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Abstract

The primary scope of this study lays on system technique so-

lutions of collecting data required for the identification of an

aircraft’s nonlinear dynamic model.

It is assumed that the aircraft has no inbuilt navigational sys-

tem, nor any sensors mounted on its control surfaces. The con-

trol column and pedals manipulated by the pilot can only visu-

ally be observed. For the time of data logging, an external sen-

sory system (GPS, IMU) and a camera system were deployed on

the airplane supporting the collection of flight data.

The paper presents the data acquisition solutions required for

aircraft’s nonlinear model identification, with an emphasis on

the determination of the control surface positions as the sys-

tem’s input signals using image processing. During flight, the

control column and pedal positions manipulated by the pilot are

recorded using a video camera and with post processing, data is

converted to control surface (rudder, elevator, aileron) positions.

The 3D positions of the pilot’s control column are determined

from 2D pixel values. The input signals are then calculated us-

ing this information and the control surface characteristics. The

input signals and state variables determined with a state esti-

mator are regarded as input signals for the identification of an

aircraft’s nonlinear model.
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1 Introduction

Airplanes are complex nonlinear dynamic systems. The de-

velopment of a control system (autopilot etc.) needs the knowl-

edge of the dynamic model and its parameters. The dynamic

model can be determined using nonlinear identification meth-

ods based on the record of state variables and actuator signals

belonging to real flight data: state variables

actuator signals

 identification
−−−−−−−−−−−−−−→

dynamic

model

The state variables describe the position, velocity, orientation

and angular velocity of the aircraft. The actuator signals con-

sist of the positions of the control surfaces and the engine trust.

The theory of identification of an aircraft’s nonlinear dynamic

model is discussed in detail in [1]. As can be seen, the system

identification needs the state variables which can be determined

based on the kinematic model and the fusion of GPS, IMU (Iner-

tial Measurement Unit containing 3D accelerometer and 3D an-

gular velocity sensors) and 3D magnetometer sensors by using

stochastic state estimator or deterministic state observer meth-

ods:  sensor

signals

 state estimator /
−−−−−−−−−−−−−−−−→

observer
state variables

Since the kinematic model is nonlinear hence the state estimator

can use EKF (Extended Kalman Filter) with (possibly) exter-

nal complementary filter loop [2]. Alternatively, deterministic

nonlinear state observers can also be used based on Lyapunov

stability theory [4] or transformation Lie-groups [5].

This study’s primary focus is on system technique solutions

of collecting data required for the identification of an aircraft’s

nonlinear dynamic model. It is assumed that the aircraft has no

inbuilt navigational system, nor any sensors mounted on its con-

trol surfaces (rudder, elevator, aileron). The flight of the airplane

is influenced by the control column and pedals manipulated by

the pilot whose positions can visually be observed. This situa-

tion can often occur in the first phase of control system develop-

ment of airplanes when no sensors are mounted on the control

surfaces. On the other side, the design of the control system
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needs the knowledge of the dynamic model, which can be iden-

tified from real flight data. Hence a sensory system (GPS, IMU,

magnetometer) and a camera system have to be placed on the

airplane supporting the collection of flight data for state estima-

tion and model identification.

Special emphasis is on determining the system’s input signals

comprised of the aircraft’s actuator positions with the aid of im-

age processing: video

sequences

 image processing
−−−−−−−−−−−−→

 actuator

signals


where the video sequences contain the 2D pixel positions of the

markers on the control column and pedals while the actuator sig-

nals have to contain the positions of the control surfaces (rudder,

elevator, aileron).

Using a sailplane (glider) as an example, the study presents

the data acquisition process required for state estimation and

identification of an aircraft’s nonlinear model, discussing in de-

tail the determination of control surface positions using image

processing. The theory and basics of image processing are dis-

cussed in [6].

The aircraft of choice was the R26-S Góbé, a two-seater

sailplane (glider), taking into consideration that the lack of an

engine considerably reduces the identification problem. Lack-

ing an onboard navigation system and aircraft control position

sensors means that the control surface positions have to be gen-

erated using image processing techniques. The results can be

extended for use on engine-powered aircraft, laying the founda-

tions of autopilot development in the future.

The aircraft’s speed, position and orientation have been deter-

mined using a differential GPS module, accelerometer, angular

velocity-meter and magnetometer, the fusion of which can lay

the foundation of the estimation of the aircraft’s states using ex-

tended Kalman filtering.

One of the differential GPS receivers was mounted on the

nose of the aircraft, while the other one on the aircraft’s body,

close to its center of mass. For navigation purposes the usual

ECI, ECEF, NED and ABC (Aircraft Body or shortly Body) co-

ordinate systems (frames) are used, see Figure 1. We refer to the

frames by the indexes i, e, n, b.

The signals belonging to the body frame are shown in Figure

2, where Φ,Θ,Ψ denote Euler (roll, pitch,yaw) angles, U,V,W

are the velocity, P,Q,R the angular velocity, X,Y,Z the force

and L,M,N the torque components, respectively, while vT is the

magnitude of the velocity, α is the angle of attack and β is the

sideslip angle.

The control surfaces of a conventional airplane are shown in

Figure 3.

Regarding the terminology of the paper, we speak about con-

trol column and pedal positions manipulated by the pilot and

the positions of the control surfaces (elevator, aileron and rud-

der) as consequences of the pilot’s manipulation. Between them

Fig. 1. Coordinate systems used in navigation

Fig. 2. The frame fixed to the airplane with the kinematic and force/torque

variables

there is an unknown mechanical structure, however the (nonlin-

ear) characteristics can be manually determined before flight. It

is assumed that the control surfaces have no sensors.

On the other hand, the mechanical structure of the control col-

umn is assumed known and will be called the kinematic model

of the control column. However, for the (joint) variables of this

model no sensors are available. Hence, firstly the 3D positions

of the control column have to be determined from their 2D co-

ordinates on the image plane of a single camera. Then, using

these 3D positions and the control surface characteristics, the

positions of the elevator and aileron control surfaces can be com-

puted. The procedure will be supported by a look-up table. The

position of the control pedal can immediately be measured and

converted to rudder position.

The structure of the paper is as follows. Section 2 describes

the determination of the control surface characteristics. Section

3 presents the concept of data acquisition during flight. Section

4 describes the determination of the 2D marker positions of the

control column and pedals from the video sequences using low

level image processing. Section 5 presents the elaborated meth-

ods to find the 3D positions of the control column and pedals

which can be transformed to the positions of the control sur-

faces (actuator signals rudder, elevator and aileron) based on
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Fig. 3. Control surfaces of conventional airplane

their characteristics and a look-up table increasing the speed of

computation. This section contains the camera calibration algo-

rithm, the kinematic model of the control surfaces from robotics

point of view and the look-up table construction. Section 6 deals

with low level data conditioning including time scaling of the

video sequences, resampling of magnetometer data and the com-

putation of the aircraft velocity. The paper is ended with the

conclusions and future research directions.

2 Control surface characteristics of the sailplane

By moving the control column forward and backward, the de-

flection of the elevator is changed according to a linear function,

resulting in a change in pitch of the aircraft, that is a rotation

around the YB axis, see Figure 4.

Fig. 4. Linear characteristic of the elevator - control column ensemble

(forward-backward movement in mm)

By laterally moving the control column, the deflection of the

ailerons is accomplished, resulting in a change in roll of the air-

craft, or a rotation along the XB axis with a certain degree of

nonlinearity, see Figure 5.

The rudder is controlled using pedals and it is responsible for

the change of yaw (heading) of the aircraft, that is the rotation

along the ZB axis with a linear characteristic (not drawn). The

2D marker positions of the pedals can immediately be converted

to rudder positions based on the linear characteristic between

them.

Fig. 5. Nonlinear characteristic of the aileron - control column ensemble

(left-right movement in mm)

The above characteristics were identified in steady state situa-

tion before flight. The recorded flight was comprised of a winch

launch, followed by four 90 degree left hand turns after which

the glider landed parallel to its takeoff position with the use of its

air-brakes. The pilot was the first author having pilot’s licence

for sailplanes.

3 Technical solutions for data gathering

Due to the fact that the secondary piloting post has flight con-

trols (control column and pedals) identical to the first, by fixing

visual markers on the flight controls and recording their move-

ments during flight with a video camera, the positions of the

control column and pedals can be determined using the recorded

pixel values.

The camera was positioned on the cockpit’s canopy facing

down, allowing observation of the complete workspace of the

control column and pedals. As from this position, the rudder

control was obstructed from view; the visual marker had to be

placed in the camera’s field of view using a pushrod, see Figure

6.

Fig. 6. Inside of cockpit and visual markers as observed by the video camera

At the start of image recording and before takeoff, both the

control column and the rudder controls were moved from end-

point to endpoint. This action coupled with the knowledge of
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control surface characteristics results in the function relations

between determined marker positions and control surface de-

flections.

4 Determining the 2D marker positions of control col-

umn and pedals using low level image processing

Differentiation between the flight controls was achieved using

a white visual marker for the control column and a yellow one

fixed to the rudder control’s pushrod. At startup, the offline im-

age processing algorithm firstly determines the correct sample

rate (29.97 frames/sec), then it determines the marker positions

frame by frame.

As aides, the use of workspaces was introduced, which are

masks that allow only a certain portion of the frame to be an-

alyzed. The control column’s workspace is circular due to the

fact that this control can be moved in any direction during flight

and its center is determined by the previous marker position.

Because the rudder control’s visual marker is only capable of

translational movement, its workspace is a parallelogram and its

position is also dependent on the marker’s previous position, see

Figure 7.

Fig. 7. Workspaces of the control column and rudder control

At startup, the positions of the two workspaces have to be

determined manually after which the image processing algo-

rithm determines the marker coordinates and workspace posi-

tions for the following frames. In exceptional instances, when

the marker’s positions cannot be determined, because of ob-

struction of one marker by the other, human intervention is nec-

essary.

The use of two separate workspaces also helps determine lo-

cal exposure metering which is exceptionally useful, due to the

fact that during flight, the aircraft’s orientation according to the

Sun changes continuously. This constant change of lighting con-

ditions results in the shading or full illumination of the visual

markers thus changing their color and homogeneity, rendering

successful image recognition set for a single color spectrum im-

possible.

The correlation of varying light intensity and unsuccessful

image recognition can be observed in Figure 8 for column mark-

ers and in Figure 9 for rudder markers, respectively.

Fig. 8. Correlation between control column marker determination and vary-

ing lighting conditions (without corrections). Blue - marker position, red - light

intensity

Fig. 9. Correlation between rudder control marker determination and vary-

ing lighting conditions (without corrections). Blue - marker position, red - light

intensity

Exposure metering was accomplished by adding the pixel val-

ues of all three channels (Red + Green + Blue) in the current

workspace, where the colors closer to white have a value closer

to 1, and those closer to black having values closer to 0. In case

of overexposed images, not only the markers were completely

white, but also most parts of the background, resulting in the im-

possibility of marker recognition without corrective measures.

Following the determination of local exposure levels, the

RGB format’s 256 colors were simplified to only 6, improving

marker separation from background whilst making the marker

color appearing more homogeneous.

In case of underexposed workspaces, the white visual marker

corresponding to the control column has white and gray colors.

For successful marker recognition, of the six colors, both the

whitest and second whitest colors have to be found (maximum

red, green and blue). The merger of the background with the
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marker is prevented by keeping the second whitest color in case

it is only 51% darker than the first. Any darker, and only the

whitest color is taken into account. In the case of normal- or

overexposure only the whitest color is preserved.

In the following step, only the two selected colors are kept in

a black and white image.

During the process, some artifacts remain, and for a complete

marker separation, an erosion-dilation based routine was ap-

plied, the magnitude of which is determined dynamically, based

on exposure metering.

After filtering, the algorithm searches for ellipse shaped ob-

jects with an eccentricity of less than 0.6 and an area close to that

of the visual marker. If successfully found, the object’s center is

determined according to the ellipse’s center of mass, otherwise

manual correction is necessary.

The process is finished by drawing a crosshair on the mark-

er’s center of mass and plotting its circumference and saving the

marker coordinates. The same procedure applies for determin-

ing the rudder control marker’s positions, with slight differences.

Three exposure levels are set in the current workspace. In case

of a normally exposed workspace, the visual marker has an in-

homogeneous yellow color. In this instance, the RGB color map

is simplified to 5 colors of which the two colors closer to yellow

are selected (maximal red, maximal green and minimal blue val-

ues).The second yellow color is taken into account only if it is

more than 32% closer to yellow than the first one.

In the case of a slightly overexposed workspace, two colors

prevail due to the marker’s gleaming: white and yellow. There-

fore the search is based on these two colors and only these two

colors will be retained in the black and white rendition of the

image. In case of a severely overexposed workspace, the yellow

marker looks completely white and is very difficult to separate

from the background, see Figure 10. In this case, the workspace

is darkened and only the whitest color is taken into account for

marker identification, see Figure 11.

Fig. 10. Severely overexposed image, with hardly recognizable visual mark-

ers

Before defining the marker position, the black and white im-

age is enhanced by dynamically determined erosion-dilation fil-

tering. Afterwards, the algorithm searches for elliptical objects

Fig. 11. Successfully determined marker positions in case of an overexposed

image

with an eccentricity of less than 0.7 and an area close to that of

the visual marker. The center of the visual marker is determined

by finding the marker’s center of mass.

The frame sequences are saved as video for a posteriori veri-

fication. The determined control column marker’s positions can

be seen in Figure 12 and Figure 13. The determined rudder pedal

marker’s positions are drawn in Figure 14.

Fig. 12. Control column’s positions along the X axis for the entire set of data

5 Determining the elevator and aileron positions using

high level image processing

5.1 Camera calibration

The video camera’s parameters are a priori determined with a

chess-board like picture rendition therefore the camera’s K cal-

ibration matrix is regarded as known. The problem lies in de-

termining the homogeneous transformation between the video

camera’s KC , and the aircraft’s K0 coordinate systems.

For this, a calibration object is needed that has various spa-

tially placed visual markers, the origin of which coincides with

one of the control column’s known positions. This calibration

object has 7 visual markers, of which 2 are not coplanar and 4

are in the same plane. The visual marker’s reciprocal coordi-
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Fig. 13. Control column’s positions along the Y axis for the entire set of data

Fig. 14. The rudder control’s positions for the entire set of data

nates are known, and the position and orientation of the video

camera can be determined after the calibration process. During

data collection, before takeoff the calibration object is temporar-

ily placed in the cockpit and after the shots required for the of-

fline calibration are completed, it is removed from the cockpit

due to safety reasons.

Let’s use ri as the visual markers position in K0; rci as the

video camera’s position in Kc, and (ui, vi,wi)
T as their coordi-

nates in the camera sensor’s plane. If the unknown homoge-

neous transformation between the camera and calibration object

is defined by the orthonormal rotation matrix R and position t,

then their relationship is:

λiK
−1


ui/wi

vi/wi

1

 = λirci = Rri + t (1)

The appearance of the λi parameter is due to the fact that re-

projecting the point from the sensor plane, there are infinite ri

points that form in the camera center. Otherwise, the relation-

ship between the R and t parameters is linear. Thus considering

for every rci its own perpendicular ni1 and ni2 vectors in the base

of Kc, the relationship is substituted for the following linear ho-

mogeneous equation system for ni j:

nT
i j(Rri + t) = 0, j = 1, 2 i = 1, . . .N (2)

Thus, if we have a number of N ≥ 6 ri points, then using

the LS (Least Squares) method, an optimal R, t solution can

be determined. Unfortunately it is not to be expected that the

R matrix will be orthonormal; therefore the approximation of

an orthonormal R of the optimal LS solution Q for R must be

determined. This is an abstract optimization problem using a

Frobenius norm and constraints:

min
R
‖R − Q‖F such that RT R − I = 0 (3)

The problem can be solved with the Lagrange multiplier

method, where the Lagrange multiplier Λ is a symmetrical ma-

trix. Transforming the problem to the form:

L = trace
(
(R − Q)T

)
(R − Q) +

(
RT R − I

)
Λ) (4)

and completing the derivations yields

R(I + Λ) = RS = Q and (I + Λ) is symmetrical (5)

The solution can be determined with the use of singular value

decomposition [7]:

QT Q := S 2 → S VD→ S 2 = US 2ΣS 2 US 2
T → S = US 2Σ

1/2

S 2 US 2
T

Ropt = QS −1 (6)

Knowing the resulting Ropt, the previous linear equation can

be considered when the Ropt has a fixed value, which can be

solved again for topt using the LS method.

The results for Ropt and topt can be further refined using con-

strained nonlinear numerical optimization techniques.

Determining the control column’s 3D marker positions from

2D pixel values requires the knowledge of the video camera’s

calibration matrix - previously determined by identification -

and the control column’s physical characteristics.

5.2 The control column’s kinematic model

As a consequence of the kinematic model of the control col-

umn - control surface structure, the visual marker fixed to the

control column does not determine a regular spherical surface.

The kinematic model of the 2 Degree-Of-Freedom (DOF) struc-

ture is shown in robotic view in Figure 15 where l2 = 420mm,

l1 = 80mm and d = 100mm are the distances in the joint model

and α, β are the joint variables.
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Fig. 15. Kinematic model of the control column

According to the control column’s kinematic model following

relations can be derived:

T01 =


1 0 0 0

0 Cα −S α −S αl1

0 S α Cα Cαl1

0 0 0 1

 (7)

T12 =


Cβ 0 S β 0

0 Cα 0 0

−S β S α Cβ 0

0 0 0 1

 (8)

where S α,Cα etc. stand for sin(α), cos(α).

By knowing the l1, l2 and d distances and α and β joint an-

gles, the T02 homogeneous transformation and the dependence

of visual marker’s 3D position on α and β can be determined:

T02 = T01 · T02 =


Cβ 0 S β 0

S αS β Cα −S αCβ −S αl1

−CαS β S α CαCβ Cαl1

−0 0 0 1

 (9)

T02


0

0

l2

1

 =


S βl2

−S αCβl2 − S αl1

CαCβl2 + Cαl1

1

 =


x0

y0

z0

1

 (10)


x00

y00

z00

 =


x0

y0

z0 − (l1 + d)

 (11)

Notice that K0 with axes x0, y0, z0 is an inertial frame while

K00 with axes x00, y00, z00 is its shifted version considered as the

aircraft’s reference coordinate system for our purposes. For sim-

plicity, the 3D coordinates of the control column marker accord-

ing to equation (11) are also denoted by x00,y00 and z00, respec-

tively.

5.3 Look-up table construction for inverted control position

determination

Since the control column’s α and β range spans to ±30◦ and

±20◦, respectively, the workspace of the control column is deter-

mined by the x00(α, β), y00(α, β), z00(α, β) surfaces, respectively,

shown in Figures 16, 17, and 18 (vertical axes in mm). They

illustrate the relation between joint variables α, β and the three

coordinates of the 3D position of the control column. They fol-

low from the control column’s kinematic model, see equations

(9)-(11). The characteristics x00(α, β), y00(α, β) and z00(α, β) are

valid in every situations. For the parameters of the kinematic

model the first two surfaces are almost linear while the third

one is nonlinear. Unfortunately, α, β cannot be measured, they

should be determined by using image processing.

Fig. 16. The x00(α, β) surface determined by control column

Fig. 17. The y00(α, β) surface determined by control column

As a result of the control column’s kinematics, according to

several α and β angles, the control column’s visual marker posi-

tion r = (x00, y00, z00)T can be determined based on the coordi-

nate systems, matrices and vectors drawn in Figure 19.
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Fig. 18. The z00(α, β) surface determined by control column

Fig. 19. Relations between the camera’s coordinate system and the aircraft’s

coordinate system

Kc - the camera’s coordinate system

K00 - the aircraft’s coordinate system

Ropt - optimal orientation matrix of the video camera

r - vector pointing from the origin K00 to the marker position,

expressed in the base of K00

topt - vector pointing form the Kc origin to the K00 origin,

expressed in the base of Kc

rc - vector pointing form the control column’s marker position

to the Kc origin, expressed in the base of Kc

From here, the following expressions can be determined, ex-

pressed in the base of Kc:

rc = Roptr + topt (12)

To be able to determine the u,v, w values formed in the camera

plane expressed in the base of Kc, for any given angle, we apply

the K calibration matrix:

(u, v,w)T = K(Roptr + topt) (13)

The u, v and w values of (u, v,w)T are divided by w, and by

applying the inverse of the K camera matrix, we can determine

the vector pointing from the video camera’s center point to the

control column’s visual marker in the base of Kc which is nor-

malized for later steps:

rcb = K−1


u/w

v/w

1

 (14)

rcb := rcb/‖rcb‖ (15)

As an example, for the numerical values of α = −20◦ and

β = 25◦, the rcb direction unit vector’s coordinates for the look-

up table are:

rcb =


0.2058

−0.1949

0.9590

 (16)

For the fine resolution of (α, β) pairs we can compute a look-

up table as follows:

(α, β)
2DOF
−−−−−−−→
kinematics

(x00, y00, z00)
Ropt , topt ,K
−−−−−−−−→ (u, v)

K−1

−−−→ rcb (17)

The rcb unit vector has the direction of the straight line start-

ing in the point (u, v, 1)T and going through the camera center

and ended on the r(α, β) surface. For this computation a single

camera is satisfactory.

Hence, having constructed the look-up table (LUT), we can

compute from the 2D pixel positions (u, v) the unit vector rcb,

then (α, β) belonging to rcb according to the look-up table, then

the 3D position (x00, y00, z00) of the control column identifying

its forward/backward and left/right movement and from it the

position of the control surfaces by using the control surface char-

acteristics:

(u, v, 1)
K−1

−−−→ rcb

LUT
−−−→ (α, β)

2DOF
−−−−−−−→
kinematics

(x00, y00)

(x00, y00)
control characteristics
−−−−−−−−−−−−−−−→ (elevator, aileron) (18)

The rudder positions can immediately be determined from the

2D pixel values of the pedal’s marker.

5.4 Experimental results of the computation of elevator and

aileron positions

Based on the elaborated method and the look-up table, the

elevator and aileron positions of the actuators have been deter-

mined. Figures 20 and 21 illustrate the relation between the

2D marker positions of the control column and the elevator and

aileron positions, respectively.

Similarly, Figures 22 and 23 illustrate the same relations from

another view point, namely, the relation between the x00, y00

components of the 3D positions of the control column and the

elevator and aileron positions, respectively.
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Fig. 20. Relation between the control column’s pixel coordinates and the

elevator positions

Fig. 21. Relation between the control column’s pixel coordinates and the

aileron positions

Figures 24 and 25 show the computed actuator positions as

input records for identification purposes. Time conditioning of

video sequences (see later on) was also taken into consideration.

Free flight for identification is between 101s (release) and 246s

(landing).

6 Primary data conditioning

The data acquisition was performed using two HW/SW sys-

tems deployed to the sailplane before flight. Data logging of

GPS, IMU and magnetometer sensors was performed on a sys-

tem containing the sensors and running under Linux allowing

time resolution of 100 microseconds under control [3], [8]. Sen-

sor measurement contained high precision time stamps. Video

sequences of control column and pedal markers were collected

on a separate system running under Windows XP allowing slow-

er time resolution which was slowly drifting.

Fig. 22. Relation between the control column’s 3D coordinates and the ele-

vator positions

Fig. 23. Relation between the control column’s 3D coordinates and the

aileron positions

6.1 Time conditioning of video sequences

The start time of video sequences was exactly defined for the

Linux system in a manually controlled way and from this time

instant the video sequence was recorded with a fixed frequency

of 29.97 frames/sec defined by the video camera and Windows

XP. To the video sequences marker-labels were added defining

the start of image recording, the start of towing of the sailplane,

the beginning of release and free flight, the beginning of deploy-

ing the air-brakes, the landing and the stopping. These markers

were added in a manually controlled process.

Because the two operating systems could not be synchronized

and precise time measurement under Windows XP was not pos-

sible, the slowly varying video frequency was compensated in

such a way that a scaling factor was defined based on the IMU’s

3D accelerometer record. This technique uses the possibility

that the time of release and landing can be determined with high

precision from the 3D acceleration record and the time stamps.

Data fusion and primary image processing for aircraft identification 912012 56 3



Fig. 24. The record of computed elevator signals

Fig. 25. The record of computed aileron signals

Hence, by using the scaling factor, the time interval between

release and landing can be defined with high precision. On

the other hand, this is the competent interval for latter dynamic

model identification. The corrected records are drawn in Figure

26.

6.2 Low level signal processing of GPS, IMU and magne-

tometer data

The nominal sampling times of sensors were 20ms for IMU’s

3D acceleration and 3D angular velocity, 50ms for 3D magne-

tometer and 1s for GPS position. The first task of low level

signal processing was to compensate the slow fluctuation of the

measurement times which was solved by giving preference of

the sensor frequencies against the time stamps.

The magnetometer measurements were obtained in Gauss, but

for future applications they were converted to micro Tesla. An-

other problem was the different frequencies of IMU and magne-

tometer sensors while for state estimation equal frequencies are

preferable. Therefore the 3D magnetometer data were interpo-

Fig. 26. Time scaled records of control column and rudder markers

lated and resampled using MATLAB’s function interp assuring

20ms sampling time, see Figure 27. As can be seen, the original

and resampled data are well covered.

Fig. 27. Interpolated and resampled magnetometer data

The GPS position r = (x, y, z)T of the sailplane has large mag-

nitude (6.37 · 106 m) in the ECEF frame hence the usual way is

to introduce the nearest point Q on the rotational ellipsoid to the

body frame ACB, see Figure 1, and characterize the position of

the NED frame as p = (ϕ, λ, h)T where ϕ, λ and h are the geode-

tic latitude, longitude and hight, respectively. This conversion

can be performed by using the following algorithm, see [4]:

(x, y, z)T → (ϕ, λ, h)T (19)

Initialization:

h := 0, N := a, p :=

√
x2 + y2, Tλ = y/x

atan
−−−→ λ
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Cycle:

S ϕ :=
z

N(1 − e2) + h
, Tϕ :=

z + e2NS λ

p

atan
−−−→ ϕ

N :=
a√

1 − e2S 2
ϕ

, h :=
p

Cϕ
− N

where a = 6378137.0m is the main axis and e = 0.0818 is the

eccentricity of the rotational ellipsoid of the Earth. By experi-

ences, the convergence is quicker if ϕ is computed by atan in-

stead of asin, convergence to cm precision requires 25 iterations.

State estimation needs also the information of the aircraft’s

velocity derived from GPS position. Typical state estimation

methods use the velocity vn
b

= (vN , vE , vD)T expressed in the

NED frame. For this purpose re
b

= (x, y, z)T has to be differenti-

ated in the ECEF frame and transformed to the NED frame.

The numerical differentiation was based on the MATLAB’s

function sgolay which is a Savitzky-Golay (polynomial) FIR

smoothing filter returning also the matrix of differentiation fil-

ters. Some modifications were implemented in our diffsgolay

extension handling correctly the initial and ending part of the

records.

First the velocity of ACF was determined using numerical dif-

ferentiation in the ECEF frame in the form of ve
b

= (ẋ, ẏ, ż)T , then

it was transformed into the NED frame using the rotation matrix

Rn
e(ϕ, λ) resulting in the velocity of the body frame expressed in

the NED frame [4]:

vn
b = Rn

e(ϕ, λ)ve
b

vN

vE

vD

 =


−CλS ϕ −S λS ϕ Cϕ

−S λ Cλ 0

−CλCϕ −S λCϕ −S ϕ




ẋ

ẏ

ż

 (20)

Fig. 28. Sailplane position expressed in NED frame

From DGPS reasons two GPS receivers were applied. The

second GPS antenna was in the tight neighborhood of the IMU

sensor hence its measurement was considered as the airplane po-

sition. The deployed GPS system used also carrier phase mea-

surements in order to increase the precision [8]. The airplane’s

Fig. 29. Sailplane velocity expressed in NED frame

position and velocity records expressed in NED frame are shown

in Figure 28 and Figure 29.

State estimation methods should take into consideration that

ECEF is not an inertial frame since it rotates around the z-

axis of the quasi-inertial frame ECI with angular velocity ωE =

7.2921151467×10−5rad/s, while the IMU measurements are rel-

ative to the inertial frame. Especially, if the aircraft is standing

(steady state) then the IMU measures the negative gravity accel-

eration pointing upwards. The differences between ECEF and

ECI are important for high speed maneuvering. It can be re-

marked here that applying 3 GPS receivers and appropriate sig-

nal processing the angle of attack and sideslip angle could be

estimated too.

7 Conclusions

The paper presented a system engineering method used for

data acquisition of GPS, IMU and pilot control signals.

The flight of the airplane was influenced by the control col-

umn and pedal manipulated by the pilot whose positions can

only visually be observed. For the time of data logging, an ex-

ternal sensory system (GPS, IMU, magnetometer) and a cam-

era system were deployed on the airplane supporting the col-

lection of flight data for state estimation and model identifica-

tion. For determination of the control surface positions from

video sequences of the control column and pedal markers an

algorithm was developed and discussed in detail. The 3D posi-

tions of the pilot’s control column are determined from 2D pixel

values based on a look-up table derived from the 2 DOF kine-

matic model of the mechanism and the calibrated camera model.

Low level signal processing of GPS, IMU and magnetometer

data conditioning was presented.

The approach can be applied for any aircraft in the initial

phase of control system design when no onboard navigation and

actuator sensors are available.

The steps for further developments lie in the elaboration of

high precision state estimation methods in the presence of noises

Data fusion and primary image processing for aircraft identification 932012 56 3



and identification algorithms to find the aircraft’s nonlinear dy-

namic model, its unknown functional relations and their param-

eters. Their research is in progress and the results will be pub-

lished in next papers.
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