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Abstract
When the identification of linear parameter-varying (LPV) 

models from local experiments is considered, the question of the 
necessary number of local operating points as well as the prob-
lem of the efficient interpolation of the locally-estimated linear 
time-invariant models arise. These challenging problems are 
tackled herein by using the H∞-norm. First, thanks to the nu-gap 
metric, an heuristic technique is introduced to optimize the num-
ber as well as the position of the local operating points (along 
a given trajectory of the scheduling variables) with respect to 
the information brought by the local models. Having access to 
a reliable set of local models, the second step of the procedure, 
i.e., the parameter estimation step, consists of the optimization a 
second H∞-norm-based cost function measuring the fit between 
the local information (represented by the locally-estimated LTI 
models) and the local behavior of a parameterized global LPV 
model. A special attention is given to parameterized LPV mod-
els satisfying a fully-parametrized or a physically-structured 
linear fractional representation.

Keywords
linear parameter-varying model · linear fractional represen-

tation · H∞-norm · non-smooth optimization · nu-gap metric

1 Introduction
Nowadays, the extensive demand for reliable models of non-

linear and/or time-varying systems requires the development 
of special model structures in which the non-linear behavior 
is broken down into several local models [16]. Among all the 
multi-model structures available in the literature, a particular 
attention has been paid to the linear parameter-varying (LPV) 
models during the last two decades (see [28, Chapter 1] for 
a historical review of LPV modeling and identification). This 
interest can be mainly explained by the following reasons. 
First, an LPV model can be seen as a combination of local 
models with parameters evolving as a function of measurable 
variables (called the scheduling variables) which can be related 
to the different operating points of the system. By this way, the 
model structure is close to the standard linear time-invariant 
(LTI) one but with a structural flexibility able to cope with 
time-varying, even non-linear behaviors. Second, the develop-
ment of LPV models is linked to control engineering, where 
a controller must be designed in order to guarantee a suitable 
closed-loop performance for a given plant in different oper-
ating conditions. A well-known example of controller design 
technique using this “divide and conquer” basic idea is the 
gain scheduling approach [25]. A wide body of LPV controller 
design techniques is now available for this problem, which can 
be solved reliably, provided that a suitable model in a parame-
ter-dependent form has been derived.

LPV model identification methods based on I/O data [7] 
can be divided into two sub-classes generally called the global 
approach and the local approach, respectively. On the one hand, 
the global approach assumes that one global experiment can be 
performed during which the control inputs, as well as the sched-
uling variables, are both excited (see among others e.g., [15, 5, 
32, 14, 31] and the references therein). By this way, all the non-
linearities of the system are excited at the same time by passing 
through a large number of operating points. On the other hand, 
local methods are based on a multi-step procedure where

•	 local experiments are performed in which the operating 
points (corresponding to fixed values of the scheduling 
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variables) are held constant and the control inputs are 
(persistently) excited,

•	 local LTI models are estimated by using the locally gath-
ered input/output (I/O) measurements,

•	 an interpolation phase is performed in order to determine 
a final global parameter-dependent model,

Such a multi-step approach is a lot closer to the standard 
procedure used for non-linear system identification or the one 
dedicated to gain scheduling. Such a viewpoint has been con-
sidered, e.g., in [17, 30, 19, 38, 12, 8]. Both classes of methods 
have advantages and drawbacks. From a practical point of view, 
the global approach can suffer from the difficulty to satisfy the 
“rich” excitation of the control inputs and the scheduling vari-
ables simultaneously. It is obvious that such an experimental 
procedure may not be reasonable for specific applications, 
mainly for safety reasons. On the contrary, applying small vari-
ations around particular operating points, as considered by the 
local approach, is more conceivable in many practical cases. 
However, when state-space forms are concerned (as consid-
ered in the sequel), the interpolation step involved in the local 
approach requires that the local LTI state-space models are 
written in a coherent basis [29], basis which, on top of that, 
must be related to the global LPV state-space structure. In order 
to address this coherent basis issue, a new approach, sharing 
ideas from D. Petersson’s work [21], is suggested hereafter. As 
explained first in [22, 23], then in [36, 35], the standard inter-
polation step involved in the local approach can be efficiently 
discarded by optimizing one global cost-function which fits the 
local behavior of the sought global LPV model (with coherent 
local and global state basis) to the available local information 
available in the local LTI models estimated during the second 
step of the local approach. However, contrary to the develop-
ments available in [21, 24], we do not consider an H2-norm-
based optimization solution hereafter but an H∞-norm-based 
one. The main reason why we focus on this specific norm is 
linked to the fact that the H∞-norm is a direct and efficient tool 
for adapting reliable and convergent non-smooth optimization 
algorithms [1, 2, 3] (suggested initially for H∞-synthesis) for 
parameterized model identification. Notice also that the opti-
mization techniques introduced hereafter do not involve the 
bounded real lemma [6] and thereby lead to moderate-size 
optimization routines even when huge data-sets are handled. 
Interesting from a consistency point of view [3], the iterative 
H∞-norm-based optimization algorithm used hereafter may be 
very sensitive to the number of operating points involved dur-
ing the minimization. Considering too many data-sets can be 
indeed computationally cumbersome. Unfortunately, according 
to the Authors’ knowledge, apart from a first attempt in [13], the 
problem of the optimal selection of the operating points is often 
eluded when local methods are applied. Indeed, when the final 
LPV model is determined based on local experiments, the oper-
ating points are usually assumed to be given in a well-chosen 

and well-placed manner along a given trajectory of the sched-
uling variables. In this article, inspired by the developments 
suggested in [26], an extension of the approach presented in 
[35] is developed with the feature to give access to an ad-hoc 
number of local operating points on-line. More precisely, a new 
combination of two H∞-norm-based methods is suggested first 
to determine a sufficient number of local LTI models (in order 
to ensure that the final global LPV model captures the whole 
dynamics of the system to identify), second to estimate the 
unknown parameters of the sought parameterized LPV model 
by matching the local LTI models to the frozen [28] global LPV 
model. The first problem, i.e., the working points selection, is 
tackled by resorting to the nu-gap metric [33]. As shown in 
[34], the nu-gap metric can be considered as a non-linearity 
measure. This latter feature can be seen as an important asset 
when LPV modeling and identification problems are tackled. 
An optimal experimental design technique is proposed in [13] 
for input/output representations while an operating point reduc-
tion approach based also on the nu-gap metric is suggested in 
[26]. In this latter article, however, a user-defined set of local 
input/output representations has to be available before the 
application of the method. Furthermore, a simple weighted 
interpolation between the selected local linear models is only 
suggested to obtain the final LPV one. As mentioned above, 
after such an interpolation step, the resulting LPV model may 
not be consistent. On the contrary, our contribution avoids the 
interpolation step by considering a global cost function com-
paring the global LPV model and the available local informa-
tion. As shown hereafter, such a viewpoint leads to an efficient 
optimization procedure which connects the theoretical sound-
ness of the H∞-norm with a quite simple implemention. Notice 
also that the method presented in this paper does not require 
any initial set of local models but only assumes the availability 
of two estimated fully-parametrized model as a starting point. 
Then, the estimation of the other models is performed step-by-
step along the trajectory of the scheduling variables by opti-
mizing the step size between each working point.

The paper is organized as follows. In Section 2, the problem 
statement and some important definitions are given. Section 3 
is dedicated to the working points selection step. The problem 
of the estimation of the unknown parameters of the LPV model 
is postponed to Section 4. In Section 5, the performance of the 
developed method is presented through a simulation example. 
Section 6 concludes this article.

2 Problem formulation and definitions
In this article, the identification of LPV models described by 

the following state-space representation is addressed

γ x A p x B p u( ) ( ( ) ) ( ) ( ( ) ) ( )t t t t t= , + ,Θ Θ

y C p x D p u( ) ( ( ) ) ( ) ( ( ) ) ( )t t t t t= , + ,Θ Θ

(1a)

(1b)
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(6a)

Fig. 1. Linear fractional representation as partial feedback interconnection 
of M and Δp.

where u( )t nu∈  is the input signal vector, y( )t ny∈  is the 
output signal vector, x( )t nx∈  is the state vector and t∈
or . Herein, γ stands for the forward shift operator when 
discrete-time systems are considered or for the differential 
operator when continuous-time systems are handled. The vector 
Θ Θ∈n  contains the unknown parameters to identify. In the 
LPV framework, the system matrices (A, B, C, D) are rational 
functions of measurable time-varying signals gathered into the 
vector p( )t np∈ ⊆   and called the scheduling variables, i.e.,

A : → × 

n nx x B : → × 

n nx u

C : → × 

n ny x D : → ,× 

n ny u

where

 = ∈ | ≤ ≤ ,∀ ∈ , , ,{ { }}p � �n
i i i p

p p p p i n1

is the so-called scheduling “space” [27] which is a compact 
set. It is furthermore assumed that the system matrices satisfy 
a static dependence on p [28], i.e., they do not depend on the 
time-shifted versions (p(k + 1), p(k + 2), ∙ ∙ ∙ ) or the time-deriva-
tives ( � �� �p p( ) ( )t t, , ) of the scheduling variables when discrete or 
continuous-time models are considered, respectively. Such an 
assumption (static dependence) can be justified by noticing that 
no dynamical dependency can be observed from local experi-
ments. Thus, only static dependent LPV models can be handled 
when a local procedure is considered.

In this paper, a specific attention is paid to state-space matri-
ces satisfying a rational dependence on p(t). Such a parameter 
dependence is indeed more general than the affine dependence 
usually encountered in system identification. It is also often 
used in the robust control literature [39]. More precisely, we 
focus on LPV models which can be written into the so-called 
linear fractional representation (LFR) [39]. The block-diagram 
of the linear fractional representation can be seen in Fig. 1. The 
Δp matrix is p(t)-dependent and defined as

∆ = , , .p r n rp t p t
p np

diag( ( ) ( ) )1 1
I I

The signals w( )t nw∈  and z( )t nz∈  are inner auxiliary sig-
nals with r r

k

n
k

p=
=∑ 1

 linked by the equation w(t) = Δpz(t). M 
is an LTI system with the following state-space representation
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where (A0(Θ)   Bw(Θ) ∙ ∙ ∙  D0(Θ)) are time-invariant matrices 
with appropriate dimensions.

Thanks to this linear fractional representation, the state-
space form described by Eq. (1) can then be obtained from the 
following state matrices [39]

A p I( ( ) ) ( ) ( ) ( ( ) ) ( )t A B D Cw p n zw p zz
, = + ∆ − ∆ −Θ Θ Θ Θ Θ0

1

B p I( ( ) ) ( ) ( ) ( ( ) ) ( )t B B D Dw p n zw p zuz
, = + ∆ − ∆ −Θ Θ Θ Θ Θ0

1

C p I( ( ) ) ( ) ( ) ( ( ) ) ( )t C D D Cyw p n zw p zz
, = + ∆ − ∆ −Θ Θ Θ Θ Θ0

1

D p I( ( ) ) ( ) ( ) ( ( ) ) ( )t D D D Dyw p n zw p zuz
, = + ∆ − ∆ −Θ Θ Θ Θ Θ0

1

provided that the inverse ( )In zw pz
D− ∆ −1  exists [39, Chapter 10] 

for all the possible trajectories of p(t). Notice that the elements 
of the system matrices in Eq. (6) (i) are polynomial or rational 
functions of the scheduling variable vector when Dzw ≠ 0, (ii) 
are affine functions when Dzw = 0. The LFR of the LPV model 
can also be compactly written as

G F( ) ( ( ) )∆ , = ,∆ ,p pΘ ΘM

where M(Θ) represents the LTI system and   stands for the 
upper linear fraction transformation as presented in Fig. 1 (see 
[39, Chapter 10] for details).

As explained in Section 1, such an LPV model can be identi-
fied from local or global experiments. Herein, a local approach 
is considered. First, in Section 3, a specific attention is paid to 
the reliable selection of Nop different local operating points. 
According to the Authors’ knowledge, apart from the contribu-
tions [13, 26], this problem is often overlooked in the litera-
ture. In this paper, it is shown how these Nop operating points 
can be extracted on-line from local information without reduc-
ing the quality of the final LPV model. Based on this local 
information, the identification of the global LPV model is then 
studied in Section 4.

3 Operating point selection algorithm
3.1 Nu-gap metric: a short reminder
In order to describe the working point selection technique, 

let us first introduce the measure of model fit, the present con-
tribution is based on. The nu-gap metric [34], as a distance 
measurement between two LTI models, is defined in [33] as

ν δg s s= ,( ( ) ( ))G G1 2

= + − + ,− −
∞ ( ( ) ( )) ( ( ) ( ))( ( ) ( ))I IG G G G G G2 2 2 1 1 1

1
2

1
2s s s s s s

where Gi s( ), i∈ ,{ }1 2 , stands for the transfer functions of each 
LTI model while iG , i∈ ,{ }1 2 , and  • ∞  stand for the complex 
conjugate and the Η∞-norm of 

 • ∞, respectively. This measure is 
bounded between 0 and 1 [33]. In addition, it can be shown that 
if νg is close to 0, then the two considered models have similar 

(3)

(2a)

(2b)

(4)

(5)

(7)

(6b)

(8b)

(6c)

(6d)

(8a)
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dynamic behavior. Contrarily, when νg is close to 1, then the 
two models behave differently [33, 34]. So, the nu-gap metric 
can be considered as a normalized Η∞-norm of the difference 
between two LTI models. Thanks to its advantageous proper-
ties, this tool can efficiently be used during the operating point 
selection procedure before the final LPV model estimation step. 

3.2 Selection algorithm
First, it is important to notice that the following selection 

algorithm can be used with any identification method based on 
local experiments. In the next section, this technique will be 
associated with a specific Η∞-norm-based optimization algo-
rithm but such an LPV model identification technique can be 
replaced by any other efficient interpolation technique usually 
developed in the local approach framework. For this selection 
procedure, it is assumed that the maximal ( pmax = p) and mini-
mal ( pmin = p) possible values of the scheduling variables are 
known (see Eq. (3) for the definition of p and p , respectively). 
By assuming that this (weak) assumption is satisfied, the natu-
ral questions which arise when dealing with a local approach 
are the following: how many working points do you need to 
get a consistent final LPV model? How can you select the 
good working points for the local experiments? How do you 
measure the information brought by a working point? Indeed, 
roughly speaking, by assuming that an initial operating point 
is available, the next one should be (i) far enough from the first 
one to decrease thecomplexity of the LPV model identification 
step, (ii) close enough to the first one to ensure that the global 
behavior of the system is well-captured. These important ques-
tions can guide the user in developing an heuristic technique 
for selecting the working points in an efficient way. They more 
precisely show that a distance between two consecutive local 
models must be introduced to decide if a local model must 
be kept because it gives access to new and reliable informa-
tion about the global behavior of the system to identify. In this 
paper, it has been chosen to use the nu-gap metric to measure 
such a distance because of its ability to quantify (between 0 
and 1) the behavioral similarities or differences between to LTI 
models. Once this frequency fit measurement is introduced, 
according to prior knowledge or specific practical constraints 
satisfied by the system to identify, the user must choose a spe-
cific range of admissible values for this match measurement νg 
(related to a user-defined threshold called  in the following), 
range which must picture the confidence the user has in the 
capability of the selected local models to capture the global 
behavior of the system. Then, depending on whether the cur-
rent value of νg is in or out of the user-defined range of admis-
sible values, the distance between the local models must be 
updated (increased or decreased).

This scenario being set, it is now necessary to translate it 
into an iterative algorithm. Hereafter, the actual operating point 
and the step size are denoted by pact and pstep, respectively. The 

following procedure can be performed in order to determine the 
best1 operating points and to identify the local black-box models 
from the local information available at these points. In the fol-
lowing, the algorithm is presented by using only one scheduling 
variable. Notice that the extension of the algorithm to several 
scheduling variables can be carried out straightforwardly.

1.	 Estimate a black-box LTI state-space model Gi , i = 1, in 
the initial operating point (pact = pmin) by using any dedi-
cated identification method [16, 10, 9, 18]. Define the 
initial pstep as p pstep max∈ . , .[ ]0 01 0 05  and set the operating 
point index as i = i + 1. Compute the position of the next 
working point (pi = pact + pstep).

2.	 Perform the following steps until it holds true that
pact ≤ pmax.
•	 Estimate a black-box LTI state-space model (Gi ) in the 

actual operating point (pact = pi) by using any dedicated 
identification method [16, 10, 9, 18].

•	 Compute the nu-gap metric by using the definition 
given in Eq. (8a), as

σ δ= , ,−( )G Gi i1

•	 If β σ β< < , then the actual model (Gi) is kept, i = 
i + 1 and , where the user-defined threshold β  and 
β  are chosen to be equal to (β − 0.1) and (β + 0.1), 
respectively.

•	 Else if σ β> , then the actual model (Gi ) is discarded, 
pstep = pstep − Δpstep and pi = pact − pstep.

•	 Else if σ β< , then the actual model (Gi) is discarded, 
pstep = pstep + Δpstep and pi = pact + pstep.

The resulting set contains the kept models, the dimension of 
which is denoted by Nop in the following.

By construction, such an algorithm is heuristic. A statistical 
investigation of the effect of the parameters β and the effect of 
noisy data during local model identification is tackled in Sec-
tion 5 by resorting to simulations. The theoretical analysis of 
this selection algorithm is referred to a future work. However, 
in order to guide the user, we can herein give some important 
hints in order to select the hyper-parameters of the technique 
efficiently. First, the initial value of pstep should be chosen quite 
small w.r.t. pmax, e.g., p pstep max∈ . , .[ ]0 01 0 05 . This choice can 
be justified by the fact that the step size should be initially small 
enough to be able to capture the non-linearities of the system. 
Then the algorithm will determine (increase or decrease) at 
each iteration a new value of pstep if it is necessary. Second, as 
far as β is concerned, as can be seen from the results obtained 
in Section 5, the admissible choice of this hyper-parameter 
depends on the noise involved in the local I/O data sequences 

1 In this context, by best selection, it is meant that the final set of working 
points is the best in terms of the user-defined β which is a maximal allowable 
distance, in the nu-gap metric sense [33], between each local model.

(9)
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and on the considered framework2. Finally, Δpstep is chosen to 
be equal to 0.25pstep during the simulation example in Section 5.

Notice that the operating point determination procedure can 
be started from the maximal value (pmax) and from any other 
intermediate value of the scheduling variables as well by (only) 
slightly modifying the afore-described algorithm. When the 
algorithm can not find any dynamical changes en route to pmax, 
two working points will be selected anyway, the ones corre-
sponding to pmin and pmax.

Notice finally that this selection algorithm can be easily imple-
mented by using the gapmetric function of the Robust Con-
trol Toolbox available in Matlab. As mentioned above, the pro-
posed algorithm can be applied with any identification technique 
based on local experiments (such methods can be, among others, 
[20, 19, 35]). In this article, the procedure is embedded into the 
Η∞-norm-based identification method developed first in [35].

4 Η∞-norm-based identification
method from local experiments
As explained in the former section, the working point selec-

tion algorithm described in this paper yields Nop local LTI mod-
els Gi s( ), i Nop∈ , ,{ }1 . The problem which remains to solve 
is how this local information can be efficiently combined in 
order to get, in the final step, an accurate LPV model. In this 
paper, LPV models satisfying a linear fractional representation 
are handled. It is now well-known [29, 20, 28] that, in a frame-
work using LPV state-space representations, this interpolation 
step must be performed with caution if the user does not want 
to face (dynamical) similarity transformation issues. Herein, 
this problem is bypassed by resorting to a specific cost function 
which focuses on the preservation of the input-output behavior 
of the model. More precisely, having access to reliable local 
models Gi s( ) , i Nop∈ , ,{ }1 , as well as an LPV model struc-
ture ( )s p, ,∆ Θ  effective, inter alia, for frozen values of the 
scheduling variables pi, i Nop∈ , ,{ }1 , the idea used herein 
consists in estimating the unknown parameters of the LPV 
model by optimizing the following global cost function

min ( ) ( )
Θ

Θ
i

i ps s
i∑ − ,∆ , ◊ G G 2

where ◊ stands for any system norm while 

( ) ( ) ( )( ( )) ( )s sp i i i ii
, ∆ , = , + , − , , .−Θ Θ Θ Θ ΘD p C p I A p B p1

This technique echos back the method developed in [21] but, 
hereafter, a specific attention is paid to the Η∞-norm. More pre-
cisely, we consider the following -norm-based cost-function 

min max ( ) ( )
Θ

Θ
i N i p

op
i

s s
∈ , , ∞− ,∆ , .
{ }1�

� �G 

2 By framework, it is meant that during the local LTI model estimation step, a 
black or a gray-box LPV model is sought to be estimated.

The use of the Η∞-norm can first be justified by noticing that, 
by definition, the Η∞-norm is the maximal singular values of 
the complex gain matrix over all the frequencies. Thus, thanks 
to the norm property, if the cost function in Eq. (12) is small 
enough (i.e., a lot smaller than 1), then the distance between 
the actual system and the identified one is small as well in the 
considered local working points. In other words, if the maxi-
mal value of the Η∞-norm found in Eq. (12) is small enough, 
the LPV model can be considered as a decent approximation 
of all the local LTI state-space models for all the considered 
fixed values of the scheduling variables. Notice that the local 
models perfectly captures the true local behavior. Second, the 
Η∞-norm is used herein as an efficient tool for adapting reli-
able and convergent non-smooth optimization algorithms [1, 
2, 3] (suggested initially for Η∞-synthesis) for parameterized 
model identification. The proximity control algorithm devel-
oped in [3] is indeed particularly adapted for the optimization 
of (non-smooth) structurally-constrained functions. The struc-
tured model identification framework considered in this paper 
explains as well the reasons why we direct our attention to this 
kind of techniques.

In order to be able to separately manage the involved local 
information, a block diagonal reformulation of the cost-func-
tion defined by Eq.  (12) is proposed herein. By doing so, a 
structured Η∞ synthesis problem is obtained (see [35] for more 
details). Let us more precisely introduce the block-diagonal 
term 



G s( ), ,p Θ  having the form
�

�G s G s G sNop
( ) ( ) ( ), , = , , , ,( ),p Θ Θ Θblockdiag 1

where p = , ,[ ]p pNop1
 is a vector containing the scheduling 

variables. As a result of the block diagonal structure, it can be 
written that

�
�

� � �G s G s
i i( ) max ( ), , = , .∞ ∞p Θ Θ

By replacing the above obtained structure into Eq. (12), we 
obtain the reformulated cost function as

min ( )
Θ

Θ�
�

�G s, , .∞p

In order to minimize the Η∞-norm of 


G s( ), ,p Θ , it is neces-
sary to compute the value of this function efficiently. Clearly,

∞ ∈ ,∞
, , = , , , , .

2

0 1

  

G s G GH( ) max ( ( ) ( ))
[ ]

p p pΘ Θ Θ
ω

λ ω ω 

Thus, solving Eq. (15) is equivalent to the following optimi-
zation problem

min max ( ( ) ( ))
[ ]Θ

Θ Θ
ω

λ ω ω
∈ ,∞

, , , ,
0 1

 

G GH  p p

where λ1( )•  is the maximum eigenvalue function which is a 
convex but a non-smooth function [2]. Notice that the compu-
tation of the objective function, defined by Eq. (16), is a hard 
task because, by construction, the global optimum of a non-
smooth and non-convex function over [0, ∞] must be estimated. 
Fortunately, when ( )∆ ,pi Θ , i Nop∈ , ,{ }1 , has a state-space 

(10)

(11)

(12)

(13)

(15)

(14)

(16)
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representation (which is the case herein), this step can be per-
formed efficiently by using a bisection algorithm based on a 
hamiltonian calculus [3].

Several efficient methods to solve the optimization problem 
defined by Eq. (16) can be found in [1, 3]. In this present work, 
the hinstruct function is applied to minimize the cost-func-
tion defined by Eq. (12). This optimization tool developed by 
Apkarian et al. is available in the Robust Control Toolbox of 
Matlab. A detailed description of the optimization algorithm is 
available in [1]

In the next section, the performance of the proposed tech-
nique is studied with the help of a simulation example.

5 Simulation example
5.1 System description
In order to illustrate the performance of the identification 

method developed in this paper, a translational two-mass-
spring system is used (see Fig. 2). The masses of the two vehi-
cles are denoted by m1 and m2, respectively. On this system, 
the linear speed v1 of the first vehicle is assumed to be actu-
ated with a force F and effected by − f 1v1. Similarly, the veloc-
ity v2 of the second vehicle suffers from a dissipative force 
− f 2v2. The two vehicles are linked with a flexible transmission 
of strength k and friction ratio f. By denoting δ the distance 
between the two vehicles, the force produced on the first vehi-
cle is −kδ − f(v1−v2) and the opposite on the second vehicle. The 
driving vehicle is equipped with a linear speed controller: F = 
K(u − v1), where u is the velocity reference and K is the control 
gain. The velocity of the first vehicle is considered as the output 
(y = v1). The second vehicle is loaded with a mass mc(t), which 
is considered to be time-varying and measurable at any time. 
By considering x = [m1v1  (m2 + mc)v2  δ] as the state vector, an 
LPV model structure similar to the one described in Eq. (1) can 
be obtained with p(t) = mc(t) and where

A p B p
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On the one hand, the linear fractional representation given in 
Eq. (5) can be obtained with Δp = p(t) = mc(t) and
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where Θ = , , , , ,




m m K k f f1 2 2  denotes the vector of the phys-

ical parameters of the system to identify. On the other hand, 
when M(Θ) is considered to be a fully-parametrized matrix, i.e.,
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the LFR given in Eq.  (5) can be calculated with Δp = p(t)
= mc(t). The parameters to identify are Θ = , ,




ϑ ϑ1 25 .

Remark 5.1 At this step, it is important to discuss the identifi-
ability issue related to the LPV model parameterization. When 
fully-parameterized LPV models are concerned, it is obvious 
that, as in the linear time-invariant framework, the parameter 
vector Θ cannot be estimated uniquely. Considered initially as 
a drawback, this feature can be used efficiently by the optimi-
zation algorithm introduced to estimate Θ. Indeed, in a certain 
way, the H∞-norm-based algorithm can use this extra degree of 
freedom to fit, as well as possible, the sought parameter vector 
Θ to the available local information, bypassing thus the coher-
ent basis constraint. In the gray-box case, i.e., when the model 
structure is physically-parameterized (see Eq.  (17)), getting a 
unique parameter vector is essential because the user wants to 
estimate the real physical parameters, e.g., Θ = , , , , ,




m m K k f f1 2 2 ,

accurately. Thus, in this framework, using an identifiable model 
structure is compulsory. For our simulation example, we will 
assume that the following two definitions are satisfied

Fig. 2. System used for demonstration.

(17)

(18)
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Definition 5.1 A model structure χ is a differentiable map 
from a parameter set Φ ⊂ nθ  to a set of models

χ θ: ⊂ →
,∆

.
×Φ

Θ Θ
� �n n ny u

�  ( ( ) )M

Definition 5.2 A model structure χ is locally identifiable at 
Θ Φ∗∈  if a neighborhood υ(Θ*) exists such that

Θ Θ∈ ∗ν ( )
  

χ χ( ) ( )Θ Θ Θ Θ= ⇒ = .∗ ∗

Notice that, for the simulation example considered herein, these 
definitions are satisfied at least for frozen values of the schedul-
ing variable. A further analysis of the identifiability and well-
posedness of gray-box LFRs in the local LPV model identifica-
tion framework is devoted to a future work. Notice however 
that the good estimation results obtained in Paragraph 5.3.2 
lead us to conclude that this assumption should be satisfied by 
our model parameterization.

5.2 Working point selection
The first step of the method used in this paper consists in 

selecting Nop local operating points by applying the algorithm 
described in Section 3. As explained previously, this selection 
algorithm contains an identification step yielding local fully-
parametrized LTI state-space models from which the nu-gap 
metric test can be applied for selecting the more informative 
operating points. In this paper, it has been chosen to use the 
Simplified Refined Instrumental Variable method for Continu-
ous-time systems (SRIVC) [10, 11] to get these local black-box 
models. This choice can be justified first by noticing that the 
SRIVC method, which can be considered as one of the most 
efficient identification techniques for the direct estimation of 
continuous-time LTI models, is known to yield consistent esti-
mates when the model belongs to the system class [10] and 
second because a convenient implementation is available in the 
CONTSID Toolbox for identifying MISO models, a constraint 
satisfied by the simulated system studied in the current section. 
Notice also that the implementation available in the CONTSID 
Toolbox has the advantage of not requiring any design param-
eters to be specified. Of course, users familiar with other tech-
niques can use their favorite algorithms to estimate the initial 
state-space representations (A B Ci i i, , ), i Nop∈ , ,{ }1 , as long 
as these fully-parameterized models mimic the system behav-
ior accurately. As explained in Section  3, the working point 
selection algorithm depends on hyper-parameters the user must 
tune correctly in order to ensure that the selected local models 
are enough (in quantity and quality) to get a reliable final LPV 
model. In this paper, we first focus on the influence of pstepinit  
as well as the direction of the search, i.e., if starting from pmin 
or pmax influences the final result. The study of the impact of β 
is postponed to the next sub-section because this parameter is 
highly linked to the quality of the LPV model obtained from the 
optimization of the H∞-norm-based criterion (15). Thus, herein, 

the following Monte-Carlo simulation is carried out. Starting 
first from pmin, then from pmax, for 9 successive values of β in the 
range [0.1 : 0.9] with a step of 0.1, 20 randomly selected values 
of pstepinit  are generated so that it can vary in the range [1% 50%] 

pmax. For each run, Δ pstep = 0.25 pstep while the local I/O data-sets 
are obtained by exciting the real system with a PRBS composed 
of 600 samples designed so that the whole local dynamics of the 
system is visited, then modified by adding up, on the noise-free 
output, a zero mean white Gaussian noise satisfying an S N R 
equal3 to 30 dB. First, in Fig. 3 and 4, respectively, we plot, for 
each value of β ∈ . : .[ ]0 1 0 9 , the median (cross), the minimum 
(lower limit) and the maximum (upper limit) number of working 
points obtained with the nu-gap-metric-based technique starting 
from pmin and from pmax, respectively. These bar-plots show that

•	 increasing the value of β leads to a decrease of Nop,
•	 the algorithm is not too sensitive to the search direction, 

i.e., starting from pmin or pmax does not very influence the 
number of selected working points,

•	 apart from specific cases (for instance β = 0.1, starting 
point = pmin), the range of values satisfied by Nop is small.

Notice that, for each value of β, the median values are 
reached at least 12 times (out of the 20 Monte-Carlo simula-
tions). These good conclusions can be reinforced by looking 
at the distribution of the values of the selecting scheduling 
variables for β ∈ . : .[ ]0 1 0 9  and i Nop∈ , ,{ }1 , respectively. 
For the sake of conciseness, results obtained with β = 0.5 are 
only shown in this paper. Notice however that similar con-
clusions can be drawn for the other values of β. Figure 5 and 
Figure 6 depict the box-plot for β = 0.5 starting from pmin and 
pmax, respectively. It is clear from these curves that the selected 
working points remain almost the same for the each value of 
i Nop∈ , ,{ }1 .

Based on the results presented above, it can be concluded 
that the working point selection algorithm is not very sensitive 
to the initial working point (pmin or pmax) as well as the user-
defined value of pstepinit  when mild noisy conditions are encoun-
tered. Notice however that, according to the Authors’ experi-
ence, this conclusion must be moderated when low S N R are 
handled. Large ranges of scheduling variables can indeed come 
out when the S N R is set to be equal to 10 dB or less because of 
the sensitivity of the nu-gap-metric to model misfit. This issue 
is still under investigation and future publications will be dedi-
cated to the developed solutions.

5.3 LPV model estimation
The second step of the procedure aims at estimating the 

final LPV model through the minimization of the cost-func-
tion defined by Eq. (12) from a set of local models. The hin-
struct Matlab function is used herein to minimize the 

3 The chosen noisy conditions are mild in order to avoid misleading conclusions 
which could be related to the noise effect and not to the hyper-parameter choice.

(19)

(20)and



128 Per. Pol. Elec. Eng. and Comp. Sci.� Dániel Vízer / Guillaume Mercère

involved cost-function. Notice that other algorithms such as 
HIFOO [4] or the proximity control method recently described 
in [37] should be used instead. The main advantage of hin-
struct is its availability in Matlab. For this LPV model 
identification step, two LPV model structures (a black-box and 
a gray box structure, respectively) are handled, as explained 
in Sub-Section 5.1. As far as the estimation procedure is con-
cerned, the following scenario is used. For β = 0.3, 0.6 and 
0.9, respectively, for each selected working point chosen as by 
the mean value of the scheduling variable pi, i Nop∈ , ,{ }1 4 
(shown by the red lines in Figure 5  and  6, respectively), 40 
noise-free local I/O data-sets are first generated, then disturbed 
by a zero-mean white Gaussian noise satisfying an S N R = 20 

dB. The system is, more precisely, excited by applying PRBS 
signals having a sampling-time equals to 0.1s. By using again 
the SRIVC algorithm, black-box models are estimated locally 
from these noisy data-sets. For each working point, the best 

4 The number of working points are Nop( )0 3 10. = , Nop
( )0 6 3. = , Nop( )0 9 2. = , 

respectively.

local model, the worst one and the median one are then kept 
for the last step of the procedure, i.e., the H∞-norm-based pro-
cedure. By best, worst and median, we mean the model giving 
the best, worst and median I/O fit defined as

BTF
mean

= × −
−

− ( )










100 1 0

2

max ,
y y

y y
ŷ

where y stands for the output of the real system while ŷ denotes 
the model output. Notice that this fit evaluation is performed 
with noise-free validation data-sets. Table  1 contains the 
obtained best, worst and median averaged5 BFT for each value 
of β. The procedure presented above is performed by using the 
sets of working points obtained by starting the selection algo-
rithm from pmin and from pmax as well. The figures gathered in 
Table 1 show that the SRIVC algorithm leads to accurate local 
LTI models quite often because, for each value of β, the median 
BFT values are very close to the best ones.

5 Notice that for each β, different numbers of BFT values are averaged 
according to the number of working points (Nop( )0 3 10. = , Nop

( )0 6 3. = , Nop( )0 9 2. = ).

Fig. 6. Distribution of the value of the scheduling variable (pi) in the ith 
working point w.r.t. i Nop∈ , ,{ }1  when β = 0.5. Starting point: pmax.

Fig. 3. Distribution of the number of the selected working points (Nop) w.r.t. 
β. Starting point: pmin.

Fig. 4. Distribution of the number of the selected working points (Nop) w.r.t. 
β. Starting point: pmax.

Fig. 5. Distribution of the value of the scheduling variable (pi) in the ith 
working point w.r.t. i Nop∈ , ,{ }1  when β = 0.5. Starting point: pmin.
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As explained previously, the behavioral interpolation sug-
gested in this paper involves the minimization of an H∞-norm. 
Because of the non-convexity of such a cost function, initializa-
tion issues can occur. Herein, in order to test the robustness of 
our technique w.r.t. the initialization, a Monte-Carlo simulation 
of dimension 10 is performed. In the black-box framework, the 
25 sought parameters are initialized randomly by picking up 
uniformly distributed values (rj

i( ), i∈ , ,{ }1 25 , j∈ , ,{ }1 10 ) 
in the range [0, 1]. In the gray-box one, the parameters are ini-
tialized by using the following expression

Θ Θi i j
i

init real
r= + − . ,( ( ))( )1 4 0 5

where, again, rj
i( ), i∈ , ,{1 6 }, j∈ , ,{ }1 10 , denotes a uniform 

random number in the range [0, 1] while Θireal , i∈ , ,{1 6 }, 
stands for the real values of the parameters, respectively. Notice 
that, for this simulation example, it is assumed that we know a 
priori that m1 and m2 are equal. Such an assumption can be made 
according to the available prior information about the system to 
identify.

5.3.1 Black-box LPV model
Having access to 3 × Nop local LTI models for each value of 

β ∈ . : . : .[ ]0 3 0 3 0 9 , we have now to interpolate these “worst”, 
“best” and “median” models to get final LPV black-box 
models. This problem is solved by minimizing the cost func-
tion  (12) as explained in Section  4. Using this technique for 
the current simulation example leads to 3 × 10 black-box LPV 
models for each value of β ∈ . : . : .[ ]0 3 0 3 0 9 . Now, the question 
of LPV model validation arises. Herein, this validation step is 
performed by comparing the time evolution of the model out-
put with the output of the real system. During this validation 
step, the scheduling variable is continuously excited in the 
range [0, 0.8] by using a chirp signal with a frequency varying 
linearly with respect to time in [0 − 15] rad ⁄ s. Notice that there 
is no noise during this LPV model validation. Again, an I/O 
fit measurement, similar to the one defined in Eq. (21), is used 
to quantify the capabilities of the model to mimic the system 
behavior. Table 2 contains the mean (based on 10 LPV black-
box models) of the obtained BFT measurements.

The figures gathered in Table 2 show that, except when the 
worst local models are used for the H∞-norm-based optimiza-
tion, the procedure dedicated to the LPV black-box model iden-
tification (i) leads to LPV models able, in average, to mimic 
the behavior of the real system efficiently even when few local 

models are involved, (ii) is not sensitive to the initialization 
while the 25 sought parameters are initialized in the range [0, 1].

5.3.2 Gray-box LPV model
In the gray-box framework, our goal is to focus on the capa-

bilities of the identification algorithm to estimate the physical 
parameters of the real system accurately. Indeed, in this con-
text, the structure of the LPV model is fixed a priori. By using 
the same local models as the ones considered in the black-
box case, LPV physically-structured models are estimated by 
resorting, again, to the cost function (12). Table 3 gathers the 
mean of the estimated physical parameters (as well as the real 
parameter values) by considering the “best” and “median” sets 
of local models while, in Table  4, I/O fit measurements (see 
Eq (21)) satisfied by the estimated LPV models (by following 
the black-box LPV model I/O validation procedure considered 
previously) can be seen. Notice that the worst set of local mod-
els is discarded in this study because this set of local models 
leads to very bad physical parameter estimations (of magni-
tude, even sign, far from or in contradiction with the physics of 
the real system) which can be discriminated easily thanks to the 
available prior information on the sought physical parameters.

According to the obtained results, it can be concluded that 
the physical parameters of the system under study are well-
estimated based on both the “best” and “median” sets of local 
models. As far as the time-domain fit measurements defined by 
Eq (21) are concerned, it can be seen in Table 4 that the esti-
mated gray-box LPV models are able to capture the behavior 
of the system even when little local information is involved. 

Notice that in the gray-box framework, local minima have 
arisen resulting in 1, maximum 2 (out of 10) erroneous sets 
of estimated parameters. Again, these local minima problem 
can be discarded thanks to the available prior knowledge about 
the magnitude and/or sign of the real parameters. The resulting 
estimated parameters are indeed a lot out of the range of the 
real parameter values. 

6 Conclusion
In this article, a nu-gap metric-based [33] working point 

selection algorithm associated with an H∞-norm-based identi-
fication method (initially developed in [35]) is introduced for 
LPV model identification. As shown in the former sections, the 
proposed technique is able to determine, on-line, a set of the 
local black-box LTI state-space models along the trajectory of 

pmin → pmax pmax → pmin

β 0.3 0.6 0.9 0.3 0.6 0.9

Best BFT [%] 90.07 90.07 90.08 90.06 90.05 90.07  

Median BFT [%] 90.02 90.03 90.03 90.03 90.03 90.02  

Worst BFT [%] 63.65 55.61 89.91 54.98 59.84 64.97  

pmin → pmax pmax → pmin

β 0.3 0.6 0.9 0.3 0.6 0.9

Best BFT [%] 96.6 91.5 91.2 96.8 90.7 90.8

Median BFT [%] 96.3 90.2 90.3 96.2 90.1 90.01

Worst BFT [%] 48.9 53.2 89.1 49.2 56.2 61.4

Tab. 1. Best, median and worst I/O BFT measurements of the estimated 
black-box LTI models.

Tab. 2. I/O BFT measurements of the estimated black-box LPV models.

(22)



130 Per. Pol. Elec. Eng. and Comp. Sci.� Dániel Vízer / Guillaume Mercère

the scheduling variables, then yields an accurate global LPV 
model from local experiments by resorting to a behavioral 

interpolation procedure, discarding thus the coherent basis 
problem encountered in the local approach. Contrary to the 
standard solutions which focus on affine LPV model structures, 
linear fractional physically-structured and fully-parametrized 
LPV representations are considered. As illustrated by a simula-
tion example study, this contribution can be seen as a promis-
ing solution to the working point selection problem when LPV 
model identification from local experiments is considered.

pmin → pmax pmax → pmin

Parameter m1,2 k K f2 f m1,2 k K f2 f

Real Value 0.2 10 4 0.04 0.1 0.2 10 4 0.04 0.1

β 0.3

Best 0.19 9.96 4.00 0.038 0.1 0.19 10.02 4.01 0.04 0.098

Median 0.19 9.89 3.98 0.037 0.11 0.2 9.9 4.04 0.039 0.102

β 0.6

Best 0.2 10.01 3.93 0.04 0.09 0.19 9.79 3.97 0.039 0.009

Median 0.19 9.98 3.98 0.039 0.09 0.19 9.88 3.99 0.04 0.101

β 0.9

Best 0.21 9.75 4.09 0.039 0.098 0.2 9.83 4.02 0.038 0.098

Median 0.2 9.86 3.93 0.039 0.10 0.199 9.88 3.92 0.04 0.102

pmin → pmax pmax → pmin

β 0.3 0.6 0.9 0.3 0.6 0.9

Best BFT [%] 97.4 96.8 96.1 97.2 96.9 96.2

Median BFT [%] 97.4 96.9 96.4 97.1 96.1 96.1

Tab. 4. I/O BFT measurements of the estimated gray-box LPV models.
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