store execu-

tion traces of discrete event dynamic modeling languages, where

the simulation primarily alters parts of the dynamic model.

However, some languages include (a) additional model manip-

ulations during simulation, for example model elements may be

created or deleted during the execution or (b) timing characteris-

tics which should be taken into consideration during replay (e.g.

for animation).

In order to support such languages additional extensions can

be easily incorporated into the generic replay framework by (1)

specializing the types of the metamodel (e.g. Step, SimpleStep

or CompoundStep), (2) defining the necessary attributes and re-

lations for such specialized types and finally, (3) providing spe-

cific handlers for these step types to be used by the framework

during replaying.

Actually, for supporting element creation and deletion,

change operations [35] can be used as special SimpleSteps and

change commands [6] as special CompoundSteps. For support-

ing timing, it is possible to add timing related attributes to the

Step type both for representing the exact time of the model ma-

nipulation (i.e. a timestamp) and the duration of the simulation

rule.

5 Replaying Execution Trace Models

Execution trace models record scenarios generated by an ex-

ecution of an external simulator or model checker (e.g. SAL) in

a form which is independent of the back-end analysis tool and

compatible with an underlying modeling framework.

Now we define an approach for replaying persisted execution

traces directly over the dynamic model, without relying on sim-

ulation rules (e.g. Fig. 4). Existing simulators of dynamic lan-

guages use dedicated, tool-specific support for replaying traces

and they are implemented as closed technology. Furthermore,

many dynamic design languages completely lack simulator sup-

port.

Therefore, we decided to make two general assumptions on

supported dynamic modeling languages when specifying our re-

playing approach. Trace replaying has to be feasible for lan-

guages that (1) have no operational semantics (simulation rules)

specified or (2) the existing simulation tools cannot be modified

to support replaying.

In this general case, replaying the trace requires the process-

ing of the subsequent step in the execution trace model, and a

direct update of the underlying dynamic model accordingly. We

propose a simple interface providing an informal description on

basic operations to drive the replay of execution trace models

within the modeling framework (Sec. 5.1). Next, we precisely

specify these operations using graph patterns and transforma-

tion rules (Sec. 5.2). Then, we illustrate the application of our

approach on SAL traces (Sec. 5.3). Finally, we give a short de-

scription of the implemented replaying tool (Sec. 5.4).

5.1 Overview of trace replaying interface

We informally describe the main tasks carried out by (1) com-

plex interface operations for traces, which are assembled from

(2) elementary trace manipulation operations. Operations of the

trace manipulation interface are then specified by graph patterns

and GT rules over the generic execution trace model.

Interface for trace replaying The trace replay interface

contains four high-level trace manipulation operations, which

are directly available from the graphical user interface to navi-

gate in an execution trace model, and keep the dynamic model

synchronized with the actual position in the trace.

Step forward This operation finds the last executed step in the

trace and if there exists a next step then it is processed and

every modification represented by substeps is carried out on

the dynamic execution model.

Step backward One of the advantages of the execution trace

model is the ability to navigate in either direction along the

execution. This operation can be used to revert the modifi-

cations on the dynamic model by retrieving the last executed

step and the processing its substeps (using the old values).

Jump to start This operation can be used to roll back the exe-

cution to the beginning of the trace. It can be implemented

by (1) collecting the initial values from dynamic model or (2)

storing the initial state in the first step.

Jump to end This operation can be used to reach the last step

of the trace without stepping through them all. It is advan-

tageous when a recorded simulation execution is continued

from a state persisted earlier in a trace.

These functions provide the most useful functionality re-

quired for a user to replay and simulate the execution stored in

the execution trace model. Furthermore, they also enable auto-

mated animation by calling the interface repeatedly using short

time intervals between calls. In fact, these operations resem-

ble the debugging interface of the Eclipse framework (e.g. Step

Over, Step Into, Step Return) in that it is possible to navigate in

the replaying without additional instrumentation.

Elementary trace manipulation operations In order to pro-

vide these high-level user interface operations, elementary op-

erations (listed in Table 1) are also defined to manipulate and

traverse execution trace models. To increase generality, these

operations are defined directly over the generic trace metamodel.

5.2 Specification of trace handling

Traces persisted with the generic trace metamodel can be re-

played without defining a completely new transformation for ev-

ery specific language. In this section we show how the low-level

Per. Pol. Elec. Eng. and Comp. Sci.76 Ábel Hegedüs / István Ráth / Dániel Varró



Tab. 1. Elementary trace manipulation operations

firstStepInTrace(Step, Trace) Find the first step of the trace to start replaying the execution.

lastStepInTrace(Step, Trace) Find the last executed step of the trace to resume replaying.

nextStepInTrace(Step, Trace) Traverse the trace horizontally to find the next step from the last position.

previousStepInTrace(Step, Trace) Traverse the trace horizontally to find the previous step from the last position.

unfoldStep(Step, LSS, Substep) Traverse the trace vertically to find the substep following LSS in a given step.

getDynamicInfo(Step, Element,Value,Relation) Return the corresponding dynamic model element, value and relation for a given simple step.

executeStep(Step) Modify the dynamic model using the content of the Step in the trace model.

operations and high-level functions of the trace manipulation in-

terface can be specified by graph patterns and GT rules in V-

2.

(a) Next step pattern (b) Unfold step pattern

Fig. 6. Horizontal and vertical traversal

Horizontal traversal of a trace We define graph patterns for

traversing the trace on a given hierarchy level. Fig. 6a shows the

pattern nextStepInTrace for finding the next step S2 following

the last executed step S1 in the trace T.

Vertical traversal of a trace The substeps of a step are pro-

cessed in order when traversing the trace vertically. Fig. 6b

shows the graph pattern that searches for substeps in a higher-

level Step. When looking for the first substep, a negative ap-

plication condition pattern is used to ensure that the selected

substep SS has no preceding step BSS. Otherwise, the second

pattern is used to find the next substep from a given step LastSS.

Step forward Fig. 8 shows the generic implementation of

the forward stepping function defined as abstract state machines

[7] in the V2 transformation language. First, the Step fol-

lowing the last executed step of the trace is found. Then the last

relation is updated to record forward stepping in the trace. Next

the substeps of Step are processed in order and executed.

Executing steps The simple steps refer to a model element

and a value corresponding to the element. The right part of Fig. 7

shows the graph pattern defined for retrieving this information

from the persisted Step. When executing a step (see left part

of Fig. 7), the action depends on the type of the Step. Com-

pound steps are unfolded and their substeps are executed in or-

der. Simple steps are executed by first retrieving the scope Sc

and value V elements from the Step and the relation between

them from the model (CRel ). Then the target of the relation

is replaced with the value persisted in the step. Note that if the

executed step should be handled by a domain-specific extension

(see Sec. 4.3.2) then the appropriate handler StepTypeHandler is

called first.

5.3 Execution trace replaying example

We use our example SAL transition system (see Fig. 3) to

illustrate the replaying of a persisted execution trace (see Fig. 5)

with the defined generic operations.

The top part of Fig. 9 demonstrates how the execution trace

model is used for stepping forward (imitating the execution of a

guarded command) and how a simple step is executed by modi-

fying the dynamic model (bottom part).

When stepping forward in the trace, the framework se-

lects the next compound step finish_executes to execute,

since the last processed compound step in the trace was

selectA_executes (represented by the last relation) that has a

next relation targeting finish_executes. During the applica-

tion of rule StepForward, the substeps of the step are executed

and the last relation is set to step finish_executes.

The execution of the SimpleStep thread_work is performed

by finding the current value of the corresponding variable state

TVS, and updating it in the dynamic model. The new value for

TVS is selected by navigating through the new relation of step

thread_work.

5.4 Implementation

The metamodels for the SAL language, as well as the trace

generator and replay transformations are implemented in the V-

2 model transformation framework, which also supports the

development and execution of simulation rules. V2 uses

textual languages for defining both metamodels and transforma-

tions, thus their complexity can be illustrated with the number

of lines for each definition. The static metamodel of SAL is over

1000 lines of code (LOC) and includes over 100 elements each

with several relations, while both the SAL dynamic metamodel

and the generic trace metamodel are under 100 LOC defining

around 20 elements and relations. The SAL trace generator

transformation the processes a text-based trace is around 1000

LOC with 38 patterns and 11 complex rules, while the replay

Replaying Execution Trace Models for Dynamic Modeling Languages 772012 56 3



Fig. 7. Execute step rule and dynamic information pattern

Fig. 8. Forward stepping

transformation is a few hundred LOC with around 20 patterns

and 10 rules.

We also developed a tool for importing counter-examples of

the SAL model checker to trace models in the V2 frame-

work. Furthermore, we used the proposed approach for replay-

ing execution traces of Petri Nets as well.

The trace metamodel is designed to allow the implementation

of a trace replaying transformation that requires only neighbor-

ing steps at a given time (due to persisting both old and new

values of a model element). Therefore, replaying is independent

of the size of traces (which can be well over 100 steps).

6 Replaying BPEL business process execution

The trace replay framework is mainly a generic tool for re-

playing execution traces that were originally recorded from

analysis tools or simulation (see Sec. 5). However, it is also pos-

sible to replay traces for high-level design languages that lack

formal semantics or simulation tools. In this section we describe

how generic replaying was used for business processes defined

in the Business Process Execution Language (BPEL) [28].

6.1 Execution traces for BPEL

In order to support the replaying of BPEL process executions

with the proposed generic framework, we first have to define

the dynamic metamodel for BPEL and show that the generic

trace metamodel defined in Sec. 4.3 is capable of representing

the execution traces of BPEL.

The complete static metamodel of BPEL contains a high num-

ber of types for different activities, events and information rep-

resentation. For the purposes of the paper only a small fragment

is relevant (illustrated in Fig. 10). Elements of the static meta-

model are all specialized from ExtensibleElements with Process

representing the business process itself containing an Activity.

Activity types, among others, include Sequence and Receive.

The process also contains Variables which are accessed and ma-

nipulated by activities.

In order to model process instances in execution we define

additional dynamic information for BPEL elements. Activity

State is associated with an activity and has a current dynamic

state. This state can be either startable, runs and executed for

all activities, but further refinement is possible with additional

states for complex structures (such as scopes). Similarly, Vari-

able State is associated with a variable with a current state that

can be uninitialized, correct and faulty.

A small BPEL execution trace model is shown in the right

side of Fig. 1, where the the first compound step is the start of the

process (prcess_starts) and the second step is the execution

of a receive activity (receive_runs). This step also includes a

substep for setting the state of the input variable, from uninitial-

ized to correct, representing the storing of the received message.

Since the BPEL trace can be modeled using the generic execu-

tion trace metamodel (discussed in Sec. 4.3), the traces can be

replayed in the proposed framework without any additional de-

velopment effort.

Per. Pol. Elec. Eng. and Comp. Sci.78 Ábel Hegedüs / István Ráth / Dániel Varró



Fig. 9. Step forward and Execute step graph transformation rules

Fig. 10. BPEL metamodel and example execution trace

Mapping non-sequential BPEL activities The structural

activities de- fined in the BPEL language often represent non-

sequential execution where the control flow of different process

instances can differ based on the particular ex- ecution. For

example, a conditional decision may have multiple branches

where the actually executed branch is selected based on the

current value of the pro- cess variables. Similarly, a looping

activity (e.g. the updateDesired? cycle in Fig. 12) can be

executed more than once. However, during the execution of

the BPEL process, the steps corresponding the execution of

these structures will be sequential in the stored trace. Con-

sider the updateDesired? cycle in the example, every time the

cycleCore activity becomes executed, the condition is checked

whether to make it startable again or change updateDesired?

to executed. Finally, in case of parallel execution in a flow activ-

ity, the execu- tion of the contained activities (e.g. the Balances

and Security sequences) may overlap, but they can be repre-

sented as a sequence of simple steps as well. Details on how

to handle overlapping and other mismatches between the gran-

ularity of BPEL and SAL traces can be found in our SEFM pa-

per [19]. Thus, non-sequential execution is also mapped into se-

quential steps in the execution trace, where each step will have

at most one corresponding next step. When such activities are

present in the process during trace replaying, their activity state

is set in the same way as done with sequential activities.

6.2 Graphical interface for replaying

We have created a graphical user interface in Eclipse to sup-

port the replaying of BPEL execution traces [20]. Fig. 11 shows

the BPEL Animation Controller view, where execution traces

can be opened (Load Trace), the textual file is processed, and

the Viatra2 framework initializes the trace models. When the

framework is ready, the navigation buttons can be used to ani-

mate the process execution. Apart from step-by-step navigation

Replaying Execution Trace Models for Dynamic Modeling Languages 792012 56 3



Fig. 11. Animation controller

(Step back/forward), the tool also includes continuous anima-

tion mode (Animate!/Stop), quick return to the initial state (Re-

set) and animation speed-up (Fast stepping) for easier handling

of long traces. Finally, the underlying model space can be saved

for further use (Save Modelspace).

6.3 Visualization of dynamic state of BPEL processes

The generic replay framework works inside the model space

of the V2 framework. Since this representation makes it

difficult to interpret BPEL traces, we also developed (see [20])

an intuitive graphical representation of execution trace replaying

with a modified Eclipse BPEL Designer [1].

Fig. 12 shows the customized BPEL Designer at a given

state during the trace replaying of an example BPEL pro-

cess. The activities and variables of the process are col-

ored depending on their current dynamic state. Thus the dy-

namic behavior of the BPEL process can be observed vi-

sually in the original design perspective used for develop-

ing BPEL processes. For the activities, light blue means

startable state (e.g. addSecurityToRating), light green ac-

tive (e.g. addBalanceToRating), dark green finished (e.g.

Creation). For variables, yellow is uninitialized state (e.g.

updateDesired), green is correct (e.g. loginData) and red

is faulty.

6.4 Implementation

The execution trace of BPEL processes is created by map-

ping the counter-examples (traces) of the SAL model check-

ing framework back to the context of BPEL [16]. This back-

annotation transformation is part of a verification tool developed

for BPEL processes using the SAL back-end tool1.

The BPEL process executions can be replayed interactively

using the Eclipse BPEL Designer, where the dynamic state of

activities and variables are set using a service that is called by

the replaying framework to export state changes for a given step

and the exported state is processed by the Animation Controller.

7 Limitations of the trace replaying approach

Limitations of the approach The generic trace metamodel

and replaying framework has many application possibilities,

however certain limitations should be noted regarding its appli-

cability to new DSMLs or tools.

• First, the dynamic metamodel of the DSML should represent

state changes through relation or attribute manipulations in

1See https://viatra.inf.mit.bme.hu/publications/exectraces

the model.

• Furthermore, integrating a new DSML (and its simulator)

still requires some development effort even if the replaying

is generic and the dynamic metamodel is suitable. This in-

tegration task mainly consists of creating an importer for the

trace format for the given tool.

• Finally, since the trace replaying does not use the original tool

that produced the original trace, the replayed execution will

only represent the original at the level of detail stored in the

trace.

Limitations of replaying BPEL executions The replaying

of BPEL processes uses the generic trace replay framework,

therefore it is limited by the factors described above. Additional

limitations include:

• The traces are derived from SAL counter-examples gener-

ated through verification which only represents BPEL exe-

cution on a coarse level (i.e. simple activity states and non-

interpreted variable values).

• Similarly, the trace generation options are limited as the SAL

tool is not a simulator but a verification tool that produces

counter-examples based on requirements.

8 Conclusion

In the paper, we investigated how execution traces retrieved

by model checkers or simulation tools can be integrated and

replayed in modeling frameworks. We proposed a generic ex-

ecution trace metamodel which complements traditional static

and dynamic metamodels. Furthermore, we also discussed au-

tomated means to replay traces by updating the underlying dy-

namic model. As a result, the generation and evaluation of traces

can be completely separated and traces can be navigated without

the use of external analysis tools.

Our generic execution trace model was actually defined based

on our investigation of traces retrieved by various formal analy-

sis tools (using different modeling formalisms such as Petri nets,

transition systems or process algebras). Finally, we have illus-

trated by making use of a BPEL process that the replay frame-

work can support high-level design languages as well.

Currently, as an ongoing work, we are investigating how trace

generation transformations can be derived from simulator spec-

ifications. Furthermore, we plan to combine the generic trace

replaying approach with design space exploration to support lan-

guages with non-deterministic simulation rules and limited exe-

cution trace generation capabilities.

Per. Pol. Elec. Eng. and Comp. Sci.80 Ábel Hegedüs / István Ráth / Dániel Varró



Fig. 12. Animation of an execution trace

References

1 Eclipse BPEL Designer. http://www.eclipse.org/bpel/.

2 Aboussoror EA, Ober I, Ober I, Seeing errors: Model driven simulation

trace visualization, In: Robert B. France, Jürgen Kazmeier, Ruth Breu, and

Colin Atkinson, editors, Model Driven Engineering Languages and Systems,

volume 7590 of Lecture Notes in Computer Science, Springer Berlin Heidel-

berg, 2012, pp. 480–496.

3 Alawneh L, Hamou-Lhadj A, Execution Traces: A New Domain That Re-

quires the Creation of a Standard Metamodel, In: Advances in Software En-

gineering, volume 59 of Communications in Computer and Information Sci-

ence, Springer Berlin Heidelberg, 2009, pp. 253–263.

4 Behrmann G, David A, Larsen KG, Möller O, Pettersson P, Yi W, U-

 - present and future, Proceedings of the 40th IEEE Conference on Deci-

sion and Control, 2001., 3, (2001), 2881–2886, DOI 10.1109/.2001.980713.

5 Bensalem S, Ganesh V, Lakhnech Y, Munoz C, Owre S, Rue H,

Rushby J, Rusu V, Saidi H, Shankar N, Singerman E, Tiwari A, An

overview of SAL, LFM 2000: Fifth NASA Langley Formal Methods Work-

shop, (2000).

6 Bergmann G, Ráth I, Varró G, Varró D, Change-driven model transforma-

tions, Software and Systems Modeling, (2011), 1–31, DOI 10.1007/s10270-

011-0197-9.

7 Börger E, Stark RF, Abstract State Machines–A Method for High-Level

System Design and Analysis, Springer-Verlag, 2003.

8 Lara JD, Vangheluwe H, Using atom3 as a meta-case tool, 4th International

Conference on Enterprise Information Systems (ICEIS), (2002), 642–649.

9 Lara JD, Vangheluwe H, Translating model simulators to analysis models,

FASE, volume 4961 of LNCS, (2008), 77–92.

10 Deavours DD, Clark G, Courtney T, Daly D, Derisavi S, Doyle JM,

Sanders WH, Webster PG, The Mobius framework and its implementation,

IEEE Transactions on Software Engineering, 28(10), (Oct 2002), 956 – 969.

11 Drivalos N, Kolovos DS, Paige RF, Fernandes KJ, Engineering a DSL

for Software Traceability, (2009), 151–167.

12 Ehrig H, Engels G, Kreowski HJ, Handbook of Graph Grammars and

Computing by Graph Transformation: Applications, Languages and Tools,

World Scientific Publishing Company, 1997.

13 Ehrig H, Ermel C, Semantical correctness and completeness of model trans-

formations using graph and rule transformation, ICGT, volume 5214 of

LNCS, (2008), 194–210.

14 Engels G, Hausmann JH, Heckel R, Sauer S, Dynamic meta modeling:

A graphical approach to the operational semantics of behavioral diagrams

in uml, UML, volume 1939 of Lecture Notes in Computer Science, (2000),

323–337.

15 Fault Tolerant System Research Group B, VIATRA2 Model Transforma-

tion Framework. http://www.eclipse.org/gmt/VIATRA2/.

16 Gönczy L, Hegedűs Á, Varró D, Methodologies for Model-Driven Devel-

opment and Deployment: an Overview, In: Wirsing M (ed.), Rigorous Soft-

ware Engineering for Service-Oriented Systems: Results of the SENSORIA

Replaying Execution Trace Models for Dynamic Modeling Languages 812012 56 3



project on Software Engineering for Service-Oriented Computing, Springer-

Verlag, 2011.

17 Hamou-Lhadj A, Braun E, Amyot D, Lethbridge T, Recovering Behav-

ioral Design Models from Execution Traces, CSMR ’05: Proceedings of the

Ninth European Conference on Software Maintenance and Reengineering,

(2005), 112–121.

18 Hegedűs Á, Horváth Á, Varró D, Back-annotation of execution traces for

dynamic modeling languages, Software and Systems Modeling. Submitted.

19 Hegedüs Á, Ráth I, Bergmann G, Varró D, Back-annotation of Simula-

tion Traces with Change-Driven Model Transformations, Proceedings of the

Eigth International Conference on Software Engineering and Formal Meth-

ods, (2010).

20 Hegedüs Á, Ráth I, Varró D, From BPEL to SAL and Back: a Tool Demo on

Back-Annotation with VIATRA2, Consiglio Nazionale delle Ricerche (CNR),

SEFM’2010 "Posters and Tool Demo" Proceedings, (2010).

21 Hoare CAR, Communicating sequential processes, Commun. ACM, 21(8),

(August 1978), 666–677.

22 Holzmann GJ, The model checker SPIN, IEEE Transactions on Software

Engineering, 23(5), (1997), 279–295.

23 Kemper P, Tepper C, Automated trace analysis of discrete-event system

models, 35, (2009), 195–208.

24 Levendovszky T, Lengyel L, Charaf H, Software composition with a mul-

tipurpose modeling and model transformation framework, IASTED on SE,

(2004), 590–594.

25 Magee J, Kramer J, Concurrency: State Models & Java Programs, John

Wiley & Sons, Inc.; New York, USA, 1999.

26 Maoz S, Harel D, On tracing reactive systems. Software and Systems Mod-

eling, 10, 10:447–468, DOI 2011. 10.1007/s10270-010-0151-2.

27 Moe J, Carr DA, Understanding Distributed Systems via Execution Trace

Data, IWPC ’01: Proceedings of the 9th International Workshop on Program

Comprehension, (2001), 60–.

28 (OASIS standard), OASIS. Web services business process execution lan-

guage version 2.0, 2007, http://docs.oasis-open.org/wsbpel/2.0/

wsbpel-v2.0.htm.

29 Object Management Group, Knowledge Discovery Metamodel: KVM Ver-

sion 1.1, January 2009, http://www.omg.org/spec/KDM/1.1/.

30 Object Management Group, OMG System Modeling Language (SysML),

June 2010, http://www.omg.org/spec/SysML/index.htm.

31 Object Management Group, Unified Modeling Language (UML), August

2011, http://www.omg.org/spec/UML/index.htm.

32 Pedro L, Lucio L, Buchs D, System Prototype and Verification Using

Metamodel-Based Transformations, IEEE Distributed Systems Online, 8(4),

(2007), 1.

33 Putrycz E, Using trace analysis for improving performance in COTS sys-

tems, CASCON ’04: Proceedings of the 2004 conference of the Centre for

Advanced Studies on Collaborative research, (2004), 68–80.

34 Ráth I, Vágó D, Varró D, Design-time Simulation of Domain-specific Mod-

els By Incremental Pattern Matching, 2008 IEEE Symposium on Visual Lan-

guages and Human-Centric Computing (VL/HCC), (2008).

35 Ráth, Varró G, Varró D, Change-driven model transformations, Proc. of

MODELS’09, CM/IEEE 12th International Conference On Model Driven

Engineering Languages And Systems, (2009).

36 Reisig W, Petri Nets: An Introduction, volume 4 of Monographs in Theoret-

ical Computer Science. An EATCS Series, Springer, 1985.

37 Rensink A, The GROOVE simulator: A tool for state space generation, Ap-

plications of Graph Transformations with Industrial Relevance (AGTIVE),

3062 of LNCS, (2004), 479–485, DOI 10.1007/978-3-540-25959-6 40.

38 Sela M, Fritzsche A, Zherebtsov A, Johannes J, Terekhov A, MOD-

ELPLEX Deliverable D4.2a: Metamodels for simulation, (Technical report),

(Decembre 2007).

39 Shah SMA, Anastasakis K, Bordbar B, From UML to Alloy and back

again, MoDeVVa ’09: Proceedings of the 6th International Workshop on

Model-Driven Engineering, Verification and Validation, (2009), 1–10.

40 Shankar N, Symbolic Analysis of Transition Systems, ASM 2000, number

1912 in LNCS, (2000), 287–302.

41 Soden M, Eichler H, Towards a model execution framework for Eclipse,

BM-MDA ’09: Proceedings of the 1st Workshop on Behaviour Modelling in

Model-Driven Architecture, (2009), 1–7.

42 Starke PH, Integrated net analyzer, 2003, http://www2.informatik.

hu-berlin.de/lehrstuehle/automaten/ina/.

43 Taentzer G, Agg: A tool environment for algebraic graph transformation,

Proceedings of the International Workshop on Applications of Graph Trans-

formations with Industrial Relevance, AGTIVE ’99, (2000), 481–488.

44 Taniguchi K, Ishio T, Kamiya T, Kusumoto S, Inoue K, Extracting Se-

quence Diagram from Execution Trace of Java Program, IWPSE ’05: Pro-

ceedings of the Eighth International Workshop on Principles of Software

Evolution, (2005), 148–154.

45 The Eclipse Project, Eclipse Modeling Framework, http://www.

eclipse.org/emf.

46 Varró D, Balogh A, The model transformation language of the VIATRA2

framework, Science of Computer Programming, 68(3), (October 2007), 214–

234.

47 Varró D, Pataricza A, VPM: A visual, precise and multilevel metamodeling

framework for describing mathematical domains and UML, Software and

Systems Modeling, 2(3), (2003), 187–210.

48 Walderhaug S, Johansen U, Stav E, Aagedal J, Towards a Generic So-

lution for Traceability, MDD, (2006).

49 Winskel G, Nielsen M, Handbook of logic in computer science (vol. 4).

chapter Models for concurrency, Oxford University Press; Oxford, UK,

1995.

Per. Pol. Elec. Eng. and Comp. Sci.82 Ábel Hegedüs / István Ráth / Dániel Varró

http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.htm
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.htm
http://www.omg.org/spec/KDM/1.1/
http://www.omg.org/spec/SysML/index.htm
http://www.omg.org/spec/UML/index.htm
http://www2.informatik.hu-berlin.de/lehrstuehle/automaten/ina/
http://www2.informatik.hu-berlin.de/lehrstuehle/automaten/ina/
http://www.eclipse.org/emf
http://www.eclipse.org/emf

	Introduction
	Related work
	Execution Traces in DMLs
	Definition of Dynamic Modeling Languages
	The SAL language
	Dynamic metamodeling for behavioral models
	Execution Trace Models
	Trace model level of detail
	Extendible trace metamodel


	Replaying Execution Trace Models
	Overview of trace replaying interface
	Specification of trace handling
	Execution trace replaying example
	Implementation

	Replaying BPEL business process execution
	Execution traces for BPEL
	Graphical interface for replaying
	Visualization of dynamic state of BPEL processes
	Implementation

	Limitations of the trace replaying approach
	Conclusion

