
Ŕ periodica polytechnica

Electrical Engineering

and Computer Science

56/4 (2012) 113–124

doi: 10.3311/PPee.7080

http://periodicapolytechnica.org/ee

Creative Commons Attribution

RESEARCH ARTICLE

Formation Control of Quadrotor

Helicopters with Guaranteed Collision

Avoidance via Safe Path

Gergely Regula / Béla Lantos

Received 2012-10-12, accepted 2013-02-25

Abstract

In this article we propose a hierarchical control structure for

multi-agent systems. The main objective is to perform forma-

tion change manoeuvres, with guaranteed safe distance between

each two vehicles throughout the whole mission. The key com-

ponents that ensure safety are a robust control algorithm that

is capable of stabilising the group of vehicles in a desired for-

mation and a higher level path generation method that provides

safe paths for all the vehicles, based on graph theoretic con-

siderations. The method can efficiently handle a large group

of any type of vehicles. In the article we focus on the control

of quadrotor UAVs, thus the results are illustrated in 4D on a

group of such vehicles.
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1 Introduction

Increasing attention has been focused on the problem of con-

trolling large scale systems that are built up from several smaller

subsystems, e.g. a group of UAVs. Controlling a group of vehi-

cles together can result in better overall performance and certain

tasks can also be performed more effectively. Examples to such

cases are surveillance missions, fuel consumption reduction by

travelling in formation.

Advances in communication technology, miniaturisation and

increased computation power open the way to implement not

only local, but also formation level control algorithms on board

of a single vehicle. Performing all the required calculations in a

centralised manner is often not viable. In such cases, distributed

solutions are required, even though additional problems arise,

e.g. communication errors or delays.

Several methods have been elaborated that solve certain prob-

lems related to multi-vehicle systems. Each of them have

strengths and weaknesses, thus they have evolved in parallel.

Two of the most frequently applied methods are the model pre-

dictive control (MPC) and robust control techniques.

Obstacle and collision avoidance is most often solved by ap-

plying MPC methods [3, 7, 11, 12, 16]. MPC involves numerical

optimisation (occasionally mixed integer programming) at every

single time instant and it is a flexible framework, various objec-

tives can be included into the problem formulation. The cost is

the increased computational complexity that may require more

computational power than what currently exists.

Other approaches include robust control methods [5, 6, 8, 10,

17] that can guarantee certain types of robustness and perfor-

mance but cannot handle hard constraints the way MPC can.

This is the motivation of the method we propose in the follow-

ing. A promising formation stabilising algorithm is presented in

[8], which ensures that vehicles reach a desired formation, even

if the communication topology changes arbitrarily and arbitrar-

ily quickly. It utilises the graph theoretical results of [2]. How-

ever, it does not guarantee that vehicles do not collide with each

other during the transients. We extend this approach by a higher

level method effectively which tackles the above problem, even

for a relatively large group of vehicles.
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Tab. 1. Effects considered in the quadrotor model.

Affected subsystem Effect Description

Translation Gravity −mRT
t G

Aerodynamic friction −Ktv

Rotation Gyroscopic effect −ω × (IrΩr)

Aerodynamic friction −Krω

The article is structured as follows. Preliminary results are

summarised in Section 2, which include the previous results of

the authors and present the method, the capabilities of which

is extended by our new method. The main contribution of the

article, i.e. the safe path generating algorithm is presented in

Section 3, which is followed by a practical example in Section

4. The article ends with a short conclusion and summary of the

results.

2 Theoretical Fundations

Our control concept consists of three control levels. The in-

ternal controller of each quadrotor is a decentralised nonlinear

controller using backstepping control. The central controllers

are robust distributed formation controllers. A high level con-

troller prevent collision during transients, especially during the

change of the communication topology if obstacles appear.

For a single quadrotor we already presented a control method

in an earlier paper [9] based on nonlinear backstepping control,

hence we summarise here only the dynamic model and the final

results of the backstepping control algorithm needed to under-

stand our main concept of formation control. Similarly, we shall

use existing results of graph theoretical description of commu-

nication topology that will be briefly referenced here.

2.1 Dynamic Model of a Single Quadrotor

Let us assume that a frame (coordinate system) KE fixed to

the Earth can be considered as an inertial frame of reference.

The frame fixed to the centre of gravity of the helicopter KH can

be described by its position ξ = (x, y, z)T and orientation (RPY

angles) η = (Φ,Θ,Ψ)T relative to KE . The orientation can be

described by the matrix Rt in the following way:

Rt =


CΘCΨ S ΦS ΘCΨ −CΦS Ψ CΦS ΘCΨ + S ΦS Ψ

CΘS Ψ S ΦS ΘS Ψ + CΦCΨ CΦS ΘS Ψ − S ΦCΨ

−S Θ S ΦCΘ CΦCΘ

 , (1)

where S x and Cx denote sin(x) and cos(x) as usual in robotics.

We have assumed that both frames are right-systems and the z-

axes are directed upwards.

The relation between ξ̇ and η̇ in KE and translational and an-

gular velocities v and ω of the helicopter in KH take the form

ξ̇ = Rtv, ω = Rrη̇, (2)

where time derivative is denoted by dot and the matrix Rr has

Tab. 2. Parameters in the dynamic equations.

Property of Constant Meaning

Airframe m mass of helicopter

Kt, Kr aerodynamic coefficients

Ic helicopter inertia

l distance between CoG and motor axis

Electronics Ir rotor inertia

b, d force & torque coefficients

the form

Rr =


1 0 −S Θ

0 CΦ S ΦCΘ

0 −S Φ CΦCΘ

 . (3)

The helicopter has four actuators (four brushless DC motors),

which exert a lift force proportional to the square of the angular

velocities Ωi of the actuators ( fi = bΩ2
i
). The BLDC motors’

reference signals can be programmed in Ωi. The resulting torque

and lift force are

T =


lb(Ω2

4
−Ω2

2
)

lb(Ω2
3
−Ω2

1
)

d(Ω2
2

+ Ω2
4
−Ω2

1
−Ω2

3
)


F =

(
0 0 f

)T
,

(4)

where f =
∑4

i=1 fi.

The equations of motion of the helicopter can be obtained by

applying the Newton – Euler method:

F = mRT
t ξ̈ + KtR

T
t ξ̇ + mRT

t G

T = IcRrη̈ + Ic

(
∂Rr

∂Φ
Φ̇ +

∂Rr

∂Θ
Θ̇

)
η̇+

+ KrRrη̇ + (Rrη̇) × (IcRrη̇ + IrΩr).

(5)

The force and torque components are listed in Tab. 1, while

the constants appearing in the equations can be found in Tab. 2.

By neglecting the inductance of BLDC motors, their dynam-

ics can be described as

Ω̇k = −kΩ,0 − kΩ,1Ωk − kΩ,2Ω2
k + kuum,k k = 1, . . . , 4, (6)

where the motor parameters are combined into kΩ,0, kΩ,1 and

kΩ,2, while the voltage applied to each motor is denoted by um,k.

2.2 Backstepping Control of a Quadrotor

First, we have to reformulate the equations (5) and (6) to make

the backstepping algorithm more compact.

ξ̈ = fξ + gξuξ

η̈ = fη + gηuη

Ω̇k = fΩ,k + gΩ,kuΩ,k,

(7)
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where fξ, gξ and uξ are

fξ = −G −
1

m
RtKtR

T
t ξ̇

gξ =
1

m
diag(rt,3)

uξ = ( f , f , f )T .

(8)

In the equations above, fη, gη and uη stand for

fη = (IcRr)
−1

[
−Ic

(
∂Rr

∂Φ
Φ̇ +

∂Rr

∂Θ
Θ̇

)
η̇−

−KrRrη̇ − (Rrη̇) × (IcRrη̇ + IrΩr)

]
gη = (IcRr)

−1

uη = T,

(9)

fΩ,k, gΩ,k and uΩ,k yield

fΩ,k = −kΩ,0 − kΩ,1Ωk − kΩ,2Ω2
k

gΩ,k = ku

uΩ,k = um,k.

(10)

Furthermore, the term rt,3 appearing in (8) is the third column of

Rt.

Since the helicopter is underactuated, the concept is that the

helicopter is required to track a path defined by its (xd, yd, zd,

Ψd) coordinates. The control algorithm can be divided into three

main parts. At first, the translational part of the vehicle dynam-

ics is controlled, which then produces the two missing reference

signals Φd and Θd to the attitude control system. The third part

is responsible for generating the input signals of the BLDC mo-

tors.

The hierarchical structure of the internal controller of a sin-

gle quadrotor is shown in Fig. 1, where indices d and m denote

desired and measured values, respectively. The speed ratio of

the three parts of the hierarchical structure depends on the phys-

ical properties of the components, especially on the measure-

ment frequency of the sensors. The ideal values of the sampling

times for position and orientation control are between 10 – 30

ms. Kalman filters can tolerate the difference of measurement

frequencies of the position and orientation (vision system) and

acceleration and velocity (IMU). The sampling time of the mo-

tor control is set to 10 ms.

2.2.1 Position Control

Let us define the path tracking error

qξ1
= ξd − ξ. (11)

Applying Lyapunov’s theorem we are free to approach

ξ̇ = ξ̇d + Aξ1
qξ1
, (12)

where the matrix Aξ1
is positive definite. Introducing a virtual

tracking error

qξ2
:= ξ̇ − ξ̇d − Aξ1

qξ1
= −q̇ξ1

− Aξ1
qξ1

(13)

and applying Lyapunov’s theory once more we are free to

choose

uξ = g−1
ξ [qξ1

− fξ + ξ̈d − Aξ1
(qξ2

+ Aξ1
qξ1

) − Aξ2
qξ2

] =

= g−1
ξ [ξ̈d − fξ + (I3 + Aξ2

Aξ1
)qξ1

+ (Aξ2
+ Aξ1

)q̇ξ1
],

(14)

where Aξ2
is positive definite. The resulting system is

ξ̈ = ξ̈d + (I3 + Aξ2
Aξ1

)qξ1
+ (Aξ2

+ Aξ1
)q̇ξ1

. (15)

Then the Lyapunov function of the closed loop system satisfies

V(qξ1
, qξ2

) =
1

2

(
qT
ξ1

qξ1
+ qT

ξ2
qξ2

)
> 0 (16)

V̇(qξ1
, qξ2

) = −qT
ξ1

Aξ1
qξ1
− qT

ξ2
Aξ2

qξ2
< 0 (17)

so that stability is guaranteed and equivalent to

0 = q̈ξ1
+ (Aξ2

+ Aξ1
)q̇ξ1

+ (I3 + Aξ2
Aξ1

)qξ1
. (18)

Assuming positive definite and diagonal Aξ1
, Aξ2

matrices with

diagonal elements aξ1,i, aξ2,i, the characteristic equations have

the form

s2 + (aξ2,i + aξ1,i)s + (1 + aξ2,iaξ1,i) = 0, (19)

which guarantees stability.

Furthermore, if the term involving the second derivative of

the reference can be kept small compared to the others (ξ̈d ≈

0), the transfer function from each reference component to the

corresponding output takes the form

Pξi,ξd,i
(s) =

(aξ,2,i + aξ,1,i)s + (1 + aξ,2,iaξ,1,i)

s2 + (aξ,2,i + aξ,1,i)s + (1 + aξ,2,iaξ,1,i)
, (20)

where the constants aξ,•,i are the ith diagonal elements of Aξ,•.

These transfer functions can later be utilised when designing the

higher level control algorithm.

This means that the errors exponentially converge to zero if

the calculated values of fξ and gξ are close to the real ones. Al-

gebraic manipulations can be performed in gξuξ. The third com-

ponent of uξ is the lift force f . Since the entire controlled system

is stable, gξ has to be convergent and its limit is (0, 0, 1)T /m,

hence the reference signals Φd and Θd can be obtained as fol-

lows.

Fig. 1. The hierarchical structure of the internal controller of a single

quadrotor.
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First, using the state variables Φ, Θ, Ψ, we compute

ũξ =


CΦS ΘCΨ + S ΦS Ψ

CΦS ΘS Ψ − S ΦCΨ

f

 =:


uξx

uξy

f

 . (21)

Then, from uξx
and uξy

we determine the reference signals for

the attitude control:

S Φd
= S Ψuξx

−CΨuξy

S Θd
=

CΨuξx
+ S Ψuξy

CΦ

(22)

The reason why these signals can be considered as reference sig-

nals is that as the helicopter approaches the desired coordinates,

they converge to zero. Conversely, if the helicopter follows the

appropriate attitude and lift force, it will reach the desired posi-

tion and orientation.

The control law of the attitude subsystem is obtained in a sim-

ilar fashion. For details, see [9].

2.2.2 Rotor Control

Since the rotor equations are of first order, there is no need for

the virtual error qm2
. However, it is worth including the deriva-

tive of qm1
similarly as in the previous sections because of the

error dynamics:

um = g−1
m [Ω̇d − fm + (I4 + Am2

Am1
)qm1

+

+ (Am2
+ Am1

)q̇m1
],

(23)

with qm1
and fm being

qm1
=


Ω1d
−Ω1

Ω2d
−Ω2

Ω3d
−Ω3

Ω4d
−Ω4

 and fm=


fm,1

fm,2

fm,3

fm,4

 . (24)

Since the four motors are considered to be identical, gm can be

any of gm,k-s and therefore it is a scalar. It is worth noticing

that since T and f are linear combinations of Ω2
k
, Ωkd

are the

element-wise square roots of
Ω2

1d

Ω2
2d

Ω2
3d

Ω2
4d

 =


0 −(2lb)−1 −(4d)−1 (4d)−1

−(2lb)−1 0 (4d)−1 (4d)−1

0 (2lb)−1 −(4d)−1 (4d)−1

(2lb)−1 0 (4d)−1 (4d)−1


T

f

 . (25)

For stability reasons, Am1
and Am2

should be positive definite

matrices.

2.3 Formation Stability of Linear Systems in Graph Theo-

retical Approach

The relation between formation stability of connected linear

systems and graph-theory was discussed in the pioneering work

of Fax and Murray [2]. Here we summarise some of the main

results needed for our purposes.

2.3.1 Normalised Laplacian Matrix of the Communication

Topology

Let us consider the formation of N discrete time linear sys-

tems communicating each other. The communication topology

is defined by a directed graph. In the graph the vertices are the

linear systems and the edges indicate the communication links.

The arrow of the edge points to the receiver. Denote Ji the set

of neighbours from which node i receives information and let

|Ji| be its cardinality. We assume normalised Laplacian matrix

L of type N × N defined as

Lik =


1, k = i

−
1

|Ji|
, k ∈ Ji

0, k < Ji

(26)

Important properties are as follows [2]:

1) One eigenvalue of L is always zero and the corresponding

right eigenvector is 1 (all ones).

2) All eigenvalues λi of L lie in the unit disk (Perron disk) cen-

tred at 1 + j0 which means that λi = 1 + δi where |δi| ≤ 1.

3) If L is undirected, then L has only real eigenvalues.

2.3.2 Closed Loop Formation Stability

One measure of the ith system in the formation may be the

equally weighted sum of errors of the sensed neighbours:

ei =
1

|Ji|

∑
k∈Ji

eik. (27)

Here eik describes the error between the ith and kth unit accord-

ing to

eik = (ri − vi) − (rk − vk) = r̃ik − (vi − vk), (28)

where r̃ik is the desired relative pose in the formation and vi, vk

are the transmitted outputs of the vehicles i and k, respectively.

We shall assume that system i has input ei and output vi and

its transfer function is H(s). Its formation level controller KF(s)

has input ei and output ui where ei is the global formation error

information about the error of the unit in the formation (outer

loop). A single vehicle with its backstepping controller can be

characterised by Tvi,ui
=: P(s) such that vi = P(s)ui. A vehicle

with its local controllers is depicted in Fig. 2.

The communication structure can be described by the Kro-

necker product L(p) = L ⊗ Ip where p is the number of outputs

vi of a single unit. With r = (r1, . . . , rN)T , v = (v1, . . . , vN)T ,

e = (e1, . . . , eN)T yields

e = L(p)(r − v). (29)

Let the dynamics of the ith linear system P(s) be given as

ẋi = Axi + Bui

vi = Cxi.
(30)

The following theorem is from Fax and Murray [2].
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Fig. 2. Single quadrotor with local controllers.

Fig. 3. Closed loop formation.

Theorem 1 A controller KF(s) stabilises the closed loop forma-

tion (Fig. 3) if and only if it simultaneously stabilises the follow-

ing set of N systems:

ẋi = Axi + Bui

vi = λiCxi

i = 1, . . . ,N, (31)

where ui = KF(s)ei, ei = −vi and λi are the eigenvalues of L.

Notice that λi may be complex, hence the theorem requires the

stability of systems with complex parameters.

Since the eigenvalues of L lie in the Perron disk, λi = 1 + δi

satisfies |δi| ≤ 1 where δi is complex number and vi = Cxi +

δiCxi, i = 1, . . . ,N.

Using singular value decomposition, C can be factorised as

C = DδCδ. Thus, signals zi = Cδxi and wi = δIqz can be in-

troduced, the second playing the role of uncertainty description,

where q is the rank of C and ‖δ‖ ≤ 1 [8].

For stability investigation the N units can be covered as a

single one with uncertainty ‖δ‖ ≤ 1 and a transfer function

Tz,w =: G(s) as follows:

ẋ = Ax + Bu

z = Cδx

v = Cx + Dδw

u = −KFv.

(32)

Notice that the robust control problem is similar for each com-

ponent, hence the index has been omitted. The resulting system

is Fl(G(s),KF(s)) where Fl is the linear fractional transforma-

tion from w to z.

The following theorem is from Popov and Werner [8].

Theorem 2 The controller KF(s) stabilises the closed loop for-

mation for any number of agents N and under fixed, as well as

any time-varying communication topology if theH∞ norm of the

system Fl(G(s),KF(s)) is smaller than 1 (Fig. 4(a)).

The properties of the distributed formation control can be

sharpened by using sensitivity WS (s) and control sensitivity

WK(s) filters (Fig. 5). The interconnection with the controller

and the augmented plant can be seen in Fig. 4(b).

3 Safe Formation Change

The most crucial strengths of the algorithms presented above

are that they are capable of stabilising a group of any number

of vehicles with any kind of communication topology that holds

certain connectivity properties. However, there is a major draw-

back that is not explicitly tackled by the algorithm, i.e. it is not

guaranteed that during the transients the vehicles keep safe dis-

tance from each other. Linear robust control methods cannot

satisfy such constraints. Therefore, either different control algo-

rithms are required for such problems, such as model predictive

control (MPC), or collision avoidance must be implemented on

a higher level.

The proposed method follows the latter approach. Given a

number of identical vehicles in an initial formation (defined by

spatial ponts p0,i), the task is to occupy the specified target posi-

tions p1,i within finite time and keeping a predefined minimum

distance between each other during the transition. The vehicles

are not assigned a specific target position, the proposed algo-

rithm decides which target is reached by which vehicle. The

vehicles track straight paths between the start and target posi-

tions and may not necessarily move all at the same time since

(a) (b)

Fig. 4. Plant interconnection.

Fig. 5. H∞ design setup.

Formation Control of Quadrotor Helicopters with Guaranteed Collision Avoidance via Safe Path 1172012 56 4



Tab. 3. Algoritm overview.

one might act as an obstacle to the other depending on the struc-

ture of the initial and target formation. The algorithm should

also take into account that the vehicles have a maximum travel-

ling speed. There is only one restriction, which is related to the

formation and the predefined safety distance. The ratio between

the minimum distance between each pair of vehicles in their ini-

tial and target positions and the safety distance should exceed a

constant value specified later:

min
i, j
i, j

d0,i, j

ds

> c min
i, j
i, j

d1,i, j

ds

> c, (33)

where d•,i, j = ‖p•,i − p•, j‖ and ds is the safety distance. The

crucial aim is to find the smallest possible c. As will be re-

vealed later, the above constraint is not overly restrictive in real

applications since the safety distance is related to the physical

dimensions of the vehicles.

In the following, the safe path generating method will be pre-

sented, then as an illustration, a formation changing scenario

will be shown.

3.1 Path Generating Algorithm

The basic idea of the proposed algorithm is to avoid the on-

line path planning and optimisation at every sample time instant.

Instead, only if the formation of the vehicle group has to be

changed, safe trajectories will be generated in a simple but ef-

ficient way. The generated paths will be safe at the same time.

The steps of the method are described in Tab. 3 and the integra-

tion into the formation is shown in Fig. 6. The first two phases

may consist of several steps. During the first phase, as many

vehicles as possible move directly from their initial positions to

certain target positions. In the second phase, certain vehicles

that have already reached a target regroup so that empty targets

are generated in the proximity of new vehicles. In the last phase,

vehicles that remain in their initial positions can simultaneously

move to a target.

The key in each phase is how to determine which vehicles are

allowed to move at the same time. Graphs will be constructed

that contain information about the risk of collision. The number

of vehicles taking part in each step will correspond to the size of

a clique in this graph. For computational reasons, certain heuris-

tics will also be included in the algorithm. The steps that have

to be carried out throughout the path generation are as follows.

3.1.1 Phase 1 – Direct Transition

First, a graph N describing the candidate routes has to be

formed. The vertices of the graph correspond to the initial and

target positions and the edges correspond to a route between

an initial and a target point. Since in the simplest case every

vehicle has the possibility of travelling towards any target point,

this graph is a full bipartite graph (see Fig. 7).

Next, it should be checked whether a route conflicts with an-

other. In this context, two routes are in conflict with each other

when the distance between them is less than the safety distance

ds. (This definition is obviously conservative in the sense that

it does not take into account the motion of the vehicles, only

their paths.) These pieces of information can be collected into

a ”dual” graphM where each vertex corresponds to an edge in

N (marked by green in Fig. 7) and there is an edge between two

vertices if the distance between the corresponding two routes is

greater than ds.

The task is then to find as many routes as possible among

which there do not exist pairs that are in conflict with each other.

In other words, a maximum clique has to be found withinG(M),

which is the adjacency graph ofM.

It is known that the maximum clique cannot contain more ver-

tices than the number of vehicles. However, in most cases the

size of the maximum clique is less than this value, due to the fact

that vehicles can act as ”obstacles” to each other. Therefore, the

above method has to be repeated as long as there are new vehi-

cles that can find their way to the targets. In certain cases, this

algorithm cannot guarantee that all the vehicles reach a target

position. Therefore, a variant of this method has to be applied

then, which further reduces the number of vehicles that cannot

reach a target point.

3.1.2 Phase 2 – Correction Routes

For this purpose, the notion of correction route has to be in-

troduced. A correction route connects an occupied initial po-

sition with an unoccupied target position via intermediate oc-

cupied positions. Each section consists of straight paths. The

intermediate points are not necessarily target points. However,

Fig. 6. Formation change logic.
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Fig. 7. Path search graph.

if a correction route involves an occupied initial point, then there

exists a shorter correction route between this intermediate point

and the same target point. Therefore, only the shortest correc-

tion routes are considered in the following. The iterative pro-

cess consists of the following steps. The first task is to find an

occupied intermediate point Pi with minimum distance from the

line section between the current start and target position (ini-

tially
−−→
S T ) within the safety distance. If no such point is found,

the route is generated. Otherwise, correction route generation is

split into two parts. Finally, when route generation is finished,

the intermediate points have to be collected in the right order.

Correction route generation is illustrated in Fig. 8. The first in-

termediate target point found during the process is Ti,c since the

other candidate Ti,x is farther from
−−→
S T .

When searching for correction routes, it has to be ensured

that each intermediate point is closer to the target point than the

previous one including the starting point. Otherwise, correc-

tion routes could possibly be infinite. Another aspect that has to

be taken into account is that each correction route should be as

short as possible in order to avoid unnecessary time and energy

consumption.

The purpose of correction routes is that along the segments

of each such route the vehicles can regroup creating an unoccu-

pied target point that can be reached by a new vehicle. This re-

grouping can be performed either sequentially backwards from

the target or in parallel. The latter is beneficial since it reduces

Fig. 8. Correction route generation.

Fig. 9. Correction route extremal case.

the total time and energy required for the change of formation.

However, correction routes need to have the property that none

of the vehicles travelling from one intermediate point to the sub-

sequent reach each other within the safety distance. This makes

the search computationally slightly more involved.

If correction routes that satisfy the above requirements exist,

another search, similar to the direct transition step can be per-

formed. The only difference is that it has to be defined what

conflict means between a pair of correction routes. This de-

pends on whether the vehicles move along the correction routes

sequentially or in parallel. In the former case, conflict between

subsequent pairs of route sections have to be checked, while in

the other none of the line segments of one correction route can

be in conflict with any in the other so that the whole correction

routes are not in conflict with each other.

Apart from certain exceptions, it can be proved geometrically

that if

di, j >
2
√

3
ds (34)

holds, then all the intermediate points in all the correction routes

are closer to the targets than the previous ones and the initial

points (see Fig. 9). This corresponds to cmin = 2/
√

3.
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3.1.3 Phase 3 - Trapped Targets

One of the two problems that has to be tackled is that cer-

tain configurations are still complicated or even impossible to

resolve. This is the case when an unoccupied target is trapped
by two or more occupied start positions. This means it is within

the safety distance from all the involved vehicles, therefore more

complex manoeuvres, possibly including even more vehicles,

are required than those primarily involved in the trap (illustrated

in Fig. 10). What makes the problem even more serious, it might

occur that fewer start positions are involved in a trap than empty

targets. This means there are other vehicles that cannot reach

any target, though they are not involved in forming traps. The

second problem is that the first segment of every correction route

connects a start and a target position and the above condition

does not necessarily hold.

The first problem can be tackled by increasing the rather strict

constraint cmin = 2/
√

3 to cmin =
√

2, it can be ensured that

all the trapped positions can be reached simultaneously in one

step, which corresponds to a maximum clique of a size of the

remaining vehicles inM of the very last step of the algorithm.

The reason for this is the following. In case cmin =
√

2, the

greatest distance between two points within the intersection of

two start positions is not greater than cminds, see Fig. 10. Each

intersection can thus contain either 0 or 1 target. As a conse-

quence, trapped positions can only occur in closed chains or

closed three-dimensional surfaces and in case vehicles travel at

constant speeds along straight lines they never get within the

safety distance from each other. The change of the distance

ratio has no real restrictive effects considering that the origi-

nal one meant that the densest possible configuration was the

same as placing as many spheres in a certain volume as possi-

ble, while the latter one corresponds to a cubic grid of the same

edge length.

3.1.4 Generation of Suitable Correction Routes

The other problem mentioned above is illustrated in Fig. 11.

Suppose a correction route has to be generated from start po-

sition S and target T . When generating the correction route,

vehicles may have already occupied target positions in the red

area, which is within the safety region of route S → T . The dis-

tance between a vehicle in the red area and the target is greater

than ‖
−−→
S T‖. Since these points cause divergence from the tar-

get, it should be avoided that correction routes include them as

intermediate points.

A solution to this problem is as follows. If all the routes that

end in a target point which has an initial point within an in-

creased safety distance d′s are filtered out, then it is ensured that

suitable correction routes can be found in each step. The ratio

between d′s and ds can be read from the figure when d = c · ds:

d′s = ds · c

√√
2

1 − √
1 −

1

c2

. (35)

The downside, however, is that cmin has to be increased by

Fig. 10. Trapped vehicles (extremal case, c =
√

2).

Fig. 11. Ensuring convergence to the target.

the same ratio, as it is revealed in the configuration depicted

in Fig. 12. A vehicle in the red region in Fig. 11 may block

vehicles from reaching targets. If these points are kept empty,

they may act as if they were trapped, thus they are treated as

trapped. Therefore, the ratio between d and d′s should be kept at
√

2, which yield cmin = 4/
√

7. It has to be mentioned that the

change is less than 7%, which is not an overly strict constraint.

It also has to be mentioned that in case c >
√

2, every vehicle

in a correction route can move at the same time without the risk

of collision, apart from the vehicle in the start position. It has

to be checked separately whether there is a risk of collision with

the next vehicle or not.

Per. Pol. Elec. Eng. and Comp. Sci.120 Gergely Regula / Béla Lantos



Fig. 13. Simulation setup.

3.2 Clique Finding in G(M)

A number of maximum clique search algorithms have already

been developed by research groups, see e.g. [4, 13–15, 18–20].

The algorithm presented in [4] is considered as an efficient

method in most cases, thus it is applied to our problem as

well. In general, maximum clique algorithms consist of a graph

colouring step, which is a computationally hard problem. There-

fore, they all utilise some kind of heuristics. Graph colouring

aids the selection of new candidate vertices that may increase

the size of the currently growing clique. The other part of these

algorithms is a continuous test whether the new candidate vertex

and the growing clique form a clique together or not.

Since finding a maximum clique in a graph is known to be

NP-complete [1], certain modifications are necessary to be ap-

plied to the algorithm so that it is tractable in case the number

of vehicles reaches the order of 50. One way of accelerating the

search is that during the graph construction step, only a subset of

all possible routes are considered. There are a number of ways

of selecting these routes:

1) Taking only the n closest targets to each initial position,

Fig. 12. Difficulty caused by vehicles in the red zone in Fig. 11.

2) Taking only the n closest initial positions to each target,

3) Combining the first two methods,

4) Sorting the target distances from each initial position and se-

lecting n evenly.

The last in the list performs the best in most cases as the others

tend to focus on different groups of vehicles. Note that this step

is also important since considerable time is required for creating

the adjacency matrix itself, since its original size is N2-by-N2!

Even though this modification greatly reduces the search

space, finding the maximum clique in the reduced graph may

still require a long time. A possible method is to limit the to-

tal search time. Another tweak is an experimental one. In most

practical cases a first candidate clique is found in a short time,

the size of which is not much less than that of the maximum

clique. Finding new candidates can be time consuming. Thus, a

time limit is introduced that sets a maximum time between every

new candidate cliques.

The above modifications are destructive in the sense that ap-

plying them most likely results in finding a clique whose size

is less than that of the maximum clique of the original adja-

cency matrix. However, all the vehicles still reach a target point,

though the number of iterations may increase.

The next type of modification has only slight impact on the

size of the clique found. It rather aims at finding cliques that

involve the shortest path possible. The purpose is obviously that

time and thus energy consumption should be kept as low as pos-

sible, even though this is not the major objective of the whole

process. This can be done by a simple tweak. Route lengths

are already available when the clique search begins. Therefore,

these pieces of information can be utilised as a tie-breaker when

Tab. 4. Backstepping control parameters.

Subsystem a1 a2

x, y 2.0 1.5

z 2.5 1.5

Ψ 15.0 10.0
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sorting the vertices based on their degree (c.f. lines 9 – 13 of

Fig. 4 in [4]). This way, the shortest routes are checked as early

as possible.

4 Formation Change Scenario

As an illustrative example, a formation change manoeuvre in-

volving a group of 25 quadrotors is presented. The vehicles are

placed randomly in the 3D space and the target positions are

also chosen randomly in the xy-plane, satisfying the constraints

of (33) with the constant c = 4/
√

7. The vehicles point to the

same direction (Ψd,i = 0) throughout the mission.

Simulation is performed according to Fig. 13. Communica-

tion topology is chosen randomly, two vehicles are connected

with a probability of 0.2, which means that each vehicle ex-

changes information with 5 others on average. For simplicity,

the topology is fixed throughout the mission.

The coefficients of the backstepping controller can be seen in

Tab. 4. The resulting transfer functions take similar form to (20).

Fig. 14. Example scenario, direct phase, step 1.

Tab. 5. Path generation statistics.

Phase Step # tG [s] tMC[s] |MC|

Direct 1 0.8356 0.0288 11

2 0.3865 0.0241 8

3 0.0650 0.0024 4

Correction 1 0.0261 0.0007 2

Fig. 15. Example scenario, direct phase, step 2.

The formation controller parameters are obtained by setting

the weighting functions in Fig. 5 to

WS ,ξi
= 107

 1
7.5

s + 1

1
3.75·10−4 s + 1

2

WK,ξi
= 3 · 10−2

 1
7.5·101 s + 1

1
3·102 s + 1

3

WS ,Ψ = 102

1
10

s + 1

1
10−3 s + 1

WK,Ψ = 3 · 10−1

 1
2

s + 1

1
2·102 s + 1

3

.

(36)

The transitional dynamics have to satisfy more stringent con-

straints. Since formation change involves steady linear motion,

vehicles should diverge from the path as little as possible. Thus,

instead of the commonly applied routine, the difference from a

ramp input is penalised, which corresponds to the increased gain

at lower frequencies in the weighting function WS ,ξi
. Moreover,

this method ensures that it is not necessary to split up the motion

into accelerating, travelling and decelerating parts. Acceleration

is bounded by the aid of WK,ξi
.

Performance requirements for the rotation about the z-axis are

less stringent and thus the order of the controller is lower (6,

compared to 7 in the case of translational motion). Robust sta-

bility with desired performance are achieved in both cases and

all the designed controllers are stable. The full formation-level
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controller is obtained by placing the four controllers in the diag-

onal of a 4-by-4 matrix.

Reference paths were generated so that the speed of vehicles

never exceeds 1 m/s. Such setting is necessary for guaranteeing

the stability of the backstepping controller of each vehicle. Ref-

erence paths in each formation change step are designed so that

vehicles involved in the current step start moving and reach tar-

get at the same time. Computation time statistics are shown in

Tab. 5, where columns tG, tMC and |MC| show the time required

for adjacency matrix generation, finding a maximum clique and

the clique’s size, respectively. Tests were performed using MAT-

LAB on an average P4 PC. All the algorithms were executed on

a single core. It can be seen that the most time consuming step

is the first, in particular the adjacency graph generation, which

is common in general situations.

Fig. 16. Example scenario, direct phase, step 3.

The steps of the example formation change are shown in

Figs. 14, 15, 16 and 17. Each figure consists of two main parts.

The upper graph shows the paths of vehicles involved in the tran-

sition step. Start and target positions are marked red crosses and

blue circles, respectively. Only vehicles that change position

are shown for transparency reasons. An additional dashed arrow

connects the starting and end point of each correction route in

the figures presenting the correction steps. Black arrows show

the motion of vehicle 12 (the one which starts from initial posi-

tion 12 and reaches target point 13 via target point 10). In the

lower part, the sparsity pattern of G(M) is shown. The left pat-

Fig. 17. Example scenario, correction phase, step 1.

tern is the original one, the right pattern is obtained by sorting

the rows and columns based on the degree of each vertex. The

number of nonzero elements of the matrices are also shown. At

each step, a maximum of 5 of all the possible routes are selected

from each occupied start position. Conflicts are checked only

among these routes, in order to accelerate path generation. It

is worth mentioning that trapped targets occur rarely in practice

since vehicles that might be involved in such situations usually

find their way to different target points.

Fig. 18. Distance between vehicle 12 and the other vehicles.
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Fig. 18 shows the distances between vehicle 12 and all the

other vehicles throughout the manoeuvre. A vertical dashed line

corresponds to the start of a new step in the formation change

algorithm. The safety distance is set to 0.45 m. It can be seen

that safety distance is kept between the vehicles. The other ve-

hicles show similar behaviour. The minimum distance between

two vehicles during the whole formation change process is 0.46

m.

5 Conclusion

The proposed path generation method together with a care-

fully tuned robust formation controller is capable of guarantee-

ing a safe formation change with a practically negligible con-

straint on the formation topology for any type of vehicles.

The developed method was applied to formation control of

quadrotor helicopters in 4D (3D position and orientation Ψ).

The algorithm can be accelerated by performing computa-

tions in a distributed manner. Further methods with robust

performance allowing constraints on the controller can also be

taken into consideration, which are to be investigated in the near

future.
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