
Ŕ periodica polytechnica

Electrical Engineering

and Computer Science

57/4 (2013) 99–103

doi: 10.3311/PPee.7413

Creative Commons Attribution

RESEARCH ARTICLE

Communication Time Estimation in

High Level Synthesis

György Pilászy / György Rácz / Péter Arató

Received 2012-09-06, revised 2013-07-29, accepted 2013-07-29

Abstract

The high level synthesis (HLS) tools may result in a multi-

processing structure, where the time demand of the interchip

data transfer (briefly the communication) between the process-

ing units (hardware or software) is determined exactly only after

the task-allocation. However, a realistic preliminary estimation

of the communication time would help to shape the scheduling

and the allocation procedures just for attempting to minimize

the communication times in the final structure. Compared to the

task-execution times of the processing units, especially signifi-

cant communication times are required by the serial communi-

cation interfaces which are frequently used in microcontroller

systems. This paper presents an estimation method by analysing

four well-known serial communication interfaces (SPI, CAN,

I2C, UART).

Keywords

communication time estimation · HLS · CAD · microcon-

troller · multiprocessing · embedded systems · serial communi-

cation interfaces

Acknowledgement

The support of the Hungarian Scientific Fund (OTKA

K72611) and New Hungary Development Plan (Project ID:

TÁMOP-4.2.1/B-09/1/KMR-2010-0002) IKT-P5-T3 are grate-

fully acknowledged. This work is also belonging to the scientific

program of the "Development of quality-oriented and harmo-

nized R+D+I strategy and functional model at BME" project.

György Pilászy

Department of Control Engineering and Information Technology, BME

e-mail: gpilaszy@iit.bme.hu

György Rácz

Department of Control Engineering and Information Technology, BME

e-mail: gyuriracz@iit.bme.hu

Péter Arató

Department of Control Engineering and Information Technology, BME,

Magyar tudósok krt 2., H-1117 Budapest

e-mail: arato@iit.bme.hu

1 Introduction

In high-level design, the task-specification can be transformed

into some kind of data flow graphs. Various HLS (High Level

Synthesis) algorithms and tools are available for optimizing the

schedule and allocation of the graph. [3, 7, 9, 11–15]. The HLS

framework presented in [7] for synthesizing a specific (task-

dependent) multiprocessing structure demonstrates that how im-

portant is a realistic preliminary communication time estimation

already in the decomposition phase. The HLS tools are rarely

dealing with the communication between the nodes of the data

flow graph; it is generally considered with zero-time execution.

This solution is appropriate within an intra-FPGA (Field Pro-

grammable Gate Array) communication, but in case of more

than one IP (Intellectual Property Unit or Intelligent Processor)

it is not always applicable. In IPs containing microcontrollers

or microprocessors, generally integrated communication periph-

erals are applied. Compared to the task-execution times of the

processing units, especially significant communication times are

required by the serial communication interfaces which are fre-

quently used in microcontroller systems.

If the task-specification allows, each communication channel

(line) can be represented by an extra node with an estimated

or determined execution time representing the communication

time.

A realistic preliminary estimation of the communication time

would help to influence the scheduling and the allocation proce-

dures in order to reduce the communication complexity between

the processing units in the final structure.

Further on, we present an estimation method by analyzing

four well-known serial communication interfaces (SPI, CAN,

I2C, UART).

2 Calculating the communication time

Various types of serial channels are often used, because of

the small number of pins and other resource constraints. In the

following sections, we examine the frame structures of four fre-

quently integrated serial communication interfaces.

Communication Time Estimation in High Level Synthesis 992013 57 4

http://dx.doi.org/10.3311/PPee.7413
http://creativecommons.org/licenses/by/3.0/


2.1 Analysis of the simple interfaces (without protocol)

In the following, we calculate the communication time of the

well known SPI and UART interfaces. These interfaces trans-

mit data in typically 8 bit units and only specify timing require-

ments.

Figure 1 and 2 show the timing diagrams of the data transfer.

Based on these diagrams the communication time (Tk) can be

easily calculated.

Fig. 1. SPI data transmission

Tk = b · Tbit + TS S (1)

TS S =≈ Tbit (2)

Tk = (b + 1) · Tbit (3)

Tk = (N · 8 + 1) · Tbit (4)

where Tk : communication time, Tbit : clock period, TS S :

sum of the selection/deselection time, b : the number of bits to

be transmitted, N : number of bytes.

Fig. 2. UART data transmission

Tk = (b + 1 + p + s) · Tbit (5)

Tk = N · (1 + 8 + p + s) · Tbit (6)

where p : parity or control bit (0 or 1), s : stop bits (0, 1, 1.5, 2).

These interfaces can operate in wide ranges of clock frequen-

cies. The typical upper limit is 20MHz in case of SPI and

10MHz in case of UART. The values mostly depend on the

transmission medium.

2.2 Analysis of an interface with simple protocol

In this case the specification of the interface contains some

additional overhead bits and signals. A widespread example of

such an interface is the Inter-IC bus [8]. Figure 3 shows the

timing diagram of an I2C communication with 7 bit addressing.

Based on [8] and figure 3 the communication time of the I2C bus

can be formulated.

Fig. 3. I2C data transmission with 7 bit addressing

Assuming that we fix the time of the START and STOP bits

as one bit period each, we can state concerning the number of

the bits to be transmitted shown in Table 1.

Tab. 1. Number of the bits to be transmitted

7bit address 10bit address

framing 2 bit 2 bit

address 9 bit 9+9 bit

databits N · 9 N · 9

Total transmitted bits 11 + N · 9 20 + N · 9

Typical I2C bus speeds [4] are shown in Table 2.

Tab. 2. Typical I2C speeds and bit times. *Note: The "high speed" modes

require special handling [4].

Speed mode Max bitrate Bit time (Tbit)

[kbit/s] µs

Normal 100 10

Fast 400 2.5

Fast + 1000 1

High speed 3400* 0.29

Ultra high speed 5000* 0.2

Table 8 shows the estimated communication times of the I2C

bus. Assuming 100 kHz clock frequency and normal 1-8 data

bytes, the message transmission periods are shown in the Ta-

ble 3.

Tab. 3. Message transmission periods in µ s

Databytes (N) 7 bit address 10 bit address

1 200 290

2 290 380

3 380 470

4 470 560

5 560 650

6 650 740

7 740 830

8 830 920

Per. Pol. Elec. Eng. and Comp. Sci.100 György Pilászy / György Rácz / Péter Arató



Fig. 4. Structure of CAN dataframes [1, 2]

Fig. 5. Bitsuffing

2.3 Analysis of an interface with multi layer protocol

The CAN (Control Area Network) is a multi layer serial com-

munication protocol [1] which supports the real-time distributed

control, at up to 1 Mbit/s speed. There are two types of CAN

protocols: CAN V2.0A (standard format) which uses 11 bits,

and the CAN V2.0B (extended format) which uses 11+18 = 29-

bits as identifier in the transmission of messages. The devices,

which can use the extended format, are able to communicate in

the standard mode too. Thus, the different devices can work

together, but only in the standard mode.

The structure of CAN messages are carefully detailed in [1]

and [2].

Figure 4 shows the structure of the CAN data frame. At the

three interfaces described above, the length of the message did

not depend on the content. Because of the so called bitstuffing

applied in the CAN system we can give only a worst case esti-

mation for the communication time. We must estimate also the

maximum bit number of the longest CAN message.

The length of the CAN message can vary depending on the

transmitted data and the stuffed bits. The method of the bitstuff-

ing is as follows: if the transmitter detects five consecutive bits

of identical value in the bit stream. Figure 4 shows the struc-

ture of the CAN data frame. At the three interfaces described

above, the length of the message did not depend on the content.

Because of the so called bitstuffing applied in the CAN system

we can give only a worst case to be transmitted it automatically

inserts a bit of opposite value in the actual bit stream before the

transmission [2]. The frame segments, start of frame, arbitra-

tion field, control field, data field and CRC sequence are coded

Tab. 4. Maximal bit number of CAN messages

CAN 2.0A CAN 2.0B

Fix fields 34 bits 54 bits

N [byte] Total length [bit]

1 53+13 78+13

2 63+13 88+13

3 73+13 98+13

4 83+13 108+13

5 93+13 118+13

6 103+13 128+13

7 113+13 138+13

8 123+13 148+13

by the method of bit stuffing [2].

To estimate the maximum number of the inserted bits, ignore

the fixed control bit values (eg.: IDE, RB0, RB1, etc). The frame

starts with a zero SOF bit, so we start also the sample sequence

identifier with 0 bits. After five 0 bits (including the SOF), a 1-

bit value will be inserted. Afterwards, the test series continues

with 4 additional 1-bits, then again a 0 bit, and so on. Figure 5

shows the first 16 bits of the test sequence.

Of the above test series can be seen that for the transmission

of 16 bits 4 stuffed bits were needed. The "#" character marked

the inserted bits.

The maximum number of stuffed bits (s) can be estimated by

dividing the bit number of the message bits by 4, and then the

Communication Time Estimation in High Level Synthesis 1012013 57 4



Tab. 5. Maximal CAN transmission time

Message size CAN 2.0A CAN 2.0B

byte µs µs

1 66 91

2 76 101

3 86 111

4 96 121

5 106 131

6 116 141

7 126 151

8 136 161

result is rounded up.

s =

⌈
No of databits

4

⌉
=

⌈
FM + AM

4

⌉
(7)

where FM : bit number of fix fields, AM : bit number of variable

data field, AM = 8 · N, where N is the number of data bytes.

According to the above considerations, the total number of

bits in the frame (db) is as follows:

db = FM + AM + s + E (8)

where E : number of non stuffed bits after the CRC at the end of

the frame, E ≥ 13.

Taking into account the bit number of the fields (in the fix

header and the variable lengths of data and the empty space (13

bits) at the end of frame and the stuffed bits), the following max-

imum number of bits can be calculated shown on Table 4.

2.4 Transmission time estimation of the CAN interface

The maximum transmission time can be estimated, if we

know the bit-time of the CAN interface. For this kind of es-

timation, the previously calculated message length is multiplied

by the transmission time of one bit. Reordering the equation (8):

db = FM +

⌈
FM

4

⌉
+ E + AM +

⌈
AM

4

⌉
(9)

Fig. 6. DFG representation

As AM field size can be 0. . .8 bytes, the inserted bits can be

maximum 2 of each byte. When N is the number of data bytes,

the total bit number of the data field is:

AM +

⌈
AM

4

⌉
= N · (8 + 2) = N · 10 (10)

Tab. 6. The input parameters

Processor Operation ti pieces

P1 FFT 99 4

P2 SC 29 4

Pk CAN 18 4

P4 HT 111 1

For example: at 1Mbit/s data transfer rate from Table 4 is

shown in Table 5.

By using the closed forms, the results presented above are

summed up in Table 8.

3 Using the results in HLS design systems

The HLS tools usually represent the task to be solved by form-

ing a data flow graph (DFG). The Figure 6 shows a simple exam-

ple, how to represent the communication channel (e3) between

the e1 and e2 elementary operations. In Figure 6, t1 and t2 repre-

sent the duration of the operation e1 and e2.

The execution time of the e3 communication operation is tk.

However, the communication time (Tk) presented in the previ-

ous chapters depends on the bit rate, so we have to transform

it into the timing system used by the particular HLS tool. The

communication time is characterized by the Tbit and Tk. In the

HLS tools the time is generally modelled by the number of the

clock periods. The two time domains should be scaled as fol-

lows:

tk =
Tk

T
(11)

where T denotes the length of the clock period and tk is Tk ex-

pressed by the number of clock periods.

As an example for the practical usage of this method, we have

chosen a sound source localisation structure from the reference

[6]. Let a CAN communication network be assumed between

the microcontrollers. In order to optimize the graph structure,

we used the HLS tool PIPE [3]. The Elementary Operation

Graph (EOG) of the task is shown in Figure 7 on the left. By

applying the tool PIPE for scheduling and allocation, the allo-

cated DFG is illustrated in Figure 7 on the right.

The execution times of the operations are assumed as shown

in Table 6.

In the example, it has been assumed that a restart time (initial-

isation period) R = 260 clock period ensures the desired pipeline

throughput. To fulfil this requirement, the necessary numbers of

operations are summarized in Table 7.

Tab. 7. Resources after the allocation

Processor Operation ti pieces

P1 FFT 99 2

P2 SC 29 2

Pk CAN 18 1

P4 HT 111 1

Per. Pol. Elec. Eng. and Comp. Sci.102 György Pilászy / György Rácz / Péter Arató



Tab. 8. Communication time estimation

Interface Tk

SPI (N · 8 + 1) · Tbit

I2C-7 bits address (N · 9 + 11) · Tbit

I2C-10 bits address (N · 9 + 20) · Tbit

UART (1 stop, 0 parity) N · 10 · Tbit

UART (1 stop, 1 parity) N · 11 · Tbit

CAN2.0A (N · 10 + 56) · Tbit

CAN2.0B (N · 10 + 81) · Tbit

The results show that the HLS tool PIPE provided only two

FFT blocks and only one CAN interface at the specified restart

time.

Fig. 7. The EOG (left) and the allocated DFG (right)

4 Results

The method presented in this paper can be applied to estimate

the communication time in four frequently serial communica-

tion interfaces. Since such interfaces are byte-organized in most

cases, so it is advisable to indicate the data to be forwarded (N)

in bytes.

The results are summarized in Table 8. N is the number of

bytes (N = 1 . . . 8), Tbit is the bit time. The N ≤ 8 limit is

needed, because the maximum size of CAN messages can be 8

bytes. Figure 8 shows the message transmission time of various

communication interfaces at Tbit = 1 µ s bit time. The presented

method can be applied in other types of interfaces as well.

References

1 CAN specification 2.0A, http://www.can-cia.org/index.php?id=441.

2 CAN specification 2.0B, http://www.can-cia.org/index.php?id=441.

3 Arató P, Visegrády T, Jankovits I, High Level Synthesis of Pipelined Dat-

apaths, John Wiley & Sons; New York, 2001, ISBN 0 471495582 4.

4 I2C-bus specification and user manual Rev. 4, 2013, February, http://www.

nxp.com/documents/user_manual/UM10204.pdf.

5 Pilászy G, Móczár G, Remote control of modular microcontroller sys-

tems, In: Measurement and Automation, Microcad 2001; Miskolc, Hungary,

2001.03.01-2001.03.02.

6 Goraczko M, Liu J, Lymberopoulos D, Energy-Optimal Software Par-

titioning in Heterogeneous Multiprocessor Embedded Systems. DAC 2008

(June 8–13, 2008, Anaheim, California, USA).

Fig. 8. Comparison of the communication times at Tbit = 1µs

7 Arató P, Drexler D, Kocza G, Suba G, Synthesis of a Task-dependent

Pipelined Multiprocessing Structure, ACM Transactions on Design Automa-

tion of Electronic Systems.

8 The I2C Bus specification version 2.1, Jan. 2000, http://www.nxp.com/

documents/other/39340011.pdf.

9 Coussy P, Gajski DD, An Introduction to High-Level Synthesis, IEEE De-

sign & Test of Computers, (2009).

10 8251A Programmable communication interface, Intel Corporation, 1993.

Document number: 205222-003.

11 Suba G, Hierarchical pipelining of nested loops in high-level synthesis. sub-

mitted to Periodica Polytechnica Electrical Engineering and Computer Sci-

ence.

12 Hou J, Wolf W, Process Partitioning for Distributed Embedded Systems, In:

Proceedings of the 4th International Workshop on Hardware/Software Co-

Design, IEEE, 1996, p. 70, DOI 10.1109/HCS.1996.492228.

13 Reinhard W, Grund D, Reineke J, Schlickling M, Pister M, Ferdi-

nand C, Memory Hierarchies, Pipelines, and Buses for Future Architectures

in Time-Critical Embedded Systems, IEEE Transactions on Computer-aided

Design of Integrated Circuits and Systems, 28(7), (2009).

14 Séméria L, Sato K, De Micheli G, Synthesis of hardware models in c with

pointers and complex data structures, IEEE Transactions on Very Large Scale

Integration (VLSI) Systems - System Level Design, (2001).

15 Schliecker S, Rox J, Negrean M, Richter K, Jersak M, Ernst R, System

Level Performance Analysis for Real-Time Automotive Multicore and Net-

work Architectures, IEEE Transactions on Computer-aided Design of Inte-

grated Circuits and Systems, 28(7), (2009).

Communication Time Estimation in High Level Synthesis 1032013 57 4

http://www.can-cia.org/index.php?id=441
http://www.can-cia.org/index.php?id=441
http://www.nxp.com/documents/user_manual/UM10204.pdf 
http://www.nxp.com/documents/user_manual/UM10204.pdf 
http://www.nxp.com/documents/other/39340011.pdf 
http://www.nxp.com/documents/other/39340011.pdf 
http://doi.org/10.1109/HCS.1996.492228

	Introduction
	Calculating the communication time
	Analysis of the simple interfaces (without protocol)
	Analysis of an interface with simple protocol
	Analysis of an interface with multi layer protocol
	Transmission time estimation of the CAN interface

	Using the results in HLS design systems
	Results

