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Abstract

Most mobile robot navigation approaches assume the robot

being point-like or consider only its bounding circle while look-

ing for a collision-free path to a given goal position. A well-

known method called the Dynamic Window Approach (DWA)

introduced an interesting idea for solving the navigation prob-

lem by local optimization in the control space of the robot. Some

extensions of the original DWA method can also be found in the

literature, which enable its applicability to holonomic and non-

holonomic robots and ensure a global and safe solution to the

navigation problem. The method described in this paper has

also been motivated by the basic idea of dynamic window and

contributes to the previous variants by taking the robot shape

into consideration as well. A navigation function based model

predictive control scheme is utilized to choose the appropriate

control for a safe and successful navigation.
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1 Introduction

Mobile robot navigation in real-world scenarios has gained

increasing interest and importance in the last years as mobile

robot applications have spread to many areas of research, indus-

try and even our everyday life. The navigation problem consists

of more subproblems that need to be solved for reaching a pre-

defined goal safely and successfully. At first, a mobile robot

that operates in a real environment has to be able to recognize

obstacles around it and build a map of the environment. It is

also necessary to handle moving obstacles and changes in the

environment. The second task is to determine its own position

inside the navigation scene. Finally, it has to plan and accom-

plish a motion sequence that ends at a given goal while avoiding

collision with obstacles. There are different approaches for solv-

ing these subproblems. For example, mapping and localization

can be done simultaneously as shown in [11, 12]. The solution

of the simultaneous localization and mapping problem (SLAM)

is subject to active research but is out of the scope of this paper.

In other words, we assume that the environment map and robot

position is known at any time during navigation.

This paper focuses on the motion planning task of a mobile

robot moving in the plane, in the case of such obstacle distribu-

tions where narrow crossings are unavoidable. The majority of

planning approaches consider the robot as a single point or take

the dimensions of it into account by replacing the robot with its

bounding circle. This assumption works if there are wide free

areas between robot and its target, but fails if the robot itself

is not circle-shaped and the bounding circle is too large to pass

narrowings.

An elegant real-time planning strategy, the dynamic window

approach (DWA) is proposed in [5]. Some extensions of this

approach have also been published in the past years but in most

cases the vehicle shape is not taken into account. The contribu-

tion of this paper is a dynamic window-based navigation method

that utilizes a global navigation function to ensure reaching the

goal and takes the shape of the robot into account as well.

The paper is organized as follows. In Section 2, we give a

short survey of dynamic window-based navigation approaches.

In Section 3, it is shown how the shape of the robot is taken

A Model Predictive Navigation Approach Considering Mobile Robot Shape and Dynamics 432012 56 2

http://periodicapolytechnica.org/ee
http://creativecommons.org/licenses/by/3.0/


into account in the proposed approach. Section 4 is about the

navigation function that plays an important role in the proposed

method. In Section 5, we describe the model predictive algo-

rithm and show simulated experimental results. Section 6 sum-

marizes the paper and gives directions of future work.

2 Related Work and Background

In the past decades, several mobile robot navigation tech-

niques were proposed. Early approaches based on artificial po-

tential fields have drawn great attention among researchers. The

idea of using virtual forces to act on the robot were utilized in

[2–4] among others. The simplicity and elegance of potential

function approaches made them very popular. However, after a

few years of extensive research and experimental work, it was

shown that these techniques have some inherent limitations [15]

which encumber their application to real robots. One of the lim-

itations is that they generate motion commands for the robot in

two separate stages. First, the desired direction is determined,

and the steering commands that result a motion in this direction

are generated in a second step. The dynamic constraints of the

robot are not taken into account or in other words they presume

that arbitrary forces can be asserted on the robot to achieve a

motion in the chosen direction.

In order to solve this problem, methods like the dynamic win-

dow approach [5] and curvature velocity method [16] were pro-

posed. These differ from former approaches in that they assume

a velocity motion model for robots, i.e. velocities are consid-

ered as actuating variables. They deal with robots having non-

holonolmic kinematic constraints, whose trajectories can be ap-

proximated by a sequence of circular arcs. A circular path seg-

ment can be characterized by a velocity pair (v, ω) which con-

sists of the translational velocity v and the angular velocity ω

of the robot. These approaches take the dynamics of the robot

into account by reducing the search space to velocities reach-

able in a short time interval. This subset of the velocity space

is called the dynamic window. In addition, only those velocities

are considered that are safe with respect to obstacles (admissible

velocities). To choose from the set of admissible velocities an

objective function is evaluated and maximized. This objective

function in [5] is a weighted sum of three terms: heading(v, ω),

which is a measure of going into the direction of the goal,

dist(v, ω) being the smallest distance to the next obstacle along

the circular path segment belonging to (v, ω) and velocity(v, ω),

simply the projection of (v, ω) on the translational velocity v (to

favor high motion speeds).

Experimental results presented in [5] show that the dynamic

window approach to collision avoidance yields a fast and safe

robot motion. However, since the DWA and the above men-

tioned other methods are based on local decisions without taking

connectivity information of free space into account, the robot

can get trapped in local minima situations (i.e. it can stop far

from the goal point) or enter a limit-cycle that prevents reaching

the goal. Another problem of the DWA is that different situa-

tions require different weighting of the objective function terms

to ensure successful motion but there is no algorithm for choos-

ing the weights.

A modified approach, called the Global DWA [7] extends the

original method to the case of holonomic robots and addresses

the problem of local minima by taking free space connectiv-

ity information into account. This is obtained by introducing a

navigation function (NF), which is a local minima-free function

defined on the discretized configuration space, having a unique

minimum at the goal. New terms are added to the objective

function to favor NF descent along the robot path.

The problem of local minima is eliminated in many cases

through the global distance information represented by the NF

terms, but not at all times. It is shown in [10] that limit-cycles

can evolve if the velocity term outweighs the NF terms. They

reformulate the dynamic window approach as a model predic-

tive control (MPC) problem (also referred to as receding hori-

zon control, RHC). They assume a holonomic robot model that

can be considered a double integrator in the plane r̈ = u, where

r ∈ R2 is the position of the robot. Thus, the control u is the

acceleration which is in contrast with [5] where the velocity is

the control signal. The state vector of the holonomic robot is

chosen as x = (r, ṙ) = (rx, ry, ṙx, ṙy). The acceleration u and the

velocity ṙ are bounded. The objective function in [10] has a dif-

ferent form as compared to [5] and [7]. It was shown that for a

given set of u the system is stable in the Lyapunov sense (but not

asymptotically). However, this property is not enough to ensure

convergence, since the case of ‖ṙ‖ = 0 far from the goal cannot

be excluded. This is prevented by a timeout condition in their

proposed algorithm.

Another improvement of the original DWA is presented in

[13], called I-DWA. This variant adds convergence improve-

ments to the original method by pre-calculating an ideal control

action that would make the robot converge to the goal if no ob-

stacles were present. The objective function is similar to the one

in [5] and favors control actions close to the ideal ones. Because

no global information about obstacles is taken into account, the

convergence is not actually ensured.

The above mentioned approaches have the same property of

assuming a point-like or circle-shaped robot. A circle-shaped

robot can also be reduced to a point if the obstacles are dilated

by the robot radius. This is on one hand a very effective and

simple assumption if the robot actually has a circular shape or

the bounding circle can be used for representing the robot in the

collision detection phase of the algorithm. On the other hand,

if the shape considerably differs from a circle and there are nar-

row passages between obstacles, this assumption fails and the

algorithms report that no collision-free path exists.

To overcome this limitation, some approaches were also pro-

posed that take the vehicle shape into account. In [6] robot shape

is handled by using precalculated lookup tables that contain lo-

cal data about collision risk depending on the current velocity

and obstacle configuration. This approach is memory intensive
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but a real-time local obstacle avoidance can be obtained. The

approach in [8] solves the task analytically for polygonal robots

without the use of lookup tables. These two approaches assume

that obstacles are represented by points (e.g. obtained by laser

range sensors). This representation is efficient only in the case of

local navigation taking only the neighborhood of the robot into

consideration, because in a global case too many obstacle points

would have to be stored and handled. The method presented in

[14] uses the same obstacle model. Unlike others, it delivers an

elegant and analytical solution by "wrapping" former existing

obstacle avoidance approaches (e.g. potential field methods) in

a framework that allows consideration of robot shape and kine-

matic and dynamic constraints, while it still has the limitation

of locality. Since only local methods can be "wrapped", their

inherent convergence problems are not solved.

The authors of the present paper have also proposed a DWA-

based approach for mobile robot navigation, the Global Dy-

namic Window Approach using Receding Horizon Control

(GDWA/RHC) [17, 18]. It works in velocity space and as-

sumes a non-holonomic and circular robot model, similar to [5]

and [13]. Global information is taken into account by a local-

minima-free navigation function which serves as a basis for op-

timization. The appropriate control is chosen from the actual

dynamic window by a model predictive method. The objective

function has no weighted terms and the control law looks like as

follows:

u(·) = arg min
u(·)

NF
(
rx(t + T ), ry(t + T )

)
(1)

where NF : R2 → R is the navigation function defined on the

configuration space of the robot, rx(t + T ) and ry(t + T ) are the

predicted robot position coordinates at the end of a time horizon,

which can be derived from the motion equation of the robot.

3 Consideration of Robot Shape

In the remaining part of the paper we describe a model predic-

tive navigation strategy that also makes use of a local-minima-

free navigation function to ensure reaching the target success-

fully. In addition to the above mentioned approaches it takes the

shape of the robot into account as well. The obstacle represen-

tation is not restricted to points, but a polygonal obstacle model

is used instead.

3.1 Robot Model

The shape of the robot is assumed to be polygonal. If con-

sidering only planar motion, the position and orientation of the

robot in the global coordinate system (also referred to as config-

uration q) can be described by three independent position and

orientation coordinates q = [x, y, ϕ]T . We further assume that

the robot is holonomic which means that it has three degrees of

freedom as well, i.e. it is fully actuated. The robot model is il-

lustrated in Figure 1. The orientation ϕ is the angle between the

x-axes of the global and the robot coordinate frame. Since the

robot is holonomic, the directions of the translational velocity v

and acceleration a are independent of the robot orientation. The

velocity direction is denoted by ϑ, the direction of the accelera-

tion a relative to v is denoted by α.

Fig. 1. Robot model

The control signal u = [ax, ay, β]T is the vector of trans-

lational and angular accelerations. Under this assumption the

robot can be considered as a double integrator in the configu-

ration space and its motion equation has the following simple

form:

q̈ = u (2)

Our goal is to control the robot to a given goal configuration qg

and it has to stop there, i.e. q̇ = 0. For that reason we choose

the state vector of the system to x = [q, q̇]T = [x, y, ϕ, vx, vy, ω]T

and the state equation becomes

ẋ =

 0 I

0 0

 x +

 0

I

 u. (3)

It can be written in scalar form as well:

ẋ = vx = |v| · cosϑ

ẏ = vy = |v| · sinϑ

ϕ̇ = ω

v̇x = ax = |a| · cos(α + ϑ) (4)

v̇y = ay = |a| · sin(α + ϑ)

ω̇ = β

where vx, vy, ax, ay are the Cartesian coordinates of translational

velocity and acceleration in the global frame, respectively. ω

stands for angular velocity, β for angular acceleration of the

robot.

The dynamic properties of the robot are taken into account by

constraints on velocity and acceleration magnitudes:

|v| ≤ vmax

|ω| ≤ ωmax

|a| ≤ amax (5)

|β| ≤ βmax

For simplicity, the translational velocity and acceleration mag-

nitudes |v| and |a| will be written as v and a in the sequel.
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Since we have magnitude constraints on translational veloc-

ity and acceleration, it makes sense to use polar coordinates for

these instead of Cartesian ones. Let us redefine the state vector

as x = [x, y, ϕ, v, ϑ, ω]T , the control vector as u = [a, α, β]T and

perform the following change of coordinates:

v =

√
v2

x + v2
y (6)

ϑ = arctan(vy/vx) (7)

The time derivative of (6) is obtained as follows:

v̇ =
1

2

(
v2

x + v2
y

)− 1
2
·
(
2vxv̇x + 2vyv̇y

)
=

=
vxa cos(α + ϑ) + vya sin(α + ϑ)√

v2
x + v2

y

=

=
vxa cosα cosϑ√

v2
x + v2

y

−
vxa sinα sinϑ√

v2
x + v2

y

+
vya sinα cosϑ√

v2
x + v2

y

+
vya cosα sinϑ√

v2
x + v2

y

=

=
a cosα · v cos2 ϑ

v
−

v cosϑ · a sinα sinϑ

v

+
v sinϑ · a sinα cosϑ

v
+

a cosα · v sin2 ϑ

v
=

= a cosα
(
cos2 ϑ + sin2 ϑ

)
=

= a · cosα (8)

Let us do the same for (7):

ϑ̇ = −
vy

v2
x + v2

y

· v̇x +
vx

v2
x + v2

y

· v̇y

= −
vy

v2
· a cos(α + ϑ) +

vx

v2
· a sin(α + ϑ)

= −
vya(cosα cosϑ − sinα sinϑ)

v2

+
vxa(sinα cosϑ + cosα sinϑ)

v2

= −
v sinϑ · a cosα cosϑ

v2
+

a sinα · v sin2 ϑ

v2

+
a sinα · v cos2 ϑ

v2
+

v cosϑ · a cosα sinϑ

v2

=
1

v
· a · sinα ·

(
sin2 ϑ + cos2 ϑ

)
=

1

v
· a · sinα (9)

After the change of coordinates, the motion equation of the robot

has the following form:

ẋ = v · cosϑ

ẏ = v · sinϑ

ϕ̇ = ω

v̇ = a · cosα = |at | (10)

ϑ̇ =
1

v
· a · sinα =

1

v
|ac|

ω̇ = β

It can be seen that the motion equation has become nonlinear.

However, this form has a straightforward representation of the

effect of tangential and centripetal accelerations at and ac (see

Figure 1) which determine the change in velocity magnitude and

direction, respectively. Moreover, this form is better suited to

our application because the set of allowed controls – the dy-

namic window – is defined in polar coordinates, as it will be

described later in Section 5.

3.2 Configuration space

We recall some considerations regarding the configuration

space (also referred to as C-space) of a planar robot with

polygonal shape from [1]. The configuration space C of a 2-

dimensional robot that can translate and rotate in the workspace

W = R2 is the manifold R2 × S1. The obstacle region O ⊂ W

and the robot R ⊂ W are given by a polygonal model (an ex-

ample is depicted in Figure 2). The configuration space obstacle

region Cobs ⊂ C is defined as

Cobs = {q ∈ C | R(q) ∩ O , ∅} (11)

which consists of all configurations q for which the transformed

robot R(q) is in collision with the obstacle region O.

Fig. 2. Polygonal robot and obstacles. O = O1 ∪ O2 is the obstacle region,

R(qI ) is the robot in the initial configuration, R(qG) is the robot in the goal

configuration.

An algorithm for collision detection of convex polygonal

shapes is described in [1, pp. 164-166]. In the case of noncon-

vex obstacle and robot shapes these can be considered as the

union of their convex parts. The nonconvex collision detection

problem can be transformed into the collision detection of each

convex robot part with each convex obstacle part. For a given

configuration q the collision check has a complexity of

O

 n∑
i=1

m∑
j=1

kR,i · kO, j

 , (12)
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where n and m stand for the number of convex robot and obstacle

subpolygons, respectively, kR,i denotes the vertex number of the

i-th robot subpolygon (i ∈ {1, . . . , n}) and kO, j stands for the

vertex number of the j-th obstacle subpolygon ( j ∈ {1, . . . ,m}).

A useful method for minimal convex decomposition of simple

polygons is proposed in [9].

To obtain an explicit model of Cobs, we discretize the config-

uration space with resolutions kx, ky and kϕ, which are positive

integers. Let

∆q1 = [xmax/kx, 0, 0]T

∆q2 = [0, ymax/ky, 0]T (13)

∆q3 = [0, 0, π/kϕ]T

and let a grid point q′ be expressed as

q′(i, j, k) = i∆q1 + j∆q2 + k∆q3, (14)

where i ∈ {0, . . . , kx}, j ∈ {0, . . . , ky} and k ∈ {−kϕ, . . . , kϕ}. Ev-

ery grid point q′(i, j, k) is tested for collision and the C-space

obstacle region is redefined as

Cobs = {q ∈ C | R ( f (q)) ∩ O , ∅}, (15)

where f (q) is a function that returns the grid point q′(i, j, k) that

lies closest to q:

i = bx · kx/xmax + 0.5c ,

j =
⌊
y · ky/ymax + 0.5

⌋
, (16)

k =
⌊
ϕ · kϕ/π + 0.5

⌋
.

Figure 3 illustrates Cobs for the environment depicted in Fig-

ure 2. Using this representation, the motion planning problem of

a planar polygonal robot can be expressed as a planning problem

of a single translating point in the (3-dimensional) configuration

space. Note that the orientation angles −π and +π are identi-

fied, in other words the ϕ-axis "wraps around", which needs to

be taken into account in further steps of the algorithm. It can

be seen that the C-space obstacle region looks like as if it were

built up of small "bricks" which is the result of discretization.

The whole process has a complexity of

O

kx · ky · kϕ ·

n∑
i=1

m∑
j=1

kR,i · kO, j

, (17)

which means that at higher resolutions and in the case of com-

plicated environment or robot shape the process of obtaining an

explicit model for the configuration space is quite time consum-

ing.

4 Navigation Function

As mentioned above, the task is to find a collision-free path

in the C-space between initial and target configurations. The

convergence can only be guaranteed if global information about

free and occupied areas are taken into account. Similar to [5]

Fig. 3. Representation of Cobs using configuration space discretization (kx =

ky = 60; kϕ = 18)

and [7], we utilize a navigation function to achieve this. A navi-

gation function (NF) is a real-valued function defined on the un-

occupied part of the configuration space C f ree = C \Cobs, which

has exactly one minimum, namely at the goal configuration qG.

To define such a function, it is convenient to use the dis-

cretized configuration space model (14). Starting from q′
G

=

f (qG), the NF values at every reachable q′ ∈ C f ree are obtained

by a wavefront propagation algorithm [1] (see Algorithm 1).

Algorithm 1 Wavefront propagation algorithm

1: Initialize W0 = {q′
G
}; s = 0

2: Initialize Ws+1 = ∅

3: for all q′ ∈ Ws do

4: NF(q′) = s

5: Insert all unexplored neighbors of q′ into Ws+1

6: end for

7: if Ws+1 = ∅ then

8: return

9: else

10: s := s + 1

11: Go to step 2.

12: end if

We use 1-neighborhood for wavefront propagation, which is

defined as

N1(q′) = {q′ ± ∆qm | 1 ≤ m ≤ 3}, (18)

if q′ is not a boundary grid point. Attention has to be paid to

the boundaries during the wavefront propagation, especially if

ϕ ∈ {−π,+π} because these angles are identified, hence ϕ has

actually no boundary. Note that we suppose that C f ree is either

simply connected or qI and qG are in the same connected sub-

manifold of C f ree. This is necessary in order to let the initial

configuration to be reached by the wavefront propagation algo-

rithm.
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A cross section of the discrete navigation function at ϕ = ϕG

is shown in Figure 4. The different colors represent different

navigation function values, the black area shows occupied con-

figurations and the "×" mark stands for the goal configuration,

where the wavefront propagation was started.

Fig. 4. Cross-section of NF(q′) at ϕ = ϕG

At this point, NF values have been assigned to grid points.

As any configuration q ∈ C f ree is allowed for the robot, NF val-

ues in all these points should be determined. In the simplest

case, a zero-order interpolation could be applied. This would,

however, be unsuitable for our purpose because the resulting

function would be piecewise constant thus there could be mo-

tions that do not lower the function value while approaching

the target. Instead, we use trilinear interpolation between grid

points. It has the convenient property of having no local minima

if neighboring points do not have equal values, which is ensured

by the wavefront propagation algorithm together with the used

1-neighborhood.

5 Model Predictive Control Algorithm

The obstacle avoidance problem is considered as a con-

strained optimization problem over the control space of the

robot, similar to (1). The objective function which has to be

minimized is the navigation function itself, constructed as de-

scribed in Section 4.

A control u(·) : [t, t + T ]→ [0, amax] × S1 × [−βmax, βmax] has

to be determined at every time instant t which minimizes the NF

value at the end of a time horizon [t, t + T ].

u(·) = arg min
u(·)

NF (q(t + T )) (19)

where q(t+T ) can be derived from the motion equation. At t the

control u(t) has to be applied to the robot. Dynamic constraints

of the robot are taken into account by velocity and acceleration

bounds (5). Safety is ensured by a constraint of admissible con-

trols. A control u(·) is admissible, if

q(τ) < Cobs, (20)

∀τ ∈ [t, t + T ] ∪ [t + T, t + T + Tbrake]

We assume that a maximal braking control u∗(·) is applied in the

time interval [t+T, t+T +Tbrake] where Tbrake is the braking time

needed to halt the robot beyond the horizon. The value of Tbrake

varies depending on the actual velocity at t + T . This means that

only those controls are admissible that do not cause a collision

inside the horizon and allow the robot to stop safely beyond the

horizon.

To make the problem more tractable and computationally ef-

ficient, we assume discrete time and piecewise constant control.

The horizon length is T = hTs, h ∈ Z+, where Ts denotes sam-

pling time. Piecewise constant control means that u(τ) = u(t)

for all τ ∈ [t, t + Ts]. Under this assumption we use a discrete-

time version of the robot motion model (10):

x(t + Ts) = x(t) + v(t) · cosϑ(t) · Ts

y(t + Ts) = y(t) + v(t) · sinϑ(t) · Ts

ϕ(t + Ts) = ϕ(t) + ω(t) · Ts

v(t + Ts) = v(t) + a · cosα · Ts (21)

ϑ(t + Ts) = ϑ(t) +
1

v(t)
· a · sinα · Ts

ω(t + Ts) = ω(t) + β · Ts

Note that this motion model has a singularity at zero velocity

thus when v(t) is small (e.g. at the beginning or at the end of

motion), (21) becomes numerical unstable. This inconvenience

is eliminated by the following modification. If v(t) ≤
∣∣∣ a·sinα·Ts

2π

∣∣∣,
then ϑ(t + Ts) is obtained by

ϑ(t + Ts) = ϑ(t). (22)

In other words, if the change in ϑ would be greater than 2π,

then ϑ is left unchanged.

During the optimization process we have to choose a control

value at every discrete time instant that satisfies (20) and (5) and

minimizes (19). To do this, the control space is also quantized,

which results in a countable set of control vectors. The admissi-

ble control vectors that are inside the dynamic window are called

candidate controls. We take each candidate control value from

the dynamic window and calculate its effect to the robot for the

duration of hTs using (21). The control resulting in the small-

est predicted navigation function value ÑF (q(t + hTs)) will be

chosen and applied to the robot in the time interval [t, t + Ts].

The method has been tested in simulations. The results pre-

sented here were obtained for the robot already shown in Fig-

ure 2. The dynamic properties were chosen to vmax = 0.75m/s,

ωmax = 240deg/s, amax = 0.5m/s2 and βmax = 240deg/s. We

use Ts = 0.1s sampling period and a variable horizon length

h(t) = max

(
1 +

⌈
|v(t)|

amaxTs

⌉
, 1 +

⌈
|ω(t)|

βmaxTs

⌉
, 2

)
. (23)

Note that this results in a horizon length depending on the

actual velocity which causes the robot to "look further" when

traveling at higher velocities.

Figure 5 shows the resulting trajectory in the C-space from qI

to qG. As it can be seen, a smooth path is obtained due to the

effect of limited accelerations.
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Fig. 5. Trajectory in the configuration space

Fig. 6. Robot motion in the workspace

The same path transformed back into the workspace is de-

picted in Figure 6. Notice how the robot changes its orientation

in order to be able to travel through the narrowing between the

two obstacles.

In Figure 7, the translation velocity profile of the path can

be observed. The robot approaches its maximum speed when

traveling far from obstacles and keeps going fast even in the

narrowing. The horizon length profile h(t) is shown in the next

diagram. As it can be seen, the horizon length follows the veloc-

ity according to (23). The evolution of NF values during motion

is depicted in Figure 7 as well. The dotted line shows the pre-

dicted values ÑF (q(t + h(t)Ts)), while the solid line illustrates

NF (q(t)), the navigation function values actually realized by the

robot. It can be seen that – as expected – the predicted values

are always smaller than the actual ones. As a matter of fact, this

is what makes the robot keep going until the goal is reached. It

is interesting to examine the braking process while approaching

Fig. 7. Velocity profile and NF descent during motion

the goal (from t = 6.3s to end). It can be seen that the predicted

NF value does not change significantly, it is near zero during

this phase. That is because the goal is already near enough to be

"visible" inside of the horizon.

6 Conclusions

A dynamic window-based navigation approach was presented

for holonomic polygonal robots. An iterative search is per-

formed in the control space to obtain a control sequence that

drives the robot to the goal safely and quickly. The search uti-

lizes the idea of model predictive control, and a navigation func-

tion serves as optimization objective, defined on the configura-

tion space. Although the search is performed locally in a short

time horizon, the global distance information represented by the

NF ensures convergence to the goal.

The only shortcoming of the method is the large computa-

tional cost of the C-space obstacle modeling process. This limits

application in changing environments. One direction for future

work is simplifying this process or evolving an analytical model

for the C-space obstacle region.

Another improvement of this method would be the extension

to robot models having differential constraints. Many real robot

platforms are not holonomic but are equipped with e.g. differ-

ential drive or Ackerman steering. The method presented here

cannot be applied directly to these because the navigation func-

tion that drives the robot towards the goal presumes that motion

in every direction is allowed, which is only true in the absence

of differential constraints.
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