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Abstract

Several studies have presented different issues of an ageing

population including the need of enhancing care systems for

older people using smart technologies. Falling accidents have

a significant impact on healthy life expectancy and are a ma-

jor problem among independently living older people. This pa-

per presents a solution of the fall detection problem utilizing

bio-inspired asynchronous temporal-contrast sensors and neu-

ral networks, realizing automated, robust, reliable and unob-

trusive fall-detection. A noise reduction scheme suited to the

unique nature of the sensor is presented, enabling their use in

various applications in addition to fall detection. The process

of transforming raw sensor output to a suitable neural network

input is also described, along with the neural network creation

process, including structure selection, training data assembly,

and training algorithm selection for a truly large-scale network.
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1 Introduction

Human society in general and Europe in particular is expe-

riencing major demographic changes since the turn of the 20th

century. The unprecedented rise of the population’s average age

will cause a massive increase in the population with age of 65

and over within our lifetime [22]. Our society will face two

major challenges: elderly care services will require more invest-

ment due to the increasing and increasingly elderly population

of seniors, while a simultaneous shortage of skilled care-givers

will be caused by the decreasing population of working age. It

has been shown that elderly people prefer living in their own

home to living in nursing institutions, but they need some sup-

port to remain independent in their homes [23].

For the independently living elderly fall is one of the major

health hazards [4]: approximately 30% of people of age 65 or

above fall at least once each year. In principle only a fraction of

these falls require immediate or any kind of medical attention.

Even if no medical intervention would be required, help get-

ting up again could be necessary. The cases where help (medi-

cal or otherwise) would be required are usually exacerbated by

the time passing between the fall and its discovery: people who

spent a short time “down” may not even require admittance to a

hospital, while long down times may even result in death [5].

Section 2 gives a short description of the bio-inspired ATC

vision sensor. Because of the nature of this type of sensor tra-

ditional image processing methods are not applicable, however

this very nature makes these sensors well suited for the purpose

of fall detection. A new algorithm to reduce sensor noise is in-

troduced in Section 3; the performance and effectiveness of the

algorithm are evaluated, a few “rules of thumb” for determin-

ing suitable parameters are listed and the algorithm is compared

to other filters. Section 4 gives a short overview on the sub-

sequent feature extraction. A form of machine learning has to

be used in any fall detection system as we are currently not ca-

pable of sufficiently describing a fall algorithmically. As falls

can be described as a spatial and temporal pattern using an Ar-

tificial Neural Network to recognize these patterns is a natural

choice. Section 5 describes the design and training of the arti-

ficial neural network. Test results (including results of in-vivo
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Fig. 1. Conventional image and ATC data

live testing) are shown in Section 6. Conclusions are presented

in section 7.

2 Asynchronous Temporal-Contrast Vision Sensor

ATC sensors mimic the human retina; their working princi-

ples differ greatly from those of conventional cameras. As a re-

sult they are mostly independent of scene illumination, as they

do not sense absolute illumination, but relative changes in inten-

sity; ATC sensors directly encode object reflectance [10]. An-

other advantage of these sensors is their great dynamic range

(Fig. 2), enabling them to reliably sense content in both over-

and under-illuminated scenes. [9]

Each pixel quantizes local relative intensity changes, works

independently and in continuous time and generates spike

events. The output of the sensor is an asynchronous stream

of time-stamped digital pixel addresses. These timed address-

events (TAE) indicate scene reflectance [9]. The most important

thing to note is that ATC sensors realize background segmenta-

tion by the very nature of their sensing. As only the dynamic

content is sensed, the semi-stationary background is discarded.

Thus the need for difficult and computationally expensive back-

ground segmentation is eliminated, making optical fall detection

possible in a real-life environment.

The use of ATC sensors makes realizing an effective, reliable

and robust automated monitoring system for fall detection pos-

sible. An additional advantage of the ATC sensor in the context

of care of older people is the lack of picture. The pictures shown

in this article can only be extracted under laboratory conditions

and even then only a silhouette of the observed person is visible;

during normal operation no picture is generated at any point of

the system. This is a huge advantage and helps to alleviate pri-

vacy concerns – equally for patients, relatives, caregivers and

regulatory institutions.

3 Noise reduction

One of the most important and overarching advantages of

ATC vision sensors over traditional cameras is the lack of back-

ground. The elimination of the need for background segmen-

tation saves significant computational capacity, enabling use of

previously computationally too expensive algorithms.

The advantages of the ATC sensor also present a challenge:

conventional image processing techniques are not applicable as

there are no images in the traditional sense. There are many

methods for noise reduction in images; unfortunately, ATC sen-

sors do not produce images. Traditional signal processing meth-

ods do not fare well either, as they do not take into account, that

the signal represents an “image-like” scene. The real solution

for dealing with data from ATC sensors is to have algorithms

operate in event-space. Development of these however requires

a completely different mindset.

Analysis of the sensor output showed it to be rather noisy

(Fig. 2). In conventional applications using a frame-based ap-

proach this kind of salt&pepper noise is easily eliminated with

e.g. morphological operations and/or median filtering or compo-

nent labeling, however these approaches do not work in event-

space, therefore we developed a 2D filtering algorithm to reduce

the noise of the sensors. An additional issue is that while some

of this noise is easily identified as such, e.g. the noise events

outside and some distance from the silhouette; others are not so

easily separated. It is not possible to decide if event within the

silhouette are real events generated by small movements from

e.g. shifting fabric, or facial expressions, or simply sensor noise.

However these noise events, as they are within the silhouette, do

not significantly affect subsequent processing and may be ig-

nored.

Fig. 2. Sensor noise
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3.1 Filtering algorithm

The “event filter” algorithm consists of the following steps:

1 An observation window of length ∆t is defined and only TAEs

occurring within this observation window are considered. The

appropriate value for ∆t depends on the application and must

be selected with care, as an inappropriate ∆t may even render

the filter useless. Too short and simultaneous events may be

placed in different observation windows, leading to a worst

case scenario where everything is disregarded as noise. Too

long and unrelated events may be placed in the same observa-

tion window; if this happens to a sufficient number of spatially

close, but temporally remote noise events the algorithm will

be unable to remove them.

2 The sensing area of the sensor is divided into a number of

equally sized buckets. Each TAE within the observation win-

dow is assigned to the appropriate bucket. Let us consider the

sensing area as an event matrix S of the size h × w (h rows

and w columns), whose elements are lists containing the oc-

curred events. Dividing the sensing area into m × n sized (m

rows and n columns) buckets may be described mathemati-

cally as portioning the hypermatrix S into sub-matrices Bi, j

(1). (The sizes of the sensing area need to be divisible by the

corresponding bucket sizes.)

S =


B1,1 B1,2 · · · B1,w/n

B2,1 B2,2 · · · B2,w/n

...
... Bi, j

...

Bh/m,1 Bh/m,2 · · · Bh/m,w/n

 (1)

The test results shown later in this paper were obtained with

square buckets of size bsize × bsize.

3 During the pre-filtering step the algorithm also takes the pre-

vious observation window into consideration. This ensures

that even if cohesive events are separated by the observa-

tion window they are processed together. To differentiate the

events of the separate observation windows the event matrix

S is amended with an index Sk. For each bucket Bi, j of the

current observation window (Sk) the number of events in the

bucket, its 8 neighbors and the corresponding 9 buckets in

the previous observation window (Sk−1) is determined. This

is the event content (C(i, j)) of bucket Bi, j. If C(i,j) reaches

a minimum threshold the bucket and its events are retained,

otherwise they are discarded as noise.

This filtering step eliminates a significant portion of the idle-

noise of the sensor and thus reduces the number of calcula-

tions needed.

4 The actual filtering step is computationally more expensive: it

checks all TAEs in a bucket against all TAEs in the bucket and

its 8+9 neighbors. (If a bucket was previously discarded, then

it is of course “empty”.) Outlying TAEs are thus removed and

only sufficiently large groups of TAEs are passed on. Outly-

ing TAEs are events (ei) with less than minpx neighbors (e j)

in a set radius (maxD) (2).

i∑
i, j

num(Dist(e j, ei,maxD)) ≥ minpx (2)

The function “Dist” filters with a uniform kernel taking not

only the spatial, but also the temporal distance of the exam-

ined events into consideration. Practical choices for the el-

ements of maxD are the corresponding bucket sizes and the

length of the observation window, or a suitable fraction of

these. Fig. 3 illustrates which TAEs are within the set dis-

tance from the currently examined TAE.

Fig. 3. Filtering of remaining TAEs

The event filter has some definite advantages. The first and

most important is that the TAE stream does not have to be con-

verted to an image, thus it is not necessary to reserve memory

for a relatively sparse matrix. The algorithm places the incoming

events into the appropriate bucket, stores them in lists and keeps

track of the contents of the buckets. The 3 main parameters of

the algorithm are: the length of the observation window (∆t),

the size of the buckets (bsize), and the threshold for retaining

the buckets (minpx). If suitable parameters are selected the pre-

filtering removes a significant portion of the buckets, thereby re-

ducing computational load. The main filtering step does not cal-

culate the distance of all events from all other events, only those

remaining after the pre-filtering are compared. These properties

may make the filter an attractive choice for embedded applica-

tions.

3.2 Performance of the algorithm

For the investigation of the algorithm a test set containing

4 fall scenarios and 4 scenarios with activities of daily living

(ADL) was assembled. A gold-standard was created for the test

set. One option for a gold-standard is manual classification of

each TAE, which is time consuming and prone to human error.
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Fig. 4. Parameter effects on filter performance

To avoid these issues another algorithm was selected to serve as

the gold-standard. The sensor developed by the Austrian Insti-

tute of Technology (AIT) utilizes two ATC sensors in a stereo

arrangement to gain 3D data. The stereo algorithm removes all

TAEs that it is unable to match to a pair on the other sensor.

The classification of this algorithm was chosen to serve as the

basis for comparison, as it is a proven solution which utilizes

additional information in its decision. The event filter algorithm

uses only 2D data to remain useable with a single ATC sensor.

We investigated the performance of our algorithm with vari-

ous parameters. The Signal Ratio (SR) is the ratio of the number

of signal TAEs versus all TAEs in the scene. The Signal Reten-

tion Ratio (SRR) is the ratio of the remaining signal TAEs after

filtering versus the total number of signal TAEs. Fig. 4 shows

SR, SRR, and runtime (t) of the algorithm as a function of these

parameters. (The length of the test set is 50 seconds.)

Unsuitable parameters may render the filter unusable. Too

short ∆t coupled with an increasingly high minpx causes a dras-

tic decrease in SR and SRR as the pre-filtering steps removes

more and more signal TAEs. A too short ∆t has other conse-

quences as well: the runtime may become exceedingly long and

render on-the-fly filtering impossible. Well suitable parameters

on the other hand enable a marked increase in SR while simulta-

neously maintaining a high SRR and enabling on-the-fly filter-

ing.

The results prove that the algorithm is able to increase SR

by removing noise. This increase may cause a decrease in SRR;

the parameters have to be chosen depending on the requirements

(noise reduction vs. signal retention) of the application. A hard

to quantify advantage of the algorithm is that noise further from

moving objects is removed with greater effectiveness; most of

the remaining noise is very close to the moving silhouette and

does not impact feature extraction significantly.

3.3 Pre-filter effectiveness

The effectiveness of the pre-filtering can indicate the suitabil-

ity of the parameters. Given suitable parameters, (nearly) all

buckets of an empty scene should be removed by the pre-filter;

in a scene with dynamic content ideally none of the buckets con-

taining TAEs related to scene changes should be removed.

During the previously described testing the pre-filter removed

∼88% of the buckets. Without context this number has no pur-

pose. The ideal ratio varies significantly with scene content: for

an empty scene it may reach 100%, for “full” scenes a markedly

lower ratio may be ideal. The ratios also vary with the chosen

application. In fall detection the pre-filter has to remove remote

sensor noise to reduce computational load. If it is used to filter

the sensor output of a mobile robot the requirements are dif-

ferent. If the robot is standing still, the requirements may be

identical. If the robot is moving, the pre-filtering may even be

discarded, as the whole scene is “moving” in relation to the sen-

sor and generating events.

Fig. 5 demonstrates the function of the pre-filter. For empty

scenes (#0-500) (nearly) every bucket is removed, the computa-

tionally more expensive main filtering need not be applied. Even

with significant scene content (∼#1300, scene shown in Fig. 7)

∼65% of the buckets are removed during pre-filtering, thus the

main filtering only has to remove relatively close noise events.

The 65% are acceptable for a scene with this content, and to-

gether with the performance for empty scenes suggest that the

chosen parameters are well suited.

Fig. 6 shows the average ratio of removed buckets for the test

set. With ill-suited parameters (e.g. too small bsize) the ratio

approaches and may even reach 100%, which is wholly unac-

ceptable for real recordings that do not solely consist of empty

scenes. The effectiveness of the pre-filter decreases when the

bucket size is too big, the threshold too high, or the observation
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Fig. 5. Influence of scene content on pre-filter ef-

fectiveness

window too long. In these cases enough noise may gather in a

single bucket for it to be retained.

Testing proved that given suitable parameters the pre-filter

was able to remove remote solitary noise events, thus reducing

the computational requirements of the algorithm.

3.4 Determining suitable parameters

Based upon our examination results and our own experiences

we have determined a few “rules of thumb” for determining the

optimal parameters for the algorithm:

• A convex SRR curve usually indicates too small bucket size

(bsize) and/or too short observation window (∆t). One or both

should be increased.

• A disproportionately long runtime of the algorithm also indi-

cates too small bsize and/or too short ∆t.

• Suitable parameters usually result in a concave SRR curve;

the better the parameters, the higher the SRR, and the lower

its gradient.

• An unreasonably high ratio of removed buckets during pre-

filtering of a scene with rich dynamic content may indicate

unsuitable parameters; if bsize and ∆t are otherwise appropri-

ate the threshold (minpix) may be too high. If bsize and ∆t

are suitable (see previous rules) minpx should be decreased.

• An unreasonably low ratio of removed buckets during pre-

filtering of a scene with sparse dynamic content may also in-

dicate unsuitable parameters; if bsize and ∆t are otherwise

appropriate minpix may be too low. If bsize and ∆t are suit-

able (see previous rules) minpx should be increased.

• Given suitable parameters the pre-filtering step should re-

move (nearly) 100% of the buckets in empty scenes while

retaining (nearly) all buckets containing dynamic scene con-

tent in non-empty scenes.

3.5 Comparison to other filters

The event filter algorithm was compared to several popular

filters which are used to remove salt&pepper noise. The images

were generated by collecting all events within an observation

window and plotting them in a single figure according to their x

and y coordinates. The conventional filters were applied to this

image. The images showing the result of the “event filter” and

the “PCL ...” filters were attained by applying this technique to

the TAEs remaining after filtering.

Of the traditional filtering algorithms only the performance of

the 3-quantile filter is acceptable. This filtering inserts nonexis-

tent events, which is not a huge problem, as it could be easily

modified not to do so; however it also requires the conversion

of the TAE stream into an image, which poses several issues,

which are further elaborated on in [20]. The last two filters are

part of the Point Cloud Library (PCL) [24]. The PCL algorithms

[17], which were published after our first paper [20] describ-

ing the event filter algorithm, is very similar to the event filter.

The statistical filter iterates twice trough all points, first calcu-

lating the average distance to the nearest k points for each point;

then calculating a threshold from their average and deviation.

On the second pass all points are removed that have a higher

average distance to their nearest k neighbors then the thresh-

old. The performance of the PCL filter is nearly identical to our

event filter, but it requires more computational resources. The

other PCL filter checks the number of neighbors within a set

distance from the examined point. The point is retained if the

number reaches a set threshold. This filter also performs quite

well, suppressing most noise and retaining an adequate num-

ber of signal points. The downside is, that it may retain groups

of remote noise points, which may affect subsequent processing

negatively, e.g. when a bounding box or cylinder are calculated.

The algorithm performed to our expectations, as it removed

the majority of the idle-noise from the sensor, and our secondary

goal was also met, as it only introduced a minimal latency to the

processing stream. (The algorithm has to be applied on-the-fly

to the received TAE stream before feature-extraction.) The per-

formance of event filter is comparable to the performance of the

other filters, or superior to those. Unlike traditional filters it

does not require the conversion of the TAE stream to an image

and has lower computational requirements than the algorithms

of the Point Cloud Library. We found the algorithm to be suit-

able for our purposes, although care must be taken to maintain a

balance between signal retention and noise suppression. We are

confident that the algorithm can (with appropriate parameters)

be suitable for other applications as well.

4 Feature Extraction

The input of the fall detection is a cloud of “simultaneously”

occurred Timed 3D Events (T3DE). The T3DEs are generated

by the AIT sensor system [6] from the filtered TAEs of two ATC

sensors via stereo matching. AIT chose to employ their own

algorithm to filter the two TAE streams in the sensor system.

T3DEs are accepted as “simultaneous” if they fall within the
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Fig. 6. Parameter influence on pre-filter effective-

ness

Fig. 7. Filter comparison

same observation window.

After analyzing the possibilities and considering their advan-

tages and the problems associated with them the position, speed

and acceleration of the CoG of the body and of the highest point,

the Bounding Cylinder of the silhouette, its height to diameter

ratio and the total number of simultaneously occurred Events

were used as features in our fall detection system (Fig. 8). Co-

operatively employed these features enable realizing a reliable

and robust automated fall detection system.

The size of the feature vector and the required observation

length for effective fall detection resulted in an input vector for

the neural network that was too large to use effectively. After

some optimization and introduction of a sampling scheme suited

to fall detection we were able to reduce it to a manageable size.

The features were selected based mainly on the works of Ander-

son et al. [2], Juang et al. [7], Li et al. [8], Nait-Charif et al.

[11], Noury et al. [12], Nyan et al.[13], Planine et al. [14], and

Rougier et al. [15,16]. The selection process for the features and

the optimization and sampling scheme are explained in detail in

[6, 20, 21].

5 Machine Learning

In the final analysis falls are certain spatial and temporal pat-

terns; hence it is a logical step to employ a learning system to

distinguish falls and non-falls. There are a number of possible
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Fig. 8. Features used for fall detection

approaches to machine learning that may be used; after care-

ful consideration we chose to use an artificial neural network

(ANN) as the learning system in our fall detection scheme.

ANNs are universal approximators, allowing us to relatively

quickly and easily model phenomena which are only vaguely

understood or cannot be adequately explained. These qualities

make ANNs a very attractive choice for fall detection. We chose

to employ a fully connected multilayer feedforward network as

they can easily be adapted to recognize patterns of temporal na-

ture by using a tapped delay line.

5.1 Training and testing data

We have analyzed the most common types of falls and have

created a list of 47 fall scenarios and a separate list of activities

of daily living [21]. These lists were used as the basis for record-

ing the training and test dataset. The recordings were done by

stuntmen with the aid of nursing personnel so that the recorded

falls match the way older people fall as closely as possible. The

recorded dataset contains 467 fall scenarios and 50 non-fall sce-

narios. Recordings of the same scenario were done from differ-

ent positions with different lighting conditions. The scenarios

(where applicable) begin with the subject entering a scene and

doing some normal activity (e.g. walking around) and end with

the end of the fall.

5.2 Training methods

A compilation of falls from standing were used as training

data in this preliminary investigation; a separate compilation

served as test data. This investigation was limited to this sin-

gle category to simplify and shorten training, as the purpose of

this initial phase was to obtain a proof of concept and determine

suitable training algorithms and ANN structures.

According to Seiffert [19] large-scale datasets with a large

number of training samples often lead to very large networks.

Past a certain threshold conventional training algorithms per-

form very poorly and training time and memory limitations in-

creasingly move into focus. We took this into account and began

testing with various training methods to assess their usability.

Based on the above mentioned paper and our own test results a

form of Conjugate Gradient Method was chosen for ANN train-

ing.

Various methods belonging to this group were tested, includ-

ing the Fletcher-Reeves Update, the Polak-Ribiére Update and

the Scaled Conjugate Gradient. Neither the Fletcher-Reeves Up-

date, nor the Polak-Ribiére Update did scale up well; during

training with the full dataset these “faster” methods failed to

converge. The Scaled Conjugate Gradient method retained a

reasonable performance despite the increased amount of train-

ing data.

5.3 Artificial Neural Network Structure

Defining a neural networks structure is an essential part of the

design process. Although there are some formalized methods

for defining the structure this step remains a mixture of experi-

ence, gut-instinct and luck.

Several possible structures for the neural network were in-

vestigated in the initial phase mention in the previous subsec-

tion. Based on the complexity of the task we expected to be

able to solve the problem with a 3-layer network, and initially

limited our investigations to these. The layer activation function

arrangement tansig tansig logsig proved clearly superior with all

structures.

The next phase consisted of initial tests with a compilation

of falls not limited to a single category and two output neurons

corresponding to fall and not-fall probability. This allows a mea-

sure of confidence to be calculated from the two outputs. These

tests showed a marked drop in performance, even after consider-

able training. Careful and detailed examination of the network

weights showed the weights of the final layer to be saturated.

This led to the addition of a 4th layer with a linear activation

function (purelin) to avoid saturation. A modified mean square

error was used to measure the performance of the different struc-

tures (3). (The operator “.2” denotes element wise squaring; the

length of the samples is h.)

se f = (output f − target f ).
2

sen f = (outputn f − targetn f ).
2

secon f = (outputn f + output f − 1).2

error =

∑h
i=1

[
(se f (i) + sen f (i) + secon f (i)) · (1 + 99 · target f (i))

]
h + 99 ·

∑h
i=1 target f (i)

(3)

This measure basically calculates the mean error of the fall

(se f ) and not-fall outputs (sen f ), then calculates the square error

of their sum (secon f ). Ideally the sum of the outputs should be 1,

so the square error of their sum serves as a confidence measure.

The final performance is gained by computing the weighted av-

erage of the sum of these components. In fall detection false

negatives, i.e. missed falls are not acceptable; false positives on

the other hand are acceptable, if there are not too many of them.

Accordingly weights were chosen to be 99 for fall examples and
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1 for non-fall examples to severely penalize missed falls. The

method itself is not especially sensitive to the weights as long as

they remain in a reasonable range. Both outputs were subjected

to cropping at 0 and 1 prior to calculation of the performance

measure.

The training data set was divided into 9 sets, each containing

an example from all fall scenarios. (The 10th set was reserved

for independent testing.) To reduce the time required (as due to

the size of the networks and the training data set training times

were significant) the size of the 3rd layer was fixed to 2 dur-

ing the first phase of testing; cross evaluation combined with a

15x15 grid search with a step size of 20 was used to determine

the optimal number of neurons in the first two layers.

After careful evaluation of the performance and the actual net-

work outputs, a few structures with the “best” performance were

selected for further study. The next phase of testing used these

candidate networks, changing the number of neurons in the 3rd

layer. Layer sizes of 2, 4, 8, 16, 32, and 64 were tested; sizes 2

and 4 proved clearly superior. After consideration of the perfor-

mances of these candidates and of the available computational

capacity 5 structures with the “best” performances were selected

to investigate possible decision strategies.

5.4 Decision strategies

Five possible decision strategies (Table 1) were investigated

with the 5 ANN candidates.

Tab. 1. Decision strategies

# Decision strategy

1 out f > tresh

2 1 − outn f > tresh

3 (out f > tresh)&(1 − outn f > tresh)

4 out · (1 − kimn f ) > tresh

5 out f · (1 − outn f ) · (1 − |out f + outn f − 1|) > tresh

At this point a slightly different protocol was used to deter-

mine performance. Successful detection of a fall in a fall sce-

nario was counted as a true positive. A fall signal in a non-fall

scenario or outside the fall section of a fall scenario was counted

as a false positive. Receiver Operating Characteristics (ROC)

was used to compare the decision strategies.

The ROC curves of Fig. 9 were gained by averaging the clas-

sification results of the five different neural networks. While the

difference between the decision strategies is not major, strategy

4 had the best performance. Having determined the best de-

cision strategy we compared the performance of the 5 chosen

ANNs while using the best strategy (Fig. 10). ANN 3 had the

best fall detection performance, but also the highest false posi-

tive rate; ANNs 2, 4 and 5 had the lowest false positive rate, but

their true positive rate was also the lowest. ANN 1 proved to be

the best compromise between sensitivity and specificity.

Fig. 9. ROC of classification with different decision strategies

Fig. 10. ROC of classification with different neural networks

6 Test results

Actual testing was done with the dedicated testing subset of

the data consisting of 46 fall scenarios and 5 non-fall scenar-

ios. Results for all five candidate structures were promising. All

networks achieved good generalization and exceeded expecta-

tions by a wide margin. Fall detection rate (falls detected versus

falls observed) of ANN 1 with decision strategy 4 for the whole

dataset was on the order of 97-98% with an alarm threshold of

0.8 and over 99% with an alarm threshold of 0.7. False alarm

rate can be defined multiple ways. One possibility is number of

false alarms versus number of observed non-fall scenarios. This

disregards the length of the scenarios. Nursing institutions pre-

fer another method of calculating false-alarm rate: number of

false alarms during a defined time period. False alarm rate for

the first case is ∼8.64/day. While this may seem a little high

at first glance, it must be considered that all non-fall scenarios

were selected for their similarity with falls. Another mitigating

factor is that a significant portion of false alarms coincide with
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very low numbers of TAEs and are therefore easily handled in

post-processing.

Li et al. [8] and Anderson et al. [2] did not include data on

performance in their papers. The solution proposed by Nyan

et al. [13] detected all falls without false alarms, however their

system covers a very limited area with 6 cameras and is only use-

able with worn optical markers. The system proposed by Juang

et al. [7] classified 97.8% of 400 postures correctly, with 100%

sensitivity for “lying down” samples. This result is promising

regarding fall detection. The paper’s focus was posture classifi-

cation not fall detection, so no such data was published making

a direct comparison impossible. Nait-Charif et al. [11] analyzed

activity and detected falls by the lack of activity. The system

detected all 9 test falls, but no information about the nature of

those falls is revealed. Rougier et al. [15, 16] proposed two dif-

ferent solutions. The first [16] tracks the 3D trajectory of the

head to detect falls. This approach was tested with 10 ADL and

9 fall scenarios. The system recognized 6 out of 9 falls (66.6%

detection rate) and one of the ADL scenarios was misclassified

as a fall (10% false alarm rate). The other system [15] utilizes

human shape and motion history. It was tested with 17 fall and

24 ADL scenarios. Detection rate was ∼88% with 15 out of

17 falls recognized while false positive rate was ∼12.5% with

3 false alarms out of 24 non-falls. The detector developed by

Alwan et al. [1] was tested with 70 dummy falls and 35 ob-

ject drops and had “100% true positives and 0% false alarms”

in controlled experiments. While the results are promising, no

description of fall scenarios was given, and there were no ADL

scenarios used, only object drops, limiting the significance of

the obtained test results. The ultrasound detector proposed by

Dobashi et al. [3] for fall detection in the bathroom also shows

an impressive 100% detection rate with no false alarms. The test

set consisted scenarios of 10s duration; one empty bathroom,

and 3 each of standing, tumbling to left, right and forward sce-

narios were incorporated. The proposed system elegantly solves

fall detection in the bathroom; it would be interesting to evalu-

ate its performance in a more general environment with a more

diverse (regarding both falls and ADL) set of scenarios.

After incorporating modifications prompted by laboratory

testing and gaining the necessary approvals and permissions live

in-vivo testing was conducted with the system described in this

paper from 1st of June to 31st of August, 2012 in 3 apartments in

one of the care institutions of Senioren Wohnpark Weser GmbH.

Given suitable installation, the system produced 2.1 false alarms

per week per room on average, which is acceptable according to

resident caregivers. Fortunately for the inhabitants there were

no falls during the test period in the monitored rooms; unfor-

tunately this prevented validation of the detection rate. How-

ever AIT did several live demonstrations of the system at various

Ambient Assisted Living workshops and conferences, where it

was set up and interested parties could test the fall detection ca-

pability; the system recognized all falls during these demonstra-

tions and reception was very positive. Additionally the data used

in the independent test set was recorded with the aid of stuntmen

and experienced caregivers to ensure the obtained data are as re-

alistic as possible. The proposed fall detector recognized 98% of

the fall scenarios, including the very difficult scenarios of syn-

cope (vertical slipping against a wall ending in sitting position)

and rolling out of bed, while producing few false alarms even in

difficult to distinguish situations like e.g. exercising, crouching,

sitting down, lying down, etc.

7 Conclusion

In this paper we presented an optical fall-detection scheme

involving the new bio-inspired ATC vision sensors and artifi-

cial neural networks. We discussed the difficulties stemming

from using this new technology and how to solve them. We

introduced an algorithm for filtering the rather noisy output of

the ATC sensor, analyzed the performance of the algorithm and

the effectiveness of the pre-filter. We described a few “rules of

thumb” as a guideline for determining suitable parameters for

the algorithm and compared it to other filters. We presented

the features we found most suitable for fall detection with ATC

sensors. We discussed the suitability of the different training

algorithms for truly large-scale networks and large amount of

training data. We discussed the importance of selecting an ap-

propriate structure for the neural network and described the pro-

cess for selecting our candidate networks for the fall-detection

scheme.

Unlike video monitoring the proposed system does not com-

promise privacy as no image is generated at any point of the

system; it also does not require human resources for monitor-

ing. It does not depend on the capability and willingness of pa-

tients’ to raise an alarm, unlike “panic button” solutions, which

are rendered useless by e.g. falls resulting in unconsciousness.

Installation of the proposed system does not require extensive

remodeling of the living space (like e.g. pressure sensitive floors

do). A direct comparison of the proposed system and the solu-

tions published by Alwan [1] and Dobashi [3] by e.g. setting up

all systems in a number of apartments for an extended period of

live in-vivo testing would be interesting and would enable ob-

jective analysis and comparison of all systems’ capabilities in

real-life environment.
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