
Ŕ periodica polytechnica

Electrical Engineering

and Computer Science

56/4 (2012) 95–104

doi: 10.3311/PPee.7163

http://periodicapolytechnica.org/ee

Creative Commons Attribution

RESEARCH ARTICLE

Joint Constrained Differential Inverse

Kinematics Algorithm for Serial

Manipulators

Dániel András Drexler / István Harmati

Received 2012-05-31, accepted 2013-01-07

Abstract

This paper presents a methodology for avoiding joint limits

of robot manipulators in the solution of the differential inverse

kinematics problem. A nonlinear transformation is applied to

the joint limits, leading to a new kinematics formulation defined

in the space of the transformed variables. The introduced trans-

formation ensures that the joint variables stay between joint lim-

its. Optimality conditions are converted into the transformed

joint space, and closed-loop differential inverse kinematics is

applied. The effectiveness of the introduced method is demon-

strated on a simulational example.

Keywords

differential inverse kinematics · joint constraints · joint space

transformation

Acknowledgement

This work was supported in part by the Hungarian National

Scientific Research Foundation grant OTKA K71762. It is con-

nected to the scientific program of the "Development of quality-

oriented and harmonized R+D+I strategy and functional model

at BME" project, supported by the New Hungary Development

Plan (Project ID: TÁMOP-4.2.1/B-09/1/KMR-2010-0002).

Dániel András Drexler

Department of Control Engineering and Information Technology, Faculty of

Electrical Engineering and Informatics, Budapest University of Technology and

Economics, Magyar tudósok körútja 2., H-1117 Budapest, Hungary

e-mail: drexler@iit.bme.hu

István Harmati

Department of Control Engineering and Information Technology, Faculty of

Electrical Engineering and Informatics, Budapest University of Technology and

Economics, Magyar tudósok körútja 2., H-1117 Budapest, Hungary

1 Introduction

Inverse kinematics is one of the key issues in the motion plan-

ning of serial manipulators. Inverse kinematics is the problem

of finding the joint variables (joint angles for rotational, and dis-

placement for prismatic joints), that result in the desired end ef-

fector position and orientation. In typical industrial applications

the manipulators have special geometry, i.e. they have 6 degrees

of freedom (DOF), the first 3 joints determining the position of

the end effector (regional manipulator), the last 3 joints deter-

mining the orientation of the end effector (wrist joint), so the in-

verse position and inverse orientation problem can be partitioned

into two independent systems of equations [14], [15]. These

manipulators are thus called decomposable or wrist-partitioned

ones, and their inverse kinematics problem can be solved an-

alytically. However, for manipulators with more complex ge-

ometry, or more degrees of freedom, the analytical solution to

the inverse kinematics problem may not exists. In this case, the

inverse kinematics problem is solved on the differential level,

using the relationship between the joint velocities and the end

effector velocities described by the manipulator Jacobian. The

inverse kinematics problem is thus solved in the tangent space

of the joint variables, and the joint variables are acquired by in-

tegration [7], [4], [5], [6].

However, the joint variables are typically constrained to be

in a certain interval, determined by the physical limits of the

joints (e.g. the maximum amount of rotation or translation of

a rotational or prismatic joint respectively). This implies that

only those solutions of the inverse kinematics problem can be

accepted, that are in between these joint limits. If the inverse

kinematics problem can be solved analytically, then this prob-

lem reduces to choosing a solution that does not exceed the joint

limits, e.g. [9]. However, if differential inverse kinematics is

applied, then the joint variables are acquired by integration of

joint velocities, and the joint limits can be easily violated.

The differential inverse can be solved as a quadratic program-

ming problem, by building the joint constraints into the numeri-

cal optimization problem [13]. A weighted least squares (WLS)

pseudoinverse of the Jacobian can be applied as well [12], and

the joints can be kept away from the limits by applying a cost

Joint Constrained Differential Inverse Kinematics Algorithm for Serial Manipulators 952012 56 4

http://periodicapolytechnica.org/ee
http://creativecommons.org/licenses/by/3.0/

function that has great values near the joint limits, and by in-

corporating that cost function into the WLS inverse. The joints

can also be driven away from the joint limits using the nullspace

motions of the manipulator if the manipulator is redundant [8].

As an alternative solution, the joint limits can be built into the

dynamical model of the manipulator, and the planning can be

carried out using numerical optimization [11]. Neural networks

also provide alternative approaches [10]. These solutions typ-

ically use the nullspace of the manipulator, that are generally

utilizable only if the manipulator is redundant, and they can not

guarantee that the joint limits are not exceeded, or based on nu-

merical methods that are not suitable for real-time applications.

In this article we propose a new methodology that guaran-

tees that the joint limits will not be violated, with good tracking

performace, even if some of the joints are at their limits. This

is achieved by transforming the joint variables to a fictive joint

space, using a special nonlinear transformation. The properties

of the transformation guarantee that the joint limits will stay be-

tween the limits. The introduced methodology is more than a

simple saturation in a sense that the joint limits are reached in

a continuous manner due to the properties of the transforma-

tion functions. Typical solutions to this problem in the literature

use the nullspace of the kinematic mapping, and obtain joint

limit avoidance as the result of an optimization task. These ap-

proaches however require kinematic redundancy, and they con-

sume the extra degrees of freedom of the manipulator, thus the

utilization of the redundancy for other optimization purposes,

e.g. obstacle avoidance, becomes impossible. The proposed

method ensures that the joint variables acquired as the solution

of the differential inverse kinematics problem remain between

the joint limits, without explicitly using the nullspace of the ma-

nipulator arising from kinematic redundancy. This implies, that

this algorithm can be applied to nonredundant manipulators as

well, and in case of redundant manipulators, the redundancy is

left for other optimization purposes. In order to demonstrate

this, we solve the differential inverse kinematics problem of a

nonredundant manipulator as an example.

The motion planning is based on the differential geometric

model of the robot, thus some basic issues on robot modeling

are discussed in Section 2. The nonlinear joint transformation

and its effect on the differential inverse kinematics algorithm is

discussed in Section 3. An example for the joint transformation

and the solution of the inverse kinematics of a common PUMA

manipulator is shown in Section 4. The paper ends with the

conclusion in Section 5.

2 Preliminaries

Rigid body motions can be characterized by transformations

on the Special Euclidean group S E(3), that is a subgroup of

GL(4), the group of general 4 × 4 matrices. Elements of S E(3)

are composed of 3× 3 orthogonal matrices from the Special Or-

thogonal group S O(3), i.e. orhogonal matrices with determinant

+1, defining the rotation (or orientation), and 3-dimensional

vectors from R3 that define the translation (or position) [2], [3].

An element of S E(3) will be denoted by g and used in the ho-

mogeneous form

g =

 R p

0 1

 (1)

where R ∈ S O(3) and p ∈ R3. The group S E(3) is a Lie group

with the Lie algebra elements se(3) together with the Lie bracket

[·, ·] as binary operation [1]. An element of se(3) is composed

of a 3 × 3 skew-symmetric matrix ω̂ ∈ so(3) corresponding

to the cross product operator of the angular velocity, and a 3-

dimensional vector v ∈ R3 corresponding to linear velocity. An

element of se(3) is called a twist, and is denoted by ξ̂ if it is in

the matrix form

ξ̂ =

 ω̂ v

0 0

 (2)

and by ξ if it is in the 6-vector form

ξ =

 v

ω

 , (3)

where there is an isomorphism between ω and ω̂, defined as

ω =


ωx

ωy

ωz

→ ω̂ =


0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

 . (4)

The differential equation of a general point p rotated by a twist

ξ can be described by

ṗ(t) = ω × (p(t) − q) (5)

where ω is the unit length axis of rotation, and q is an arbitrary

point on the axis of rotation. Introducing the term v = −ω × q,

the differential equation in homogeneous form is ṗ

0

 =

 ω̂ v

0 0

  p

1

 = ξ̂

 p

1

 . (6)

The solution of the linear differential equation (6) with initial

condition p(0) is  p(t)

1

 = eξ̂t
 p(0)

1

 (7)

where t is the generalized time parameter. This parameter will

be the joint variable in the applications, and will be denoted by θ.

Note that all the vector quantities are described in a fixed refer-

ence frame (also called reference frame), as it will be throughout

the paper.

Each joint of the manipulator can be described by the corre-

sponding twist vector. In order to do so, first choose a fixed ref-

erence frame and a reference configuration (also called the home

configuration), where the joint variables are zero. For each joint,

define the joint twists as follows:

• If joint i is a rotational joint, let ωi be a unit vector along the

joint axis, and qi an arbitrary point on the joint axis. The term

vi is calculated as vi = −ωi×qi, and the twist vector is formed

as ξi =
[

vT
i

ωT
i

]T
.

Per. Pol. Elec. Eng. and Comp. Sci.96 Dániel András Drexler / István Harmati

• If joint i is a prismatic joint, then ωi = 0, and let vi be a unit

vector along the joint axis. Then the joint twist is formed as

ξi =
[

vT
i

0
]T

.

Let the orientation and position of the end effector in the ref-

erence frame and reference configuration be denoted by g(0) ∈

S E(3). Then the end effector position and orientation in a gen-

eral θ configuration for an n-DOF manipulator is defined by the

product of exponentials formula

g(θ) = eξ̂1θ1 eξ̂2θ2 . . . eξ̂nθn g(0). (8)

This is also referred to as the forward kinematics map, or the

forward kinematics problem, that specifies the relationship be-

tween the end effector pose and the joint variables in a fixed

reference frame. The differential motion of the end effector can

be acquired by differentiating the forward kinematics map, and

is formulated as

ẋ =

n∑
i=1

ξ′i θ̇i, (9)

where ẋ is the end effector linear and angular velocity, n is the

number of joints of the manipulator, ξ′
i

is the joint twist i in

the actual configuration θ(t), that can be acquired from the joint

twists in the home configuration (where θ = 0) using the Adjoint

transformation [2]:

ξ′i = Ad
eξ̂1θ1 eξ̂2θ2 ...eξ̂i−1θi−1

ξi. (10)

The differential motion of the end effector can be expressed in a

matrix form as

 ve

ωe

 =
[
ξ′

1
ξ′

2
. . . ξ′n

]

θ̇1

θ̇2

...

θ̇n



= J


θ̇1

θ̇2

...

θ̇n

 (11)

where ve is the linear velocity and ωe is the angular velocity of

the end effector, J is the manipulator Jacobian, formed by the

joint twists in the actual configuration, and θ̇1, θ̇2, . . ., θ̇n are the

joint velocities. The differential inverse kinematics problem of

a robot manipulator is based on solving the linear equations de-

fined by (11) to get the joint derivatives for the desired end effec-

tor velocity, and integrating the joint velocity vector θ̇ to get the

joint variables. If the joint variables are limited, these can not be

taken into consideration during integration, so other alternatives

need to be investigated to ensure that the joint variables stay be-

tween their limit values. The remaining of this paper presents a

new methodology to ensure proper joint variable characteristics.

It is important to mention that the inversion of (11) may be hard

if the Jacobian is singular, however later on we assume that the

Jacobian is full rank in all cases.

Fig. 1. A possible candidate for function αi

Fig. 2. A possible candidate for function βi

3 Nonlinear Joint Transformation

In this section a nonlinear joint transformation is introduced

in order to redefine the kinematic mapping on the domain con-

strained by the joint limits. Joint variables (θi) are transformed

to the fictive joint variables (zi) using a function that is continu-

ous, monotonously increasing and open on the interval (θL
i
,θU

i
),

where θL
i

is the lower limit for joint i and θU
i

is the upper limit

for joint i. Denote this function by αi, thus

zi = αi (θi) . (12)

A possible candidate for such a function can be seen in Figure 1.

Since this function is monotonously increasing and continuous

on an open interval, its inverse exists. Denote this inverse by βi:

θi = βi (zi) = α−1
i (zi) . (13)

The domain of the function βi is [−∞,∞], however its range is

(θL
i
, θU

i
) as shown in Figure 2. The main point of the introduced

methodology is that the kinematic equations will be written in

terms of the fictive variables (zi), and the integration will be done

in the fictive joint space, and finally the real joint variables will

be acquired using the βi functions. Since the range of these βi

functions is
(
θL

i
, θU

i

)
, the real joint variables will always stay be-

tween the joint limits.

The forward kinematics mapping in terms of the fictive zi joint

variables is

g(z1, z2, . . . , zn) = eβ1(z1)ξ̂1 eβ2(z2)ξ̂2 . . . eβn(zn)ξ̂n g(0) (14)

with the ξ̂i twists being defined in the home configuration. In

order to perform differential inverse kinematics, we need to cal-

culate the manipulator Jacobian based on (14), so we need to

examine the motions generated by the joints of the manipulator.

The velocity of the end effector due to the motion of joint i is

defined by [2]

Vi =
∂g(z)

∂zi

żig
−1(z), (15)

Joint Constrained Differential Inverse Kinematics Algorithm for Serial Manipulators 972012 56 4

so the total end effector motion is characterized by ve

ωe

 =

n∑
i=1

Vi =

n∑
i=1

∂g(z)

∂zi

żig
−1(z). (16)

The derivative of the forward kinematics mapping with respect

to zi is

∂g(z)

∂zi

= eβ1(z1)ξ̂1 . . . eβi−1(zi−1)ξ̂i−1
∂βi(zi)

∂zi

ξ̂ie
βi(zi)ξ̂i . . . eβn(zn)ξ̂n g(0)

(17)

and since

g−1(z) = g−1(0)e−βn(zn)ξ̂n . . . e−β2(z2)ξ̂2 e−β1(z1)ξ̂1 (18)

the velocity vector according to (15) is

Vi = eβ1(z1)ξ̂1 . . . eβi−1(zi−1)ξ̂i−1
∂βi(zi)

∂zi

ξ̂ie
−βi−1(zi−1)ξ̂i−1 . . . e−β1(z1)ξ̂1 żi

(19)

Since
∂βi(zi)

∂zi

is a scalar valued function, it commutes with the

matrix exponentials in (19), and according to (13), βi(zi) = θi

holds, thus (19) can be reformulated as

Vi =
∂βi(zi)

∂zi

eξ̂1θ1 . . . eξ̂i−1θi−1 ξ̂ie
−ξ̂i−1θi−1 . . . e−ξ̂1θ1︸ ︷︷ ︸

Ad
eξ̂1θ1 ...eξ̂i−1θi−1

ξi

żi (20)

The underbrace term in the right-hand side of (20) is the Adjoint

transformation [2] of the twist ξi in the joint configuration θ, thus

the velocity can be expressed as

Vi =
∂βi(zi)

∂zi

Ad
eξ̂1θ1 ...eξ̂i−1θi−1

ξiżi =
∂βi(zi)

∂zi

ξ
′

i żi (21)

where ξ
′

i
is the ith column of the manipulator Jacobian in the

joint configuration θ. According to these results the mapping

between the tangent space of the end effector and the tangent

space of the z transformed joint variables is

ẋ = J(θ)dβ(z)ż (22)

where J is the manipulator Jacobian, z is the vector of the trans-

formed joint variables, ẋ is the velocity of the end effector, and

dβ is a diagonal matrix formed as

dβ =



∂β1(z1)

∂z1

0 . . . 0

0
∂β2(z2)

∂z2

. . . 0

...
...

. . .
...

0 0 . . .
∂βn(zn)

∂zn


. (23)

Since the functions βi are strictly monotonously increasing, the

derivatives are positive, so it is true for all i = 1, . . . , n, that

∂βi(zi)/∂zi > 0. Denote the relationship between the time

derivatives of z and the end effector velocity by Jc and call it

the constrained Jacobian

Jc = Jdβ(z). (24)

This term is only introduced for notational simplicity, it will

only be used in derivations in the remaining of the paper. The ef-

fect of the joint transformation on the Jacobian arises as weight-

ing factors for each column of the Jacobian, thus each twist is

weighted with the derivative of the inverse transformation func-

tion.

3.1 Optimality conditions in the transformed joint space

The solution of the differential inverse kinematics requires the

inversion of the Jacobian matrix (11), as it was already stated

in Section 2. If the manipulator is kinematically redundant,

then the manipulator Jacobian is not square, and a generalized

inverse is used. The most typical generalized inverse is the

Moore-Penrose pseudoinverse, which chooses a solution from

the tangent space of the joint variables that has the least Eu-

clidean norm. However, if the kinematics is expressed in the

transformed joint variables, the Moore-Penrose pseudoinverse

of the constrained Jacobian does not yield a solution that has the

least Euclidean norm in the tangent space of the original joint

variables. In this subsection we show how to calculate the pseu-

doinverse that minimizes the Euclidean norm of the joint veloc-

ities for redundant manipulators, if the kinematics is formulated

in the transformed joint space.

First of all examine the relationship between the tangent

spaces of the real and the transformed joint variables:

θ̇ = dβ(z)ż (25)

that can be verified e.g. by substituting (25) into (22). The opti-

mality condition is given in the tangent space of θ, i.e.

min
〈
θ̇, θ̇

〉
, (26)

where < ·, · > denotes the scalar product. However, the motion

planning is carried out in the tangent space of the z transformed

variables, so the optimality criterion also has to be transformed

to

min 〈dβ(z)ż, dβ(z)ż〉 . (27)

Since dβ(z) is a symmetric matrix, this condition can be refor-

mulated as

min
〈
dβ2(z)ż, ż

〉
. (28)

The optimization problem becomes

minimize
〈
dβ2(z)ż, ż

〉
sub ject to

ẋ = Jcż.

The problem can be solved using Lagrange multipliers. Intro-

duce the Lagrangian function

L =
〈
dβ2(z)ż, ż

〉
+ 〈λ, Jcż − ẋ〉 . (29)

Per. Pol. Elec. Eng. and Comp. Sci.98 Dániel András Drexler / István Harmati

Calculating the derivatives of the Lagrangian (29) with respect

to ż and λ and equating them to zero results in

∂L

∂ż
= 2dβ2(z)ż + JT

c λ = 0 (30)

∂L

∂λ
= Jcż − ẋ = 0. (31)

Solving (30) for ż yields

ż = −
1

2
dβ−2(z)JT

c λ. (32)

Substituting (32) into (31) and solving for λ yields

λ = −2
(
Jcdβ−2(z)JT

c

)−1
ẋ. (33)

Substituting (33) back into (32) results in

ż = dβ−2(z)JT
c

(
Jcdβ−2(z)JT

c

)−1
ẋ, (34)

thus the generalized inverse for Jc that satisfies the optimality

criterion (28) is

J#
c = dβ−2(z)JT

c

(
Jcdβ−2(z)JT

c

)−1
. (35)

Substituting the expression for the constrained Jacobian defined

by (24), the generalized inverse can be given in terms of the

original Jacobian as

J#
c = dβ−1(z)J#, (36)

where J# is the Moore-Penrose pseudoinverse of the manipula-

tor Jacobian.

Note that this result can be obtained, if we would calculate

the joint velocities in a conventional way as

θ̇ = J# ẋ, (37)

and transform the joint velocities to the transformed joint space

using the inverse of (25):

ż = dβ−1(z)θ̇. (38)

This means that the differential inverse kinematics can be car-

ried out in a comfortable way (see Figure 3). We can calculate

the joint velocities using any conventional method (e.g. (37)),

then transform the velocities to the trasformed joint space us-

ing (38), acquire the actual values of the z transformed variables

through integration, then transform the result back to the real

joint space using (13). In Figure 3, the blocks that incorpo-

rate joint constraints into the algorithm are depicted as dashdot

boxes. Note that the algorithm is the same for nonredundant ma-

nipulators as well, the only difference is that the joint velocities

are acquired as θ̇ = J−1 ẋ, i.e. the inverse of the Jacobian may

be used instead of its pseudoinverse, if the manipulator has the

same degrees of freedom as the dimension of the task space (the

manipulator is not underactuated).

A straightforward effect of the transformation after the inte-

gration is that the joint variables remain in the desired range.

However, the effect of the trasformation before the integration

should be further analysed. If a joint variable θi is near its limit,

then the derivative of the function βi is close to 0. Formally,

if θi → θL
i

or θi → θU
i

, then ∂βi/∂zi → 0. This can be inter-

preted using (36) as if a joint limit is approached, the effect of

the corresponding twist on the end effector velocity in the trans-

formed joint space decreases, and at a joint limit, its effect is

almost zero. Practically the twist is turned off, if a joint limit

is reached. This is beneficial since the joint limit can not be

crossed, and this characteristics also yields that the saturation of

the joint variable will be continuous, i.e. the corresponding joint

will not stop suddenly when the physical joint limit is reached.

However, there are some disadvantages:

1 The differential inverse after the application of the dβ−1 lin-

ear transformation may become ill-conditioned every time

∂βi/∂zi gets too small for any i ∈ {1, . . . , n}. Call such a sit-

uation a constrained singularity. Two alternative solutions to

this problem are addressed in subsection 3.2.

2 The joint is turned off at the differential level, so it can not

generate any motion. This causes the loss of one degree of

freedom of the manipulator for each joint that is at its limit,

which decreases manipulability. This problem is addressed in

subsection 3.3.

3.2 Constrained singularities

This subsection implies a solution to the first problem, i.e. the

numerical problems arising in the transformed joint space when

a joint limit is reached. The inverse kinematics algorithm uses

the inverse of the dβ matrix before integration, and the numer-

ical problems arise when this matrix becomes ill-conditioned.

We call this situation a constrained singularity. Note that in a

kinematic singularity, the Jacobian may become ill-conditioned

as well, however we suppose that tha Jacobian is full-rank in all

cases, and do not deal with this situation in this article.

The dβ matrix is a diagonal matrix, with the ∂βi/∂zi differen-

tials in the diagonal entries, and its inverse is a diagonal matrix

as well, and its entries are the reciprocal of the corresponding

diagonal elements. In case a joint limit is approached, the cor-

responding diagonal element in the inverse matrix may become

extremely large, that is natural, since small changes in the joint

variables near a joint limit result in large changes in the trans-

formed joint variables, as it can be easily verified by examining

the transformation function in Figure 1. However, this causes

numerical problems in the differential inverse kinematics algo-

rithm. In this article, two different methods for inverting the ill-

conditioned dβ matrix are investigated to overcome the problem

of numerical instability:

1 Pseudoinverse based on singular value decomposition (SVD)

with truncation at low singular values.

2 Damped pseudoinverse.

Joint Constrained Differential Inverse Kinematics Algorithm for Serial Manipulators 992012 56 4

Calculate the
Jacobian

geometrical (design)
parameters of the manipulator

reference
path

joint variables

Fig. 3. The differential inverse kinematics algorithm with joint constraints

The SVD of a matrix A is a decomposition

A = UΣVT , (39)

where U and V are orthogonal matrices, and Σ is a diagonal

matrix with the σi singular values in the diagonal elements in

descending order, i.e. σ1 ≥ σ2 ≥ . . . σn ≥ 0. If Σ is full rank

and well-conditioned, then the inverse of A can be calculated as

A−1 = VΣ−1UT , (40)

however if Σ is not full rank or ill-conditioned, the pseudoinverse

of the matrix A is

A# = V

 Σ̂−1 0

0 0

 UT , (41)

where Σ̂ is the minor matrix of Σ with elements σi ≥ ε, where

ε is a parameter characteristic of numerical accuracy and stabil-

ity. If the matrix A is a diagonal matrix with positive entries

(such as the matrix dβ), then its singular values are the diagonal

elements, the orthogonal matrices U and VT are simply permu-

tation matrices, that are used to permute the diagonal elements

such that they are in descending order. When the pseudoinverse

in calculated, the elements of the matrix are sorted again in their

original order. Applying the pseudoinverse technique with trun-

cation at singular values σ j < ε (41) on the diagonal matrix dβ,

its pseudoinverse can be defined as

dβ#
ii =


1

∂βi/∂zi

if
∂βi

∂zi

≥ ε

0 else.

(42)

The main disadvantage of this technique is that it practi-

cally turns off the joint at differential level if a joint limit

is approached, such that when the differential of its inverse

transformation function is less than the threshold ε. If the joint

variable is turned off, it will not be affected by the differential

inverse kinematics algorithm, thus no joint motion will be

generated for the joint at the limit. However, in subsection 3.3,

we propose a solution to this problem.

Another approach to invert the ill-conditioned dβmatrix is the

damped pseudoinverse, that is

dβ# = (dβ + λI)−1 , (43)

where λ is the damping factor, and I is the n× n identity matrix.

If a joint limit is approached, then the corresponding diagonal

element in the damped pseudoinverse of the matrix dβ is upper

bounded by the damping factor λ as

sup
zi

 1

∂βi

∂zi

+ λ

 =
1

λ
. (44)

This case the effect of the corresponding joint twist will not be

zero, but it will have an influence on the differential inverse with

a weighting factor that is upper bounded by 1/λ. This means that

there are always motions in the transformed joint space, however

these may result in very small motions in the real joint space.

3.3 Regaining manipulability

In the previous subsection, we addressed the numerical prob-

lem that arises when the dβ matrix becomes ill-conditioned.

This situation happens, when any of the joint variables gets close

to its limit. The manipulator Jacobian is full rank by hypothe-

ses, however the constrained Jacobian becomes ill-conditioned

in such situations. We call these situations constrained singu-

larities. Besides numerical problems, considering the inverse

kinematics, manipulability also decreases.

Since the constrained Jacobian becomes singular in such sit-

uations, the dimension of the nullspace of the constrained Ja-

cobian increases. This implies, that even if the Jacobian is

square, the constrained singularity gives rise to nullspace mo-

tions. These nullspace motions exist because of the constrained

singularity, and are independent of the nullspace motions aris-

ing from kinematic redundancy. As a consequence, there are

nullspace motions even for nonredundant manipulators in con-

strained singularities, and for redundant manipulators the di-

mension of the nullspace motions (selfmotion manifolds) in-

creases as well. In this subsection we utilize the nullspace mo-

tions arising from constrained singularities to regain the manip-

ulability of the manipulator. Since this motion is independent

Per. Pol. Elec. Eng. and Comp. Sci.100 Dániel András Drexler / István Harmati

of kinematic redundancies, the proposed algorithm does not uti-

lize the redundancy of redundant manipulators, so the nullspace

motions arising from kinematic redundancy may be utilized for

other optimization purposes.

The purpose of this subsection is to show how the nullspace

motions arising at constrained singularities can be used to move

the joint away from the joint limit, if it is needed. This is

done by introducing a secondary task vector in the transformed

joint space, that tends to drive the joint away from the limit.

The secondary task vector is projected to the nullspace using

the nullspace projector of the constrained Jacobian. However,

this nullspace motion is different from nullspace motions aris-

ing from kinematic redundancy in nature, because this is the

result of constrained singularities. Thus the nullspace projector

has special characteristics as well, as it will be shown.

The nullspace projection method is usually used to make the

motion of redundant manipulators satisfy certain optimality cri-

teria. This is achieved by defining a task vector in the joint space

denoted by y, and projecting this task vector to the nullspace of

the Jacobian. The method is formally the same in this case too,

i.e. the calculation of the transformed joint derivatives is

ż = J#
c ẋ + (I − J#

c Jc)y, (45)

where the J#
c ẋ term determines the joint movement for the de-

sired end effector motion and can be calculated with one of the

methods described in the previous subsection, and the (I − J#
c Jc)

term is the augmented projector [16] with I as the n × n iden-

tity matrix, that projects the goal vector y defined in the tangent

space of z to the nullspace of the mapping J#
c ẋ. In this applica-

tion, vector y may be defined to make the corresponding joint

variable move away from the joint limit as

yi =

 0 if |zi| < γi

−ziψi if |zi| > γi

(46)

where γi and ψi are appropriately chosen constants, and the in-

dex i goes from 1 to n. Suppose that we use the SVD technique

to calculate the (pseudo)inverse of the constrained Jacobian.

Then a suitable choice for γi is the solution of ∂βi(γi)/∂zi = εi,

since in this case the null space is only activated to drive the

joint away from the limit if the joint movement is turned off.

It is interesting to examine the augmented projector defined

by (45) in case of a nonredundant manipulator with n = 6, if

the SVD pseudoinverse is used to invert the dβ matrix. In this

case, if the manipulator Jacobian is full rank, then J#J should

be the n × n identity matrix, so the augmented projector should

be the zero matrix. However, if a joint limit is approached, and

the pseudoinverse is calculated as in (41), then the augmented

projector JA
c is calculated using the constrained Jacobian that is

singular, i.e.

JA
c = I − J#

c Jc = I − dβ#J#Jdβ. (47)

Since J is full rank by hypothesis,

JA
c = I − dβ#dβ. (48)

If there are no joint variables near the limits, then JA
c is zero.

However if some of the singular values of the matrix dβ are trun-

cated when the pseudoinverse is calculated, such that there is a

collection of indices Is ∈ {1, . . . , n}, i.e. σIs
< ε, then it can be

shown, that the augmented projector takes the form

JA
c =


jA
1

0 . . . 0

0 jA
2

. . . 0

...
. . .

...

0 . . . jA
n

 (49)

with jA
i

= 1 if i ∈ Is, and jA
i

= 0 if i < Is. Note that this

solution tries to move the joint away from the limit, and can

result in good path tracking performance if the desired path can

be achieved while the corresponding joint moves away from the

limit. However if the joint variable has to cross the joint limit

in order to track the desired path, then this may yield bad path

tracking performance, as it is expected, since the desired task

can not be executed by the manipulator. In other words, the

proposed algorithm works fine if the desired end effector path is

consistent with the physical constraints of the manipulator, i.e.

the path is realizable.

4 Simulational example

In this section an example is discussed to illustrate the choice

of the transformation functions, and their application on the dif-

ferential inverse kinematics of a PUMA robot arm. We chose a

nonredundant robot to illustrate that kinematical redundancy is

not neccessary to regain the manipulability of the manipulator

at constrained singularities.

First, we introduce the transformation functions that we use

to transform the joint variables. The function used to transform

the joint variables needs to be continuous, strictly monotonously

increasing and onto the whole codomain R on an open interval

of (θL
i
, θU

i
). A good candidate for such a function is e.g. the

tangent function tan(·) : x → tan(x), that satisfies these criteria

on the open interval (−π/2, π/2). In order to scale the domain of

the tan(·) function to (θL
i
, θU

i
), a linear mapping is introduced to

map (θL
i
, θU

i
) to (−π/2, π/2):

xi =
π
(
2θi − θ

U
i
− θL

i

)
2
(
θU

i
− θL

i

) , (50)

thus the transformation function is

αi(θi) = tan

π
(
2θi − θ

U
i
− θL

i

)
2
(
θU

i
− θL

i

)  , (51)

and the inverse function is

βi(zi) =
θU

i
− θL

i

π
tan−1 (zi) +

θU
i

+ θL
i

2
. (52)

The differential of the inverse function is

∂βi(zi)

∂zi

=
θU

i
− θL

i

π

1

1 + z2
i

. (53)

Joint Constrained Differential Inverse Kinematics Algorithm for Serial Manipulators 1012012 56 4

Fig. 4. Geometric parameters of the PUMA arm

It can be easily verified that the derivative of the inverse func-

tion dβi/dzi → 0 if zi → ±∞, thus it has the characteristics

discussed in the previous section. The examined manipulator is

a PUMA manipulator with an extended configuration chosen as

the reference configuration as in Figure 4. The reference frame

is K0, that is a right-handed orthogonal frame (the x axis is not

depicted on the figure). The geometric quantities of the twists at

the home configuration are

ω1 =
[

0 0 1
]T

(54)

ω2 =
[

0 −1 0
]T

(55)

ω3 =
[

0 −1 0
]T

(56)

ω4 =
[

0 0 1
]T

(57)

ω5 =
[

0 −1 0
]T

(58)

ω6 =
[

0 0 1
]T

(59)

q1 =
[

0 0 0
]T

(60)

q2 =
[

0 −a1 0
]T

(61)

q3 =
[

0 −a1 d2

]T
(62)

q4 =
[

0 −a1 d2 + d3

]T
(63)

q5 =
[

0 −a1 d2 + d3

]T
(64)

q6 =
[

0 −a1 d2 + d3

]T
(65)

and the orientation and position of the end effector in the home

configuration is

g(0) =

 I p0

0 1

 , (66)

with p0 =
[

0 −a1 d2 + d3 + d4

]T
, a1 = 0.5 m, d2 = 2 m,

d3 = 1.5 m and d4 = 0.5 m. These distances are rough, however

this is only an example for visualization purposes. The distance

unit will be in meters throughout the paper, and the unit of angles

is radian. The orientation of the end effector is described by a

3 × 3 identity matrix in the home configuration in the reference

frame, i.e. the axes of the frame attached to the end effector are

parallel to the axes of the reference frame. The joint twists in

the home configuration are thus

ξ1 =
[

0 0 0 0 0 1
]T

(67)

ξ2 =
[

0 0 0 0 −1 0
]T

(68)

ξ3 =
[

2 0 0 0 −1 0
]T

(69)

ξ4 =
[
−0.5 0 0 0 0 1

]T
(70)

ξ5 =
[

3.5 0 0 0 −1 0
]T

(71)

ξ6 =
[
−0.5 0 0 0 0 1

]T
. (72)

Let the joint limits of the manipulator be

θU
1 =

π

2
(73)

θL
1 = −

π

2
(74)

for the first joint variable, and

θU
i =

2π

3
(75)

θL
i = −

2π

3
(76)

for the remaining joint variables, i.e. i = 2, . . . , 6.

It is trivial from the attributes of the transformation functions

that the joint limits can not be exceeded with the algorithm de-

fined in this paper. However, the tracking performance may be

bad in constrained singularities, so these situations have great

interest. The simulation should be carried out with a desired

path that can only be achieved if some of the joint limits have to

be reached during the path tracking, to examine the behaviour

of the algorithm at constrained singularities.

However, it is hard to define a path directly that has the de-

sired attributes, thus we define the path indirectly in the follow-

ing way. First, we define the path at the joint space, since in

the joint space we can easily define a joint trajectory that takes

values at the joint limits. However, we need the end effector

trajectory for the simulation, not the joint trajectories. Thus we

take the reference path described in the joint space, and calculate

the reference path in the task space using the forward kinematics

equations of the manipulator, and use the reference path in the

task space for simulation purposes.

Per. Pol. Elec. Eng. and Comp. Sci.102 Dániel András Drexler / István Harmati

Fig. 5. The tracking error for the end effector po-

sition

Fig. 6. The difference between the calculated tra-

jectories and reference trajectories of the joint vari-

ables

The reference path described as joint trajectories is

θ1(t) =
π

2
sin

(
2πt

Tmax

)
(77)

θ̇1(t) =
π2

Tmax

cos

(
2πt

Tmax

)
(78)

θ2(t) =
π

3
(79)

θ̇2(t) = 0 (80)

θ3(t) =
π

3
sin

(
2πt

Tmax

)
(81)

θ̇3(t) =
2π2

3Tmax

cos

(
2πt

Tmax

)
(82)

(83)

θ4(t) =
2π

3
cos

(
2πt

Tmax

+ 0.1

)
(84)

θ̇4(t) = −
4π2

3Tmax

sin

(
2πt

Tmax

+ 0.1

)
(85)

θ5(t) =
π

3
(86)

θ̇5(t) = 0 (87)

θ6(t) = 0 (88)

θ̇6(t) = 0 (89)

with Tmax = 50 sec. This joint trajectory results in a motion

where the joint variables 1 and 4 must reach both their upper

Joint Constrained Differential Inverse Kinematics Algorithm for Serial Manipulators 1032012 56 4

and lower limits. The reference end effector path and velocity is

calculated from the reference joint trajectory using the forward

kinematics equations (8) and the differential kinematics equa-

tions (9) respectively. The reference end effector path and veloc-

ity is then used as the input of the differential inverse kinematics

algorithm at the simulation. The initial joint configuration is the

same as the reference joint trajectory at t = 0.

The differential inverse kinematics algorithm is defined in the

z transformed joint variables as

ż = dβ#J# ẋre f + JA
c y, (90)

where the pseudoinverse of dβ is calculated as in (42) with εi =

10−10, i = 1, . . . , n, ẋre f is the reference end effector velocity, JA
c

is calculated as in (49), and y is calculated as in (46) with ψi = 1,

i = 1, . . . , n.

The simulation was carried out using the reference path and

velocity generated from the reference joint trajectory. The sim-

ulation time was Tmax = 50 sec.

The position error of the end effector is in Figure 5. The min-

imum and maximum values of the path tracking error in the dif-

ferent coordinates were:

ex,min = 3.32 · 10−10 m (91)

ex,max = 4.19 · 10−5 m (92)

ey,min = 1.25 · 10−11 m (93)

ey,max = 3.9 · 10−5 m (94)

ez,min = 1.52 · 10−10 m (95)

ez,max = 5.8 · 10−5 m. (96)

The tracking error was maximal in the x and z coordinates

when joint variable 4 reached its upper limit, and maximal in

the y coordinate when joint variable 4 reached its lower limit,

thus the tracking error increased significantly at constrained sin-

gularities. However, the values of the path tracking error are

sufficiently low even in such situations.

The joint trajectory resulting as the output of the differential

inverse kinematics algorithm is similar to the reference joint tra-

jectory. The difference between the calculated and the reference

joint trajectories can be seen in Figure 6.

The simulation showed that the proposed algorithm has good

path tracking performace, even if some of the joint limits is

reached, thus the problems caused by constrained singularities

can be solved with the methods proposed in this paper.

5 Conclusion

We proposed a method to incorporate joint constraints into

the differential inverse kinematics algorithm of robot manipula-

tors, by introducing a nonlinear transformation on the joint vari-

ables. This transformation ensures, that the joint limits are not

exceeded, however, it inherently has some disadvantages, i.e.

at joint limits singularities arise. We call such situations con-

strained singularities. We have analysed this phenomenon, and

gave solutions to the problems caused by constrained singulari-

ties. A simulation was carried out to demonstrate the effective-

ness of the algorithm.

The algorithms are defined as general as it is possible con-

sidering the inverse kinematics problems of serial manipulators

practically arising in robotics. The problem can be solved with

any joint transformation function that has the desired character-

istics, the tangent function was only used as an example. The

differential inverse kinematics can also be modified for planar,

inverse position, or inverse orientation problems, the proposed

methods and statements will remain true in these cases as well.

References

1 Postnikov M, Lectures in Geometry, Semester V, Lie Groups and Lie Alge-

bras, MIR Publishers Moscow, 1986.

2 Murray RM, Sastry SS, Zexiang L, A Mathematical Introduction to

Robotic Manipulation, CRC Press, 1994.

3 J.M. Selig, Geometric Fundamentals of Robotics (Second Edition), Springer,

1996.

4 Caccavale F, Chiaverini S, Siciliano B, Second-Order Kinematic Con-

trol of Robot Manipulators with Jacobian Damped Least-Squares Inverse:

Theory and Experiments, IEEE/ASME Transactions on Mechatronics, 2(3),

(1997), 188–194.

5 Tan J, Xi N, Wang Y, A singularity-free motion control algorithm for robot

manipulators–a hybrid system approach, Automatica, 40(7), (2004), 1239 -

1245.

6 Chiaverini S, Singularity-Robust Task-Priority Redundancy Resolution for

Real-Time Kinematic Control of Robot Manipulators, IEEE Transactions on

Robotics and Automation, 13(3), (1997), 398–410.

7 Sciavacco L, Siciliano B, A Solution Algorithm to the Inverse Kinematic

Problem for Redundant Manipulators, IEEE Transactions on Robotics and

Automation, 4(4), (1988), 403-410.

8 Lee H-Y, Yi B-J, Choi Y, A realistic Joint Limit Algorithm for Kinemati-

cally Redundant Manipulators, In: Proceedings of International Conference

on Control, Automation and Systems 2007, October, 2007, pp. 47–50.

9 Shimizu M, Yoon W-K, Kitagaki K, A Practical Redundancy Resolution for

7 DOF Redundant Manipulators with Joint Limits, In: Proceedings of 2007

IEEE International Conference on Robotics and Automation, Roma, Italy,

April, 2007, pp. 4510 -4516.

10 Assal SFM, Watanabe K, Izumi K, Cooperative Fuzzy Hint Acquisition

for Avoiding Joint Limits of Redundant Manipulators, In: Proceeings of The

30th Annual Conference of the IEEE Industrial Electronics Society, Busan,

Korea, November, 2004, pp. 169 -174.

11 Kim JH, Yang J, Abdel-Malek K, A novel formulation for determining joint

constraint loads during optimal dynamic motion of redundant manipulators

in DH representation, Multibody System Dynamics, 19(4), (2008), 427-451.

12 Chan TF, Dubey RV, A Weighted Least-Norm Solution Based Scheme for

Avoiding Joint Limits for Redundant Joint Manipulators, IEEE Transactions

on Robotics and Automation, 11(2), (1995), 286 - 292.

13 Zhang Y, Guo D, Cai B, Chen K, Remedy scheme and theoretical analysis

of joint-angle drift phenomenon for redundant robot manipulators, Robotics

and Computer-Integrated Manifacturing, 27, (2011), 860 - 869.

14 Spong MW, Hutchinson S, Vidyasagar M, Robot Dynamics and Control,

John Wiley & Sons. Inc., 2006.

15 Siciliano B, Sciavicco L, Villani L, Oriolo G, Robotics - Modelling, Plan-

ning and Control, Springer, 2009.

16 Rózsa P, Introduction to Matrix Theory (in Hungarian), Typotex, 2009.

Per. Pol. Elec. Eng. and Comp. Sci.104 Dániel András Drexler / István Harmati

	Introduction
	Preliminaries
	Nonlinear Joint Transformation
	Optimality conditions in the transformed joint space
	Constrained singularities
	Regaining manipulability

	Simulational example
	Conclusion

