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Abstract 
The estimation of the resistance of solenoid actuators is 

important to reduce bias in model based control and estima-
tion as the resistance of the coil can change significantly with 
temperature. Under PWM operating conditions, the overall 
resistance that the current encounters during the “on” and 
“off” periods of the PWM cycles can be different because of 
non idealities, e.g., the resistance of wires and junctions of the 
switching transistors. In this paper, methods are presented for 
estimating the resistance of solenoid actuators by considering 
the difference between the overall resistances in the energizing 
paths. First, the steady-state PWM waveform of the coil’s cur-
rent is considered. Then, methods are presented for the tran-
sient situation; thus, the resistance can be estimated in case 
the control signal is changing. Due to the fact that solenoid 
actuators are usually implemented in embedded applications 
which have strict resource limitations, the low complexity and 
computational load were key requirements. Computer simula-
tions and experimental results are also presented. 
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1 Introduction
Knowledge and tracking of the model parameters of electro-

mechanical devices are important for achieving high effective-
ness at sensorless control applications, because the parameters 
of the model may change during normal operation. From the 
viewpoint of possible sources of parameter sensitivity, temper-
ature has a major role as it can cause the resistance of the coil 
of electromagnetic devices, e.g. solenoid actuators, to increase 
by 40% for a 100°C temperature rise. Therefore, the measure-
ment or estimation of the electrical resistance of the coil is 
important for reducing bias in control and sensorless schemes 
which rely on a model of the actuator. Because of the fact that 
cost effectiveness is a major principle in engineering practice, 
especially in embedded applications, model based estimation 
methods are preferred than direct measurements with dedi-
cated external sensors.

For rotary induction machines the literature on estimating 
the resistance of the windings is comprehensive; some major 
contributions include [1-3]. However, for solenoid actuators 
the methods that are available for rotary motors are not appli-
cable; because solenoid actuators have a single phase structure, 
they lack cyclic signals and have unique electrical drive con-
ditions [4]. Solenoid actuators (Fig. 1) are electromechanical 
converters with a linear limited travel and they are most com-
monly used for flow controlling purposes and as contactors. 
A review of literature has shown that the sensorless methods, 
which are available for solenoid actuators, do not satisfacto-
rily consider the variations in the coil’s resistance caused by 
thermal effects [4-9], [13]. Therefore, efficient methods for 
estimating the resistance of solenoid actuators are of great 
importance for improving robustness and effectiveness. Fur-
thermore, an estimate of the resistance of the winding can also 
provide information about the thermal state of the actuator. 

In [11] the resistance is estimated from a lumped, dynamic 
thermal model that is continuously evaluated accordingly to 
the internal and external thermal boundary conditions. A pos-
sible drawback of [11] is that the estimate of the resistance 
is susceptible to the parameters of the thermal model, to the 
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external thermal boundary conditions e.g. ambient temperature 
which require extra sensors or additional models to be meas-
ured, and to the initial conditions. A detailed thermal model is 
also presented in [10] but it has the same disadvantages as [11]; 
and may become computationally exhaustive, which is not 
advantageous in embedded applications. An alternative method 
is presented in [12] for PWM driven solenoids that directly 
estimates the resistance from the electrical signals; thus, the 
aforementioned modeling problems are avoided although the 
electrical model considers a simple LR model. Since solenoid 
actuators are most commonly used in embedded applications, 
the complexity and the computational needs of the methods for 
the estimation of the resistance have to be as low as possible.

In engineering practice, a common way for driving solenoid 
actuators is by means of PWM (pulse width modulation) in a 
single switch battery powered configuration, as it is illustrated 
in Fig. 1 (e.g. in the automatic transmission unit of a car). 
According to Fig. 1, the solenoid’s coil current flows through 
different sections of the circuit (energizing paths) during the 
“on” and “off” periods of each PWM cycle. Considering real 
applications, the voltage source, the connecting cables, the 
connections, the switching transistor and the PCB (printed 
circuit board) all have some resistance, which add up to each 
other and to the resistance of the coil. Therefore, the current 
of the actuator encounters different overall resistances in the 
energizing paths and; by only measuring electrical signals, it is 
the separate overall resistances that can be estimated. In engi-
neering applications, the difference between the resistances 
of the energizing paths can be comparable to the resistance 
of the winding, e.g. 0.5 Ohms to 4 Ohms. If this difference 

is neglected, then the estimate of the coil’s resistance may be 
subject to significant error; and thus the other estimates which 
depend on the estimate of the resistance also become biased, 
e.g. the temperature of the winding.

In this paper, methods are developed for estimating the 
resistance of the coil of solenoid actuators from both steady 
and transient PWM signals; with consideration to the resistance 
difference between the PWM “on” and “off” paths. Thus, a bet-
ter estimate of the coil’s resistance can be provided compared 
to computing a single “equivalent” resistance. The special 
requirements of embedded systems, e.g. limited memory and 
CPU capacity, are also considered at developing the methods 
for the estimation of the resistance.

2 Statement of the problem
A solenoid actuator is driven by PWM in a low-side single 

switch configuration as it is illustrated in Fig. 1. By measur-
ing only the main electrical signals, i.e., supply voltage and 
coil current; its resistance is to be estimated for compensating 
the changes in the resistance which are caused by e.g. thermal 
effects. In practice, the voltage supply, the switching transis-
tor, the connecting wires and the electrical connections have 
resistances which add to each other and to the resistance of the 
coil. Therefore, the separate energizing paths, between which 
the coil current commutates in each PWM cycle, have different 
total resistances. If the switch is turned on (PWM “on”), the 
coil is energized and its current flows from the supply through 
the switching transistor and through some connecting wires, as 
it is illustrated in the left-hand side of Fig. 2. If the switch is 
turned off (PWM “off”) the coil’s current commutates through 

Fig. 1. Schematic of a solenoid actuator and an exemplary PWM drive configuration. 1-orifice, 2-spool, 3-coil, 4-return spring.

Battery

Solenoid 
ActuatorCables & 

connections

Fig. 2. Model of a non-ideal PWM drive configuration (subsidiary resistances) and generalization (right).
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the freewheeling diode and flows through a different path that 
is illustrated in the middle side of Fig. 2. In Fig. 2 the terms 
RC and RD refer to the resistances of cables and connections, 
RT refers to the junction resistance of the switching transistor, 
RS and LS refer to the resistance and inductance of the sole-
noid respectively and UH refers to the supply voltage. The drive 
PWM has a time period T and duty ratio d, and the sampling 
frequqency is considerably higher than the switching one.

The aforementioned problem can be generalized accordingly 
to the right-hand side of Fig. 2, where RH and RL denote the sum 
of the corresponding subsidiary resistances and RS denotes the 
coil’s resistance. In each energizing path, the solenoid is sub-
ject to the UH (PWM on) and UL (PWM off) supply voltages, 
respectively. Considering Fig. 2, the UL is represented as the 
forward voltage drop on the freewheeling diode. 

The resistances which can be estimated are the overall resist-
ances in the energizing paths which consist not only of the coil’s 
resistance; therefore, they are always higher than (or equal to) 
the coil’s resistance. If the resistance difference between the 
overall resistances is not considered but a single “equivalent” 
resistance is estimated, then the estimate of the resistance will 
be between the values of the overall resistances of the energiz-
ing paths. Furthermore, it will also depend on the duty ratio 
thus a bias is induced which depends on the duty ratio. How-
ever, if the difference in the overall resistances is considered, 
then a better estimate of the coil’s resistance can be provided 
which will correspond to the lower one of the resistances of the 
energizing paths, i.e., RH+RS or RL+RS in Fig. 2. Further on, the 
overall resistances of the energizing paths are denoted as in (5).

In the following sections, we differentiate between two situ-
ations. In Section 3, the overall resistances of the energizing 
paths are estimated from the PWM steady-state signals. The 
electrical model of the solenoid is assumed to be a series 
inductance-resistance circuit with an inductance that depends 
on the current; however, eddy current effects are negligible. 
Because the steady-state waveform is considered the back 
EMF (electromotive force) has no significance. 

In Section 4, the overall resistances of the energizing paths 
are estimated from the transient electrical signals, before 
steady-state is reached. Thus, if the system undergoes a long 
transient period, i.e., the control signal changes, resistance 
data can be still provided. Compared to the previous modeling 
assumptions, the inductance is considered as a linear, constant 
inductance and eddy currents are negligible. From a modeling 
viewpoint, the effect of EMF can be represented as voltage 
source to the electrical system. For the methods in section 4, 
the EMF is considered to be negligible or as a constant voltage 
input. In case of solenoid actuators (or contactors), the stroke, 
i.e., the total change in the working air gap can be relatively 
small (less than one millimeter [13]) thus the change in the 
magnetic reluctance is small [4]; enabling the EMF to be omit-
ted. For actuators which have larger stroke, this assumption can 

pose some limitation. However, it is possible to compensate the 
supply voltage input with the EMF part by using a previously 
defined EMF model and measuring the velocity of the moving 
part. Considering the fact that mechanical time constants are 
usually much larger than electrical time constants, it can be rea-
sonable to assume that the changes in the velocity of the spool 
and in the position dependent magnetic reluctance are insignifi-
cant during a single estimation; thus, the EMF voltage can be 
considered to be constant. Then, the methods in section 4 apply.

In both situations (sections 3 and 4), the resistance depends 
only on temperature; and the thermal time constant of the sys-
tem is considered to be larger than the electrical time constants; 
therefore, changes in the resistance are negligible during the 
period of a single estimation.

3 The Steady-State Based Method
In the steady-state of the PWM the coil current fluctuates 

between a high and low level which are unchanged during the 
PWM cycles. Additionally, the overall flux change in a PWM 
cycle must be zero; otherwise it would lead to accumulation in 
magnetic energy thus increase in current (continuity of flux). 
An exemplary steady-state PWM current waveform, with a 
hysteretic inductance function, is illustrated in Fig. 3.

Using the voltage induction law for the PWM “on” and 
“off” periods and exploiting flux balance; the governing equa-
tions become (1)-(5). The symbol d refers to the duty ratio, 
and T refers to the time period of a PWM cycle, and Ψ refers 
to the magnetic flux.
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Fig. 3. Exemplary steady state PWM current waveform with hysteresis in 
the inductance
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According to (4), the inductance function has no effect on 
estimating the resistances from the steady-state waveform 
because only the average supply voltage and average current 
values are that matter. Because (4) expresses a linear combina-
tion of the resistances at a given supply voltage and duty ratio 
setting, multiple steady-state current waveforms are necessary, 
which are captured at different supply voltages or duty ratios. 
From the successive evaluation of (4), a system of linear equa-
tions can be formulated (6), the solution of which yields the 
overall resistances in the energizing paths.

  
  
 

 
 

In practical PWM applications, it is more convenient to 
change the duty ratio than the supply voltages because the 
supplies are usually constant, e.g. a battery. Having the ele-
ments of the coefficient matrix in (6) computed from aver-
age values (4), the noise suppression of the estimation is 
greatly improved. Drawback of the presented method is that 
the steady-state waveform is required which may take a long 
time to reach, especially if the control signals are changing. 
Furthermore, the duty ratio has to be always slightly altered in 
order to construct (6).

Considering embedded applications, the computational 
complexity of the presented method is low. In order to con-
struct (6), the current waveform has to be integrated during 
the “on” and “off” periods of the PWM cycle respectively, and 
the average exciting voltage has to be calculated for a PWM 
cycle. The integration can be replaced by a finite summation, 
which is computed rapidly even in a low-end microcontroller, 
although the sampling frequency (number of samples in a 
PWM cycle) has to be high enough to reduce truncation error 
at the integration. The only computational difficulty may arise 
at solving the system of linear equations for the overall resist-
ances (inversion).  

4 The Transient State Based Methods
Compared to the previous section, the steady-state of the PWM 

is now not reached but the system undergoes a transient period 
due to a change in the control signal (duty ratio). However, in 
certain situations it might be still necessary to provide an estimate 
of the resistance, e.g. the transient period is long enough for the 
resistance to change considerably. In the following subsections 
4.1 to 4.3, a set of low-complexity computational methods are 
presented for the “transient” estimation of the coil’s resistance. 
Unlike the method in section 3, the following methods can not 
directly scope with the nonlinear inductance behavior, which 
may pose some limitation with respect to practical applicability. 
However, this limitation can be mitigated as the inductance can 
be considered “almost” constant if the underlying range of the 
coil current, from which the estimation is performed, is not very 
large. In subsection 4.4, some further improvement is presented 
for reducing the bias if the inductance depends on the current.

With the modeling assumptions described in section 2, the 
estimation of the resistance is based on the following principle: 
if the supply voltages are constant and the duty ratio does not 
change, then the evolution of the “average current in a PWM 
cycle” follows the three parameter exponential function in (7) 
throughout the PWM cycles, even if the overall resistances in 
the energizing paths (time constants) are different. A mathe-
matical proof of this statement is provided in the Appendix. 
Thus, full information about the underlying process  (time con-
stant and steady-state current) can be extracted from the aver-
age current waveform by e.g. fitting a three parameter exponen-
tial curve to the samples. In this paper, the resistance data are 
extracted by means of exponential fitting to the samples of the 
average current on a PWM cycle.

In the following methods, the basis of the estimation is the 
average current on a PWM cycle and not the current signal 
under a PWM cycle. The main reasons are noise suppression 
and computational effectiveness. By taking the average (inte-
gral) of the current on a PWM cycle, the noise which disturbs 
the measurement can be considerably reduced. The magnitude 
of the noise suppression is related to the number of samples in 
a PWM cycle (the higher the better), which can be consider-
ably higher than the PWM switching frequency (e.g. 100 times), 
even in low-end microcontroller applications. The operation of 
averaging or integral, which is a summation, can be rapidly 
computed and require insignificant resources. Furthermore, the 
matrix operations, recursive and fitting methods, from which 
the resistance data are extracted e.g. exponential fitting in sub-
section 4.1-4.2, are thus to be performed on far less samples by 
considering the average current. Since these operations can be 
highly resource consuming (iteration, matrix inversion etc.) and 
their resource needs may nonlinearly increase with the sample 
size, their application to the average current signal (less sam-
ples) results in a significantly improved computational speed at 
the same or better signal to noise ratio.
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From the viewpoint of practical application, the upcoming 
methods require that: the sampling frequency has to be high 
enough (e.g. 100 times the frequency of the PWM) to satisfac-
torily compute the average current and average supply voltage 
on the PWM cycles, i.e., the discrete integration (summation) 
results in insignificant truncation error. Next, the duty ratio has 
to be held steady for at least three subsequent PWM cycles and 
the corresponding current and voltage signals are to be cap-
tured, so the exponential fitting can be performed. However, the 
more cycles (e.g. 8) available the more robust the estimation of 
the resistance becomes (better noise suppression). Additionally, 
at least two transient waveforms are necessary, which belong 
to different duty ratios so a system of linear equations, that is 
similar to (6), can be created. Using the concept of the exponen-
tial fitting, the method in subsection 4.1 extracts the resistances 
from the exponent, and the method in subsection 4.2 uses an 
extrapolation to the steady state of the current.  The methods in 
subsection 4.3 bypass the exponential fitting and may also apply 
if the supply voltages change from PWM cycle to PWM cycle. 

Further on, the following simplifying notations (8-11) are 
introduced; which are also better explained in the Appendix. 
The average current function, which can be taken only at the 
end of the PWM cycles, is derived as (7); and the steady-state 
of the average current can be derived as (8).  
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4.1 Estimation of the Resistance from the Exponent
Under the conditions which are described in the introductory 

part of section 4, the average current is captured and computed 
for a few, e.g. six, successive PWM cycles; thus, (7) applies 
for the sampled average current signal. On the switching fre-
quency, there is no limitation. By performing a three parameter 
exponential fit to the average current data by means of e.g. least 
squares, the resulting time constant Ω of the fitted exponential 
function can be expressed as (12) from (7) and (11).

Ω Ω= −( ) ⋅ + → ( ) = ⋅ +A B d B d m d c
 

According to (12), the fitted time constant Ω is a linear func-
tion of the duty ratio; and the intercept and the slope express 
the time constants of the energizing paths. If multiple transient 
waveforms (at least two), which belong to different duty ratios, 
are captured, then the linear relationship between the duty 
ratios and the fitted time constant in (12) can be identified; thus, 
the time constants can be estimated as in (13). 
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By substituting (9-11) to (8) one can rewrite (8) as (14). With 
the previously identified time constants and resistance ratio in 
(13), the resistances of the energizing paths can be computed 
from (14). Also, the resistances RA and RB of the energizing 
paths can be computed from multiple values of (14) and then 
averaged to reduce noise disturbances.
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Considering embedded applications, this method is compu-
tationally more exhaustive compared to the method in section 
3, because it requires an exponential function to be fitted to the 
average current waveform. This step may become time con-
suming in a microprocessor; therefore, efficient methods for 
performing a three parameter exponential fit may be of further 
research. Furthermore, the computation of (14) requires the 
computation of “exponential” functions which may also turn 
out to be multiple cycle instructions for a microcontroller.  

4.2 Extrapolation to the Steady-State of the Current
In this subsection, the main concept is that the exponential fit 

is used for extrapolating to the steady-state of the average coil 
current, from which the overall resistances of the energizing 
paths can be extracted by using a simplified linear relationship 
(similarly to (6)). Compared to the previous method (subsec-
tion 4.1), this method requires that the time period T of the 
PWM is considerably smaller (at least 1/10 times) than the time 
constant of the electrical system.

Having an exponential curve fitted to a few successive sam-
ples of the transient average current, which is expressed as (7), 
the steady-state of the average current iAVG is also estimated by 
means of an e.g. exponential fitting. The analytical solution 
gives (14), which has to be compared to the steady state of 
the average current which resulted from the fitting. Since the 
resistance values are also contained in the time constant of the 
exponential terms, a closed form expression for the resistances 
from (14) does not exist but requires iteration, which is compu-
tationally exhaustive in embedded applications. Nonetheless, 
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the value of the inductance also has to be approximated for 
evaluating (14). In order to bypass the previous difficulties, an 
approximation of (14) is proposed for the computation of the 
resistances. By taking the Taylor series of the exponential func-
tion in (15), the exponential part of (14) can be rearranged and 
simplified as in (16).
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According to (16), the parameters a and b express a ratio 
of the PWM time period and of the time constants in (11). For 
simplifying (14) and (16), we propose the use of the first order 
approximation of the exponentials, which we state that results 
in a very small truncation error of (16) in a wide range of the a 
and b parameters. With the assumption of a=b, the truncation 
error in (16) was computed at various values of the a parame-
ter, and the results are plotted in Fig. 4. It can be concluded that 
the first order approximation of (16) results in negligible error 
at values of the a parameter typical in real PWM applications. 
According to Fig. 4, the error is still less than 10% at a=1 (time 
period of the PWM equals the time constant of the system); 
however, practical PWM applications use switching frequen-
cies which are ten (a=0.1) or more times higher, in which situa-
tions the truncation error becomes insignificant (0.1%).

Using (16), the analytical solution of the average current 
(14) can be written as (17).
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The term in the round brackets in (17) can be factored out as 
(18) using (10-11).
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From (18), the PWM time period T and the inductance LS can 
be factored out thus the steady-state of the average current can 
be written as (19).
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After a few algebraic manipulations (20-23) on (19), the 
resistances are brought to (24). 
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If the extrapolations of the average current to steady-state 
are available at separate duty ratios, then a system of linear 
equations (25) can be established and solved for the overall 
resistances. The minimum number of independent equations is 
two; however, the system can be also composed of more equa-
tions for better noise suppression. Note that the problem in (25) 
is in fact a line fitting problem.

Compared to the method proposed in section 4.1, the method 
presented in section 4.2 is computationally more economi-
cal. In section 4.1, the solution requires an exponential fitting 
to the waveform of the average current, a line fitting to the 
time constant-duty ratio data and then the evaluation of (14) 
for every measurement point (to reduce noise), which can be 
time consuming for a microcontroller. However, the method 

Fig. 4. Truncation error of (16) due to the first order approximation.
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in section 4.2 requires an extrapolation to the steady-state by 
the exponential fitting or other techniques, but then the resist-
ances are directly obtained from the solution of (25), which is 
a line fitting. Thus, the computation of (14) is avoided and this 
increased computational efficiency can be of great advantage in 
embedded systems. Furthermore, the necessary matrix in (25) 
is constructed readily.
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4.3 Estimation from the Difference Equation
The previous methods relied on an exponential fit to the aver-

age current signal (or on some other methods for obtaining the 
exponent and steady state); and required the supply voltages to 
remain constant during the period of an estimation. A recursive 
or fitting algorithm for obtaining the exponent and the steady 
state may pose a significant computational burden for a low-
end microcontroller; therefore, this subsection presents alterna-
tive methods which bypass e.g. the exponential fitting; and may 
scope with changes in the supply voltages. 

If considering the average current and voltage signals at a 
given duty ratio, the electrical behavior can be also represented 
by an equivalent resistance, e.g. the time constant in (7) and the 
“average” resistance in the right hand side of (25). The equiva-
lent resistance, which is denoted by Rd, is a weighted combina-
tion of the RA and RB resistances by the d duty ratio, provided 
the PWM frequency is high enough. According to subsection 
4, the samples of the average current can be considered as the 
samples of an otherwise continuous signal in (7), if the duty 
ratio and average supply voltage is unchanged. However, (7) is 
a closed form analytical solution to the corresponding differen-
tial equation, which can be described as in (26) in terms of the 
equivalent resistance Rd. In order to obtain (7) from (26), the 
average supply voltage has to be constant.

L
di t
dt

R i t U td⋅
( )

+ ⋅ ( ) = ( )

 Using (26), a system of linear equations (27) can be con-
structed from the measurement data and then solved for the 
unknown L and Rd values, provided that the duty ratio is con-
stant. Note that by solving (27), it is possible to scope with 
changes in the average supply voltage; however, the derivative 
of the average current signal is necessary, which can be com-
puted from the samples by using discrete differentiation as in 
(28). In the following, we denote the approach in (28) as “4.3 
discr”.
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Despite being computationally economical, the solution of 
(28) is susceptible to noise and may also suffer from discre-
tization error due to the discrete differentiation. If the aver-
age supply voltage does not change, then the average current 
signal is described by (7), for which an equivalent polyno-
mial representation is possible. As an alternative approach, it 
is suggested that an e.g. 3rd or 4th order polynomial function 
(which reconstructs (7) appropriately) is fitted to the samples 
of the average current signal, and then the elements of (28) are 
computed from the polynomial representation. This way, the 
truncation error caused by the differentiation and sampling can 
be greatly reduced, and noise effects may be also decreased 
due to the polynomial fitting, although at the expense of the 
computational load of the polynomial fit and its evaluation. 
Further on, this approach is denoted as “4.3 poly”.

Nevertheless, it is also possible to recast (26) into an integral 
form which expresses the flux changes (29), thereby the discrete 
differentiation is bypassed. Note that this approach can also scope 
with changes in the supply voltage, but the computation of the 
coefficient matrix (29) becomes more resource consuming com-
pared to (28). The parameters can be derived by solving the result-
ing system of linear equations (the elements of (27) to be replaced 
accordingly to (29)). This approach is denoted as “4.3 int”.
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After having the equivalent resistance Rd estimated at differ-
ent duty ratios, the overall resistances of the energizing paths can 
be estimated accordingly to e.g. (25). Compared to the methods 
in subsections 4.1-4.2, the (exponential) fitting procedure is 
avoided, which may result in a considerable improvement at 
the computational efficiency. However, the solution requires the 
inversion of two matrices: one for the equivalent resistance (e.g. 
(28)) and the other for the overall resistances (25).

(25)

(26)

(27)

(28)

(29)



116 Per. Pol. Elec. Eng. and Comp. Sci. Ivor Dülk / Tamás Kovácsházy

The statistical properties, i.e., mean and variance of the esti-
mates of the equivalent resistance from (14), (25), (27)-(29) are 
expected to somewhat depend on the coefficient matrix; there-
fore, an experimental investigation is conducted in Section 5. 

4.4 Reducing Bias in the Estimate of the Resistance
In the introductory part of section 4, it is pointed out that 

the nonlinear core behavior may cause bias in the estimation 
because the underlying model considers a linear, constant 
inductance. In this subsection, an approach is presented for the 
reduction of this bias.

The methods in subsections 4.1 to 4.2 are based on estimat-
ing the steady-state current from an exponential fit to the tran-
sient step response. In real applications, the inductance of the 
solenoid valve might somewhat depend on the current; there-
fore, the exponential extrapolation that considers a constant 
inductance becomes biased. The exponential function in (7), 
which is expressed in terms of amplitude and offset, can be 
rewritten as (30) in terms of initial current and steady-state.

i t i i i A tSS( ) = + −( ) ⋅ − ⋅( )( )0 0 1 exp
 

When performing an exponential fit to the measurement 
data, it can be also considered as finding an appropriate ini-
tial current i0 and current change iSS-i0. The term iSS refers to 
the steady-state current. Because the initial current is known 
(measured), it is expected to change far less compared to iSS-i0 
and A in case of bias due to a current dependent inductance. 
Assume that the inductance function is such that the iSS-i0 term 
in (30) is over estimated. In this situation, if the current (duty 
ratio) increases, then the aforementioned bias causes that the 
extrapolated steady-state current becomes larger than the origi-
nal one; which corresponds to an estimated resistance being 
smaller than the real one. On the contrary, if the current (duty 
ratio) decreases, then the larger (biased) iSS-i0 term causes the 
extrapolation to the steady current to become smaller; thus, the 
corresponding resistance will be overestimated. This is oppo-
site to the previous situation. That is how, if adding the biased 
resistances (previous two situations) to each other, the over and 
under estimations will somewhat cancel out each other and will 
thus result in a considerably smaller overall bias.

For reducing the overall bias in the steady-state (resistance) 
estimate due to a current dependent inductance, we propose 
that (25) be constructed from “averaged” terms as in (31). 
Considering (24), the right-hand side represents an average or 
equivalent resistance, which is either over or under estimated in 
case the inductance is not constant. Mathematically, the sepa-
rate (independent) rows of (25) can be added to each other and 
averaged as in (31).
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If the equivalent resistances, which are computed from fall-
ing and rising current signals at different duty ratios, are added 
to each and averaged as in (31), then the overall bias in the 
“averaged” equivalent resistance can be considerably reduced. 
Eq. (31) can be rewritten as (32).

R R d R RA B N B N−( ) ⋅ + =
 

According to (32), the average resistance is described as a 
linear function of the average duty ratio, where the slope and 
the intercept are simple functions of the resistances in the ener-
gizing paths. Therefore, a matrix equation similar to (24) can 
be constructed and solved, or the linear relationship identified 
from multiple average duty ratio and average resistance pairs. 

5  Computer Simulations and Experimental Analyses
5.1 Computer simulations for comparing
some statistical properties:
In Section 4 a collection of methods was presented for esti-

mating the overall resistances in the energizing paths consider-
ing the transient current waveform. Common in them all, an 
equivalent resistance is estimated at a certain duty ratio; then a 
system of linear equations is created from the equivalent resist-
ances and solved for the resistances in the energizing paths. In 
a computer simulation, we studied the mean error and deviation 
of each of the methods in section 4 when estimating a certain 
equivalent resistance. The parameters of the simulation were as 
follows: L=1, RA=0.7, RB=0.55, UH=1, UL=0, T=0.2, Ts=0.002, 
d=0.4, i0=0 and 10 PWM cycles were recorded. The average 
current signal was ranging from 0 to 0.45. The samples of the 
current signal were loaded with a uniformly distributed white 
noise with expected value of 0. The simulation was carried out 
at different noise levels. At each of the noise amplitudes, 2048 
independent simulations were preformed from which an exper-
imental mean error and deviation were computed for the sepa-
rate methods. The performance of the proposed methods versus 
the noise disturbances is plotted in Figs. 5-6. The equivalent 
resistance in this particular simulation was 0.61.

From left to right, the labels in the legends are the following: 
“4.1” refers to the method that is proposed in section 4.1 (expo-
nential fit to get the time constant), “4.2” refers to the method that 
is proposed in section 4.2 (exponential fit to get the steady-state), 
“4.3.discr” refers to the method that is proposed in section 4.3 
and uses the discrete form of (27) that is (28); “4.3.int” refers 
to the method which uses the integral form of (27) that is (29) 
and “4.3.poly” refers to the method which uses a polynomial (4th 
order) fit to the average current waveform and thus computes (27). 
According to Fig. 5, the “discrete” version of the method that is 
proposed in section 4.3 (from (28)) has a significant bias with 
increasing noise levels. Compared to this, the integral form (29) 
in Section 4.3 is “unbiased”; however, it has the largest deviation. 
Therefore, if a method that is computationally more effective 
than those in Section 4.1-4.2 are necessary, we suggest that (27) 

(30)

(31)

(32)
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is implemented by computing the coefficients from an adequate 
polynomial fit to the average current signal, i.e., use “4.3.poly”.

Nonetheless, the best statistical performance (bias and devi-
ance) is shown by the method in subsection 4.2; however, it is 
computationally more demanding as it requires an exponential 
fitting compared to the methods in 4.3.

5.2 Experimental analyses
The resistance of a real solenoid actuator was estimated with 

the methods that are proposed in Sections 3-4. The experimen-
tal setup that was used for the analyses is described in [13]. 
The measurement settings were the following: 100 kHz sam-
pling frequency, 2 kHz switching frequency, 10 V UH high level 
power supply and the UL low level or negative supply corre-
sponded to the forward voltage drop of the freewheeling diode, 
the model of which had been previously captured. The solenoid 
actuator was driven in a low-side single switch configuration 
similarly to Fig. 1. The overall resistances had been previously 
measured in a DC static measurement (the switch was continu-
ously turned on); the results are listed in Table 1. 

First, the overall resistances in the energizing paths (which 
include the coil’s resistance) were estimated from the steady-
state PWM current waveform accordingly to Section 3. The 
duty ratio was swept from 0.3 to 0.4 with a spacing of 0.02 
and the current waveform during a PWM cycle was recorded 
after 100 ms the duty ratio had changed, thus steady-state 
was reached. The resulting system of linear equations (6) was 
solved that yielded the resistances in Table 1. 

Secondly, the overall resistances were estimated from the tran-
sient average current signal accordingly to subsections 4.2-4.3. 

Two sequences of duty ratios, each consisting of six different 
duty ratios, were used for generating the exciting PWM signal 
and a duty ratio lasted for approximately 18 PWM cycles. The 
corresponding transient waveforms are plotted in Fig. 6. For 
the separate transient sections that corresponded to a certain 
duty ratio, the steady-state current was approximated by means 
of an exponential fit to the last six measurement points or using 
(27)-(29); and then the average duty ratios and resistances (32) 
were calculated for the two sequences. Thus, bias due to a 
possibly current dependent inductance could be considerably 
reduced. The resistance estimates were obtained by solving the 
2 by 2 system of equations (25).

According to Table 1, the difference in the overall resistances 
could be estimated appropriately with the proposed methods. 
Thus, a better estimate of the resistance of the solenoid actuator 
could be provided compared to computing a single “equiva-
lent” resistance, which would also change with the duty ratio; 
thus, result in a bias that depends on the duty ratio. 

6 Conclusion
In this paper, methods were developed for estimating the 

resistance of the coil of a solenoid actuator by considering the 
fact that in real applications, the overall resistance that the coil’s 
current encounters during the “on” and “off” periods of a PWM 
cycle can be different. In some situations, the difference in the 
overall resistances can be significant; thus, we provided better 
estimates of the coil’s resistance and resolved a possible source 
of bias, compared to estimating a single equivalent resistance. 
Also, we differentiated between estimating the resistance from 
the steady and transient waveforms of the PWM driven current 

Fig. 5. Mean error and deviation of the proposed methods

Tab. 1. Results of resistance estimations.

DC

Meas.

Sec. 3

St. state (4)

Sec. 4.2

Exp.fit (32)

Sec. 4.3

discr. (28)

Sec. 4.3

int. (29)

Sec. 4.3

poly. (27)

RA [Ω] 6.117 6.137 6.119 6.130 6.110 6.107

RB [Ω] 5.755 5.765 5.736 5.734 5.740 5.754

ΔR [Ω] 0.362 0.372 0.383 0.396 0.371 0.353
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signal. In the latter case, we proved that under some modeling 
assumptions the transient waveform of the average current on a 
PWM cycle could be expressed by a three parameter exponen-
tial function irrespectively of the different overall resistances 
(time constants). Computer simulations had been carried out to 
compare the statistical properties, e.g. expected error and devi-
ance, of the developed methods. We found that in case the expo-
nential assumption is valid, the estimation of the resistance by 
the exponential fitting methods had better statistical properties. 
However, computation of the exponential fitting may become 
computationally exhaustive for certain microcontroller based 
applications; therefore, the methods in subsection 4.3, which 
are computationally more economical, can be more suitable 
provided that noise effects are at an acceptable level. Experi-
mental analyses that considered a real actuator also confirmed 
that the proposed methods (steady and transient) could estimate 
the resistance of the solenoid actuator appropriately; and that 
some difference in the overall resistances of the energizing 
paths was observable. Thus, a better estimate of the true wind-
ing resistance could be provided and bias in the estimate of the 
resistance, which would otherwise change with the duty ratio, 
could be reduced. In general, the developed methods have 
low computational complexity which makes them suitable for 
embedded applications.    

Appendix
We prove the principle in section 4: if the inductance is con-

stant, then the step response of the average current on a PWM 
cycle can be expressed as (7) if the time constants in the PWM 
“on” and “off” periods are different. During a PWM “on” 
period (switch is turned on) and during a PWM “off” period 
(switch is turned off) the coil current can be expressed as (a.1)-
(a.2) respectively according to Fig. 1-2. The terms iA,0 and iB,0 in 
(a.1)-(a.2) refer to the initial conditions of the coil current. The 
following notations (9)-(11) are also made use of.

i t i i e iON A H
A t

H( ) = −( ) ⋅ +⋅
,0  

i t i i e iOFF B L
B t

L( ) = −( ) ⋅ +⋅
,0

For a particular kth PWM cycle the following notations (a.3)-
(a.5) are introduced for the current signal. At the beginning 
of the PWM cycle (“on” period) the initial or start current is 
denoted as iA,k. Next, the symbol iB,k refers to the current that is 
reached by the end of the kth PWM “on” period. The coil cur-
rent at the end of the kth PWM cycle, which is the start current 
of the next k+1th PWM cycle, is denoted by iA,k+1. Using (a.1)-
(a.2) the specific current values in an arbitrary PWM cycle can 
be expressed as (a.3)-(a.5).  

i i i e iB k A k H
A d T

H, ,= −( ) ⋅ +⋅ ⋅

  

i i i e iA k B k L
B d T

L, ,+
⋅ −( )⋅= −( ) ⋅ +1
1

 

i i e i e i i e iA k A k
a b

H
a b

H L
b

L, ,+
+ += ⋅ − ⋅ + −( ) ⋅ +1

 

α = − ⋅ + −( ) ⋅ ++i e i i e iH
a b

H L
b

L
 

Using the formulas (a.5)-(a.6) successively, the initial cur-
rent of the PWM cycles can be expressed as (a.7) from an arbi-
trary start current iA,k.
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 According to (a.7), the evolution of the current, which is 
taken at the start of the PWM cycles, follows a geometric 
series. Using the formulae for the sum of geometric series, the 
summation can be transformed to (a.8).

i i e e
eA k n A k

n a b
n a b

a b, ,+
⋅ +( )

⋅ +( )

+= ⋅ + ⋅
−
−

α 1
1

 

Through the substitution and rearrangement of the coeffi-
cients, (a.8) can be brought to (a.9) which possesses the form 

Fig. 6. Transient current waveforms of the solenoid actuator used for resistance estimation.
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of (7); that is, the initial current of the PWM cycles can be 
expressed by the exponential relationship irrespective of the 
different time constants. Though the initial current is sampled 
by the PWM switching frequency, it still fits an otherwise 
continuous exponential signal. The overall time constant is a 
weighted sum of the time constants.

i i
e

e
eA k n A k a b

n a b
a b, ,+ +

⋅ +( )
+= −

−
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α α

1 1
 

 
In Section 4, the resistances are estimated from the average 

current in a PWM cycle. In terms of iA,k, iB,k and iA,k+1 the aver-
age current in the kth PWM cycle can be written as (a.10)-(a.11).
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By substituting (a.2) to (a.11), the average current can be 
rearranged as in (a.12).
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Introducing the following notations (a.13)-(a.14), (a.12) can 
be rewritten as (a.15).

β = ⋅ + −( ) ⋅
⋅

−
−
⋅



















 + ⋅ − +

−
⋅









i d e

A T
e

B T
i d e

B TH
a

b

L

b

1 1 1 1 1
  

 
 

χ = −
⋅

+
−
⋅

⋅
e
A T

e
B T

e
a b

a1 1
 

i iAVG k A k, ,= ⋅ +χ β
 

According to (a.15), the average current in the kth PWM 
cycle is a linear combination of its corresponding start current. 
Using the previously established exponential expression (a.9) 
for the evolution of the start current values, the average current 
can be expressed as (a.16).
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From (a.16), it can be seen that the evolution of the average 
coil current, similarly to the start current in (a.9), can be also 
represented as the samples of a continuous exponential func-
tion. Substituting (a.6), (a.13) and (a.14); the steady state of the 
average current can be expressed as (8) with n set to infinity, 
provided that a and b are negative.

(a.9)

(a.10)

(a.11)

(a.12)

(a.13)

(a.14)

(a.15)

(a.16)
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