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Abstract

Although the invention of the special wheels that move om-

nidirectional vehicles dates back to the seventies, advances in

mechatronics, and control technology keep them constantly on

the drawing table of engineers working with mobile robots. The

need for eliminating human error becomes ever so obvious when

human operators are managing expensive and/or powerful ma-

chinery, as the cost of failure can be very high. Omnidirectional

platforms are not immune to human error either, however due to

their unique working principle they require customized methods.

This article presents a trajectory controller for omnidirectional

transport robots that is able to correct their trajectory during

braking even when high disturbances are present. A method for

tuning the controller to achieve a desired behavior is presented.

The results are demonstrated by simulation, in Modelica – Dy-

mola environment.

Keywords

omnidirectional wheels · brake assistant · sliding mode con-

trol · Modelica simulation

Viktor Kálmán

Department of Control Engineering and Information Technology, Faculty of

Electrical Engineering and Informatics, Budapest University of Technology and

Economics, Magyar Tudósok körútja 2., H-1117 Budapest, Hungary

e-mail: kalman@iit.bme.hu

László Vajta

Department of Control Engineering and Information Technology, Faculty of

Electrical Engineering and Informatic, Budapest University of Technology and

Economics, Magyar Tudósok körútja 2., H-1117 Budapest, Hungary

1 Introduction

When human operators are managing expensive and/or

powerful machinery, the importance of preventing failure is

paramount. Complex machines usually require complex control

interfaces to exploit their capabilities to the full extent, however

complexity may do more harm than good, that is why it is best

to hide the complexity behind a clean and simple user interface.

A good example of this are transparent corrective systems such

as ESP or ABS that we meet every day. ESP for instance si-

multaneously controls the brakes of four wheels, it is easy to see

why a driver would be unable to achieve similar control, espe-

cially at speed. These systems increasingly find their way into

robotic applications. Omnidirectional platforms are not immune

to human error either, however due to their different working

principle they require different methods. This article describes a

controller that is designed to help avoid swerving of omnidirec-

tional platforms during braking, due to uneven load distribution,

or disturbances in the force.

1.1 Problem description

Due to advances in control theory, mechatronics and manu-

facturing technology omnidirectional wheels – invented in the

seventies [5] – are living their renaissance. They have a rich his-

tory in the literature, they have been used for various tasks, and

many different embodiments are known [3,10]. Their use ranges

from robotic soccer applications, through industrial heavy load

transporters [11], and vehicle simulators [1], to leisure and edu-

cational projects [2, 9].

The wheels themselves consist of several – usually rubber

coated – free rolling rollers (Fig. 1), the most popular roller an-

gles are 45◦ and 0◦, the former is usually called Mecanum, or

Swedish wheel, the latter is usually called Omni-wheel. Obvi-

ously other angles are possible, but their usage leads to unjusti-

fiably more complex mechanical design and control. Also, an-

gles close to 90◦ are totally useless [6]. The rollers are spinning

freely, only the main axis is powered.

Due to their design omnidirectional wheels in general have a

one dimensional force generation capability, they can only ex-

ert substantial force parallel to the roller axes, this is the very
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Fig. 1. Cad drawing of a mecanum wheel [14]

attribute that allows omnidirectional movement. As a conse-

quence such platforms can be pushed in any direction when

their wheels are rolling free. The main problem is that they

tend not to keep their orientation during braking. This is caused

by slight differences between wheel forces arising from uneven

load distribution, or ground friction variations. These unbal-

anced forces create a resulting torque, and thus an angular ac-

celeration around the center of gravity during braking.

2 Brake assist controller

To handle the problem described above a solution is proposed

in this section. First the underlying modeling concept is intro-

duced then a sliding mode controller is developed. The second

part of this section deals with the possibilities of tuning the con-

troller, to best fit user preferences.

2.1 Platform model

To approach this control problem let’s consider the forces

arising during braking. This is illustrated on Fig. 2 on two

wheels of a general omnidirectional platform. It is assumed that

the platform moves on flat ground, thus having three degrees of

freedom.

Fig. 2. Velocity and force vectors of a braking omnidirectional platform

The velocity vectors at the wheel centers can be described in

terms of platform linear and angular velocity:

vi = vC + ω × rci (1)

where vi are velocities of wheel centers, vC is platform veloc-

ity, ω is platform angular velocity; rci are vectors from the plat-

form geometrical center to wheel centers. Force vectors always

arise to oppose instantaneous wheel velocities, thus a unit vector

pointing in the direction of the fi friction forces can be calculated

as follows:

||fi|| = −sign(vinwi)nwi (2)

where nwi are unit vectors pointing in the direction of the roller

axes on the ground. The magnitudes of these forces depend on

the load of the particular wheel, the material and the ground.

The dynamics of the platform can be described by Newton’s law

mv̇C =
∑

i

fi (3)

Jcω̇ =
∑

i

fi × rCi (4)

In these dynamic equations m stands for mass and Jc stands

for the inertia matrix of the platform. Both of them are uncer-

tain and in case of a transport robot they change each time the

payload is changed. To be able to control this uncertain MIMO

system I decided to use sliding mode control, as suggested by

many in the literature [7, 12, 15, 16].

2.2 Sliding mode controller

The idea behind sliding mode control is to constrain the plant

to a prescribed trajectory – the sliding manifold – by choosing

the control gains, to drive the state variables towards it. This is

achieved by discontinuous changes in the gains [7].

In the case of a braking omnidirectional vehicle the control

goal is twofold,

• Goal 1: it is important to avoid directional change in the

platforms movement

• Goal 2: obviously it is also important to try and stop the

platform as soon as possible

The goals are simple but several problems pose difficulties in

reaching them:

• Since the wheels cannot be turned, the direction of force they

generate only depends on the velocity direction of the contact

patch, therefore the only option to assert control is to modu-

late the braking force.

• Force generation is passive in a sense that it can only act to

decrease velocity, and not to increase it.

• Generally the friction forces of the wheels are not parallel

with wheel velocities, therefore they will act to divert the plat-

form from its original path.
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• From equations (1), (3), (4) it is clear that all fi effects all

vi, vc and ω consequently it is generally not possible to affect

a single degree of freedom of the platform independently.

These considerations mean that brake modulation has to de-

pend on the direction of the friction force, if it drives the plat-

form towards a given trajectory then it needs to be applied, oth-

erwise, the wheel needs to be rolling free. To construct the

sliding surface we have to consider the nature of trajectory we

would like to track. Since the magnitudes of the forces are un-

certain the trajectory cannot be defined as an exact function of

time. At the moment when braking starts the platform has v0,

ω0 initial velocities, the platform has to gradually lose its an-

gular velocity and it cannot gain velocity in the direction per-

pendicular to v0 i.e. it cannot divert from the trajectory before

braking.

To translate these considerations into control rules the sliding

surface can be written in the following form for each wheel:

sitot = si‖ + si⊥ + siω (5)

where the three components correspond to wheel velocity com-

ponents parallel and perpendicular to v0 and a component due

to ω. Each component signifies whether the given – i-th – wheel

is able to drive that velocity component to zero, therefore the

control law can be constructed to apply the i-th brake when its

corresponding s function is negative:

ui = fi(ζ(sitot)) (6)

where

ζ(x) =

0 for ∀x ≥ 0

1 for ∀x < 0
x ∈ R

Components of sitot can be calculated the following way:

si⊥ = ‖fi‖vi⊥

where vi⊥ is the projection of vi on nw,i the direction of the roller

axis of the wheel. Similarly

siω = ‖βwi‖ ω|rci|

where |rci| is the distance from the platform center to the wheel

center, and

‖βwi‖ = |fi‖ × ‖ci‖

is the direction of the torque generated by fi.

si‖ is a different matter, the previously discussed two com-

ponents change from wheel to wheel, the parallel component

however can be decreased by any wheel in most cases, so if we

activate the brake according to the sign of si‖ it will always be

on, no modulation will take place, same as the uncontrolled case.

Its general form can be written as follows:

si‖ = ψ
(
‖fi‖, vi‖

)
‖fi‖vi‖ (7)

where vi‖ is the projection of vi on uwi the direction perpen-

dicular to the roller axis of the wheel, ψ() is a weighing func-

tion. Different approaches can be taken to deal with this compo-

nent, these are discussed in section 2.3, with the different effects

demonstrated trough examples.

2.2.1 Feedback

The state variables vc and ω are assumed to be measurable, by

any means convenient, however we suggest a method similar to

the principle used in optical mice, described in [13]. The advan-

tage of the method is that velocity measurement is independent

from wheel rotation.

Fig. 3. Mecanum platform in simulation

2.2.2 Stability

To find out if the closed loop control system is stable, the so

called passivity approach [7] (p. 436) can be used. It means

that if the components in the feedback connection are passive,

in the sense that they do not generate energy on their own, then

it is intuitively clear that the system will be passive. Generally a

system is called passive if there exists a storage function V(t) ≥

0, such that for all t0 < t1,

V(t1) ≤ V(t0) +

∫ t1

t0

y(t)u(t)dt (8)

where y is the system output and u is the input respectively. This

equation simply states, that the energy (V(t)) of the system con-

sists of the initial energy plus the supply rate yu. If the equality

holds, the system is lossless, if it is a strict inequality then the

system is dissipative.

If we set the feedback to u = −Ky, where K is a positive gain

then it is guaranteed that the system energy remains bounded,

thus the feedback system is stable. Considering an omnidirec-

tional platform in the context of the brake assist system, energy

is stored in the form of kinetic energy. This can be written in the

following form:

V =
Mv2

c

2
+

JΩ2

2
(9)
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Fig. 4. Snapshots from a braking maneuver

(a) no assistant (b) 0 weighing function (c) cosine weighing function

considering the linear and rotational kinetic energies. The "sup-

ply rate" – in this case would be more appropriately called the

"dissipation rate" – is the product of friction force and velocity

which is essentially the power dissipated by braking the wheels.

The goal of the braking maneuver is to drive the kinetic energy

to zero. Brake forces are always generated to oppose movement,

causing negative acceleration. Since no energy is put in the sys-

tem by the brake forces, it is evident that the system is passive

and the inequality (8) holds true for ∀t0, t1 time instants. How-

ever for a braking maneuver a strict inequality is a necessary

condition for the vehicle to stop in a reasonable distance, which

means that if we neglect small frictional effects such as rolling

resistance and bearing friction etc. a strict inequality can only

be achieved if it is guaranteed that:

• at least one brake is actuated at any time instant

• with its active direction at an angle other than 90◦ to the di-

rection of movement

Part of the second criterion can be guaranteed by design, if the

vehicle is created so that it is controllable [6]. The first criterion

means that the error function of at least one wheel has to be

negative at all times. This is easily guaranteed if we add a rule

for the controller that turns every brake on if ∀sitot ≥ 0.

2.3 Brake effect tuning

The sliding surface in equation (5) has three components. The

role of si⊥ and siω, is easy to see, they are responsible for elim-

inating rotation and translation of the platform, si‖ however is

somewhat different. Let’s investigate the effect of si‖ on the

braking maneuver in more detail, with the help of simulation.

Fig. 5. Linear and angular velocities of the unassisted vehicle

2.3.1 Simulation

I created a Mecanum wheeled forklift model, and executed

experiments to demonstrate the capabilities of the controller.

The platform has four wheels, the vehicle body is represented

by a point mass with inertia, and the load is represented by a

simple point mass. Both the position and value of the masses,

as well as vehicle dimensions are configurable. The platform is

shown on Fig. 3. The body is represented by the red brick and

the load is the green sphere. It is easy to see, that the center

of gravity is offset to the front left of the platform, simulating a

carelessly loaded heavy cargo. The wheels of the platform are

based on the article [8] using a modified TMEasy model [4] for

dynamic force generation.

The floor is flat and uniform, and patches of different friction

coefficient can be defined. It can be thought of as a warehouse

floor, for example with some spilled oil. The platform is slowed

by four disc brakes, with cutoff valves. The main body has a

mass of 600kg and the load is 200kg, so a heavily loaded small

forklift is considered.

The experiment consists of a constant acceleration part, where

the vehicle is accelerated in x, y directions in local coordinates,
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Fig. 6. Velocities and error functions for the as-

sisted maneuver – 0 weighing function

Fig. 7. Velocities and error functions for the as-

sisted maneuver – cosine weighing function

with constant angular acceleration. At a given point the brakes

are actuated, simulating an emergency situation. To introduce

a disturbance, a patch of smaller friction coefficient is placed

in the way of the braking vehicle, so that it falls under the rear

wheels effectively increasing the swerving effect. The simulated

run can be seen on Fig 4(a).

State variables vc, ω of the platform can be seen on Fig. 5.

The braking starts at 4s and brake force is linearly increased until

the maximum at 5s. The effect of the "oil spill" is clearly visible

on the angular velocity (w_z in the figure) from 4.3s when the

vehicle crosses it.

2.3.2 No parallel component

Since the model of a general omnidirectional platform is in-

put – output cross coupled as it can be seen from the dynamic

model and the general kinematic model [6], slowing one wheel

will usually affect both the parallel and perpendicular velocity

component, so when the perpendicular and the angular veloc-

ity components are driven to zero, the parallel component will

vanish as well. Degenerate scenarios are possible, for instance

the case of a Mecanum platform when it stops from a straight

45◦ movement, no perpendicular nor any angular velocity com-

ponents are present, all sitot ≥ 0. For this case a rule can be

implemented that actuates all brakes, guaranteeing the platform

to stop in a finite time. Snapshots from the experiment can be

seen on Fig. 4(b) velocities and error functions can be seen on

Fig. 6. The control rule “punishes” angular velocity and it can be

seen on the graph of the state variables that it effectively trans-

fers rotational energy into linear kinetic energy, which causes

the platform to stop in a longer distance.
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Tab. 1. Comparison of controller implementa-

tions

unassisted φ = 0 φ = cos(γ) enhanced φ enhanced φ

k = 1 k=7

orientation change 83.8◦ 18.9◦ 63.2◦ 52◦ 26.3◦

stopping distance 10 m 12.2 m 9.7 m 9.3 m 10.4 m

2.3.3 Parallel component as a function of velocity direction

As it can be seen from the previous experiment (Fig. 4(b)) ori-

entation of the platform was kept at the cost of increased stop-

ping distance. For most situations it is obviously unacceptable.

To correct the behavior, an error component corresponding to

the parallel velocity component needs to be added. It needs to

be angle dependent, so that Goal 2 only dominates the error

function when the given wheel is most effective i.e. its active

direction is close to parallel with its velocity ( nwi ‖ vi).

A cosine function of the angle between the active direction

of the wheel and the velocity of its center seems to be a good

candidate, as it yields 1 when the vectors are parallel and 0 when

they are perpendicular. The maneuver can be seen on Fig. 4(c)

and the velocity and error functions on Fig. 7. The behavior

of the vehicle and the velocity curves are very similar to the

unassisted case, swerving however is clearly reduced.

Fig. 8. Enhanced weighing functions for the parallel component

2.3.4 Enhanced directional dependence

The situation can be further enhanced by tuning the weighing

function of the parallel component, as cosine decays too slow

around zero letting s‖ dominate over a wide angle region. The

next idea is to modify the weighing function to something that

decays faster letting Goal 1 dominate when (nwi ∦ vi). The sim-

plest idea is to mirror the cosine function on the line connecting

its maxima with its minima. This is achieved by the following

function:

ψ =

(
−

∣∣∣∣∣2γπ
∣∣∣∣∣ + 1 +

(
−

∣∣∣∣∣2γπ
∣∣∣∣∣ + 1 − cos(γ)

))k

, γ ∈ [−π, pi] (10)

or after simplification:

ψ =

(
−2

∣∣∣∣∣2γπ
∣∣∣∣∣ + 2 − cos(γ)

)k

(11)

where k is a tuning constant, an odd positive integer. The func-

tion is illustrated on Fig. 8 with k = 1 and 7. (The range we are

interested in is marked in equation (10), the graph is wider for

better visibility.)

The experiment with the modified weighing function can be

seen in Fig. 9(b) and 9(c). For comparison Fig. 9(a) shows

the experiment with the cosine weighing function (same as

Fig. 4(c)), it can be seen that with k=1 better directional control

is maintained and the vehicle stops in a short distance while with

k=7 we are getting closer to 0 weighing function case, where

the orientation is the closest to that at the start of the maneuver,

but the stopping distance is the longest. It is clear that with the

choice of k the controller can be tuned to the users needs.

Velocities and error function for the case of k=1 can be seen

on Fig. 10. The beneficial effects on the state variables are

clearly visible, compared to Fig. 6. and Fig. 7. The 0 weigh-

ing function drives the angular velocity to zero effectively, but

it does not affect the linear velocity much. The cosine weigh

function allows too much angular velocity, while the enhanced

controller affects both linear and angular velocities.

Fig. 10. Velocities and error functions for the assisted maneuver – enhanced

weighing function k = 1

3 Conclusion

A braking omnidirectional transport robot can be approached

as an uncertain nonlinear MIMO control problem. I created

a sliding mode controller that effectively keeps the orientation

of the platform during braking, by eliminating velocity com-

ponents of the wheels that are not in the direction of platform

velocity. The resulting controller is able to maintain the orienta-

tion of the vehicle during braking, and stops the vehicle thanks

to the cross coupled nature of the general omnidirectional ve-

hicle. The goal is reached at the expense of increased braking

distance, compared to the unassisted case. I proposed a method

to incorporate a component into the control rule that represents

a healthy compromise, by maintaining directional control, while

keeping brake distance at a value similar to the unassisted case.

Table 1 shows the summary of the results with this particular

robot, for comparison. Both orientation change and stopping
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Fig. 9. Comparison of weighing functions

(a) cosine (b) enhanced function k = 1 (c) enhanced function k = 7

distance are calculated between the start of braking and the final

position.

The proposed weighing function depends on the angle be-

tween roller direction and instantaneous velocity of a wheel cen-

ter, and it can be tuned by changing the value of to favor direc-

tional control or stopping distance. The controller shows great

disturbance rejection, due to the fact that it operates indepen-

dent from the vehicle’s dynamic model, it only uses kinematic

information of the platform.
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