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Abstract
Identifying a linear parameter-varying (LPV) model of a non-

linear system from local experimental data is still a problem 
which deserves attention. Many difficulties related to the deter-
mination of the local models with respect to coherent bases have 
been recently pointed out and must be solved in order to ensure 
a good behavior of the interpolated LPV model. Rather than 
building a model either from the law of physics or from experi-
mental data independently, the combination of an analytic and 
an experimental approach is used in this paper to identify an 
LPV model of a flexible robotic manipulator. This technique 
focuses on the interpolation step by combining local re-struc-
tured linear time-invariant (LTI) state-space models satisfying 
a state-space parameterization deduced from the non-linear 
equations governing the dynamic behavior of the system. A 
dedicated H∞-norm technique is introduced to solve the under-
lying re-structuring problem. This contribution shows that prior 
information can be really helpful when the problem of coherent 
basis selection arises. As a sample, the case of the identification 
of a 2-DoF non-linear flexible manipulator is addressed.

Keywords
linear parameter-varying model · analytic modeling · robotic 

manipulator · non-smooth cost function · numerical optimization

1 Introduction
When models of robotic systems are required, a standard 

solution consists in resorting to a white-box model obtained 
by combining the laws of physics governing the behavior of 
the system. Their descriptions are usually based on the Euler-
Lagrange equations and the virtual work principle [9]. Inter-
esting from a theoretical point of view, the exclusive use of 
the standard laws of physics makes the final model quite com-
plex and requires an accurate knowledge of the manipulator as 
well as high-level skills in robotics especially when different 
robot structures are handled. This is all the more true when the 
user wants to have access to physical parameters of the system 
which are imperfectly known. In order to circumvent these dif-
ficulties, efforts dedicated to robot identification are more and 
more made in industry [17]. However, a direct identification 
of a non-linear black-box model is often complicated because

•	 strong non-linearities may vary with the working condi-
tions can appear,

•	 the development of a global non-linear model structure 
can rely on strong assumptions such as a uniform density 
of the manipulator segments or the nature of the defor-
mations if any.

In robotics, linear time-invariant (LTI) models are not suf-
ficient when the system is used over a large workspace. Rather 
than using a specific non-linear model, a more generic linear 
parameter-varying (LPV) model can be considered (see, e.g., 
[37]). The development of LPV model identification for the 
experimental modeling of robots is advocated for two main rea-
sons. First, from an identification point of view, the introduction 
of such a structure allows the use of standard tools dedicated 
to LTI models for the estimation of models with a structural 
flexibility able to picture time-varying as well as non-linear 
dynamics. Second, from a control viewpoint, the construction 
of a reliable LPV model can be seen as a standard but essential 
initial step for many new control law determination techniques 
developed in robotics [7].

As far as the LPV model identification is concerned, two fami-
lies of approaches can be found in the literature. On the one hand, 
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some developments focused on a global procedure and assumed 
that one global experiment can be performed in which the con-
trol inputs as well as the scheduling variables can be both excited 
(see, e.g., [19]). By construction, these techniques are restricted 
to specific systems where the components of the scheduling vari-
ables κκ ∈ ⊂ 

nκ  are totally controllable and excitable (and 
not only measurable). On the other hand, other methods are 
based on a multi-step procedure (see, e.g., [37, 12]) where

1.	 a finite set of scheduling variable values {κi}, i = {1, ···, 
Nop}, is handled,

2.	 local experiments (corresponding to almost constant 
scheduling variable values) are carried out for each κi , i 
= {1, ···, Nop}

3.	 local LTI models are estimated from the sets of local I/O 
measurements, for each κi,

4.	 a global κ-dependent model is built from the interpola-
tion of the local LTI models.

This latter viewpoint is often considered for robots or 
mechanical systems identification (see, e.g., [37]). In the fol-
lowing, such a local approach is considered.

As shown in [35, 34], the description of the local models in 
coherent bases before the interpolation step is the most diffi-
cult step in the local identification procedure. That is the reason 
why the main theoretical developments suggested in this paper 
will focus on Step (4) of the afore-described procedure.

Inspired by the discussion in [6], the idea used in the cur-
rent paper consists in resorting to the knowledge available from 
the study of the non-linear equations governing the system 
behavior in order to fix the structure of the global LPV model, 
then using the available experimental data sets in order to esti-
mate the unknown parameters and to refine the analytic model 
composed of unknown values. Taking advantages of an initial 
study of the non-linear equations governing the behavior of the 
process is suggested in this paper as an interesting solution to 
circumvent the challenging problem of realizing all the local 
models with respect to the same state variables.

The paper is organized as follows. Section 2 focuses on the 
new local data-based identification procedure developed in this 
paper. A specific attention is paid to the step dedicated to the 
transformation of the locally-estimated fully-parameterized state-
space representations into structured ones via a new H∞-based 
optimization algorithm. Section 3 addresses the validation of the 
local LPV model identification method on data generated by a 
simulator of a non-linear flexible robotic manipulator. Conclud-
ing remarks are finally gathered into Section 4.

2 Description of the identification procedure
2.1 Problem formulation
In many applicative fields such as robotics, energetics, aero-

nautics, it is not rare that the modeling of the system is per-
formed by using either an analytic approach or an experimental 

one without a strong interaction between both. It is obvious 
that both families of techniques suffer from limitations and 
drawbacks which could be relaxed by combining results com-
ing from the study of both approaches. As highlighted in [6], 
this is the case in the LPV modeling and identification frame-
work where, according to these authors, the synergy of these 
two research areas (the analytic approach and the experimen-
tal one) are not exploited sufficiently well. In this paper, it is 
suggested these two complementary approaches in order to 
circumvent a standard problem encountered in the local LPV 
model identification framework: the description of the local 
models with respect to a coherent state basis.

As mentioned in Section 1, the identification procedure 
developed in this paper involves several steps which are pre-
sented hereafter.

1.	 The first one tackles the problem of the determination of 
a reliable LPV model structure by converting the avail-
able non-linear physical representation of the system into 
an LPV form. This step is called analytic in this paper. 
Hereafter, it is assumed that this analytic study leads to a 
(continuous-time) gray-box LPV state-space representa-
tion of the system defined as

x( ) ( ), ( ) ( ), ( )t t t t t= ( ) + ( )A Bκκ κκ ϑϑϑ x u

y( ) ( ), x( )t t t= ( )C κκ ϑϑ

where u( )t nu∈  are the input signals, y( )t ny∈  are the 
output signals, x( )t nx∈  is the state vector and ϑ is the 
vector of the unknown parameters and t∈ . In this paper, 
by gray-box, it is meant that the analytic study allows us to 
fix the structure of the matrices (A, B, C), i.e., to fix some 
matrix entries equal to 0 or 1 while the parameters found 
in the ϑ vector (to estimate) are affine, rational even non-
linear functions of the real physical ones. Contrary to the 
standard LTI state-space forms, the matrices (A, B, C) are 
functions of measurable time-varying signals, gathered into 
the vector κκ ( )t n∈ κ  and called the scheduling variables, 
  being the so-called “scheduling space” [36]. It is fur-
thermore assumed that the system matrices satisfy a static 
dependence on κ(t) [34], i.e., they do not depend on the 
time-derivatives � �� �κκ κκ( ), ( ),t t( )  of the scheduling varia-
bles. Notice that because dynamic dependency is not iden-
tifiable from local experiments, only static dependence is 
needed to be tackled by the approach applied in this paper.

2.	 The second one, more experimental, consists of
•	 the selection of a set of constant scheduling variables 

values for Nop ∈
∗
  local working points so that all the 

working range of the system is covered and the “dis-
tance” between two constant working points is small 
enough, (see [16, 39] for recent effective solutions for 
the determination of these local working points)

(1a)

(1b)
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•	 the generation, for each working point, of local experi-
mental data sets for which the inputs are correctly excited 
so that local conditions of excitation are satisfied (see [21, 
38] for details according to the techniques used for the 
identification of the local models as well as discussions 
concerning the consistence of excitation conditions).

3.	 The third one, standard when a local approach is under-
taken, aims at identifying consistent local black-box LTI 
models by using dedicated toolboxes and well-known 
techniques such as the ones available in [21, 38] for DT 
models or in [10] for CT models.

4.	 The fourth one, which is the major contribution of this 
paper, addresses the conversion of the local (fully-param-
eterized) black-box models into re-parameterized gray- 
box state-space forms derived from the frozen structure 
of the LPV representation obtained in Step (1) and calcu-
lated for the considered working points.

5.	 Finally, by having access to re-parameterized local mod-
els, the structure of which depends on the initial analytic 
study, the last step of the procedure consists in interpolat-
ing the entries of the locally-estimated state-space matri-
ces so that the following global LPV model can provide 
a good approximation of the behavior of the system over 
the considered range of operating points.

The main goal of the identification procedure developed in 
this paper is to yield an accurate gray-box LPV model able to 
mimic the global I/O dynamic behavior of the system to iden-
tify by bypassing the difficult problem of local coherent bases. 
The solution suggested herein to circumvent this problem 
resorts to the reliable estimation of local LTI gray-box model 
parameter vectors ϑϑi opi N, , ,∈{ }1 . That is the main reason 
why in the following of this Section, a particular attention is 
payed to Step (4). This re-parameterization step is indeed an 
interesting novelty of this paper and a significant improvement 
compared to the results available in the literature.

2.2 From a black-box state-space form to
a structured one
The main theoretical development introduced in this paper 

consists in solving the re-structuring problem highlighted in 
Step (4) of the afore-mentioned identification procedure. In 
order to reach this goal, the following assumptions must be 
stated for each working point i Nop∈{ }1, , .

•	 A local frozen LPV structure1 [36], obtained from Eq. (1) 
and satisfying a gray-box LTI state-space representation

x x u( ) , ( ) , ( )t t ti i i i= ( ) + ( )A Bκκ ϑϑ κκ ϑϑ

y x( ) , ( )t ti i= ( )C κκ ϑϑ

can be extracted from the analytic study of the system to 
identify where the involved matrices are smooth func-
tions of relatively few unknown parameters gathered 
into a vector ϑi while, κi stands for the measured frozen 
scheduling parameter vector.

•	 The local LTI gray-box model structure defined by Eq. 
(2) is identifiable (at ϑϑi

∗ ) at least locally [24, Chapter 2], 
[21]. This assumption must indeed be satisfied because, 
for each working, we need to estimate a unique param-
eter vector ϑi.

•	 A consistent local fully-parameterized minimal state-
space realization A B Ci i i, ,( )  has been estimated from 
the available local data set by using, e.g., a subspace-
based identification technique2 [38] associated with a 
discrete-to-continuous time conversion procedure, or, 
according to the user’s affinities, a continuous-time 
identification algorithm [10]. Notice that, at this step, the 
local models does not have to have the same number of 
states. On top of that, this fact is one of the main advan-
tages of the proposed technique.

The solutions developed in the literature [40,30,31,32] 
mainly aim at determining uniquely, for i Nop∈{ }1, , , the 
Nop similarity transformations Ti as well as the Nop vectors ϑi 
satisfying3

A B Ci i i i i i i i i i iT T T T T= = =A B C( ) ( ) ( ).ϑϑ ϑϑ ϑϑ

Unfortunately, these solutions still resort to a set of bilinear 
equations, feature which leads to non-convex optimizations. 
As claimed by L. Xie and L. Ljung in [40], “the fewer vari-
ables, the better”. In order to reduce the number of involved 
unknown parameters or matrices, it is suggested hereafter con-
sidering the equality between the transfer function forms as

C A B
G

i n n i i

s

i n ns s
x x

i

x x
ϑϑ ϑϑ ϑϑ

ϑϑ

( ) − ( )( ) ( ) = −×

−

( )

×I I
1

,
� ������ ������

C AA B

G

i i

s

op

i

i N( ) ∈{ }−

( )

1
1, , , ,

� ���� ����
�

where s is the Laplace transform variable and for which the 
similarity transformation matrix disappears. Such a simplifica-
tion leads us to determine the structured matrices, more pre-
cisely the parameter vector ϑ which optimizes

Gi i ops s i N, , , , .ϑϑ( ) − ( ) ∈{ }G
◊

2
1

Besides discarding the similarity transformation, the use of 
local transfer functions does not constrain the user to identify, 
for each working point, local fully-parameterized models with 

(5)

(4)

(3)

1 By fixing κ(t) in the ith position, to have κi.

2 The subspace-based identification techniques [21, 38] are really good 
candidates to solve this problem. These algorithms can indeed yield consistent 
estimates in many different noisy cases.

3 In order to lighten the notations, the subscript i will be dropped when the 
context is clear.

(2a)

(2b)
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equal orders. This observation is an interesting practical fea-
ture of the identification technique developed in this paper.

Hereafter, a specific attention is paid to the H∞-norm. So, the 
cost function is reformulated as follows,

 ϑϑ ϑϑ( ) = ( ) − ( ) ∈{ }∞
Gi i ops s i N, , , , .G

2
1

The use of the H∞-norm can first be justified by noticing that, 
by definition, the H∞-norm is the maximal singular value of 
the complex gain matrix over all the frequencies. Thus, thanks 
to the norm property, if the cost function in Eq. (6) is small 
enough (i.e., a lot smaller than 1), then the distance between 
the involved black-box model and the structured gray-box one 
is small as well.

Before introducing an efficient algorithm dedicated to the 
optimization of the cost function  ϑϑ( ), it is interesting to 
draw the links between the H∞-norm-based technique pro-
posed herein and the methods developed in the literature until 
now. Such a discussion should indeed enhance the impact of 
the following developments.

Remark 1. The use of the H∞-norm as well as the cost function 
 ϑϑ( ) may echo back to the worst-case and the set-membership 
identification methods [13, 23, 26] for which the main goal con-
sists in yielding a guaranteed uncertainty set usable by the stand-
ard robust control design tools. However, it is important to point 
out that the technique proposed herein does not aim at quantify-
ing any model quality or uncertainty set through the H∞-norm. 
Besides the reasons highlighted beforehand, the H∞-norm is used 
herein because of the availability of efficient numerical algo-
rithms able to minimize the criterion  ϑϑ( ) efficiently.

2.3 Comments and discussion
As mentioned above, the first studies focused on the bilinear 

equations defined by Eq. (3). More precisely, in [40, 30], then 
later in [31], the following cost function has been suggested 
in order to compute the value of the parameter vector ϑ and 
the similarity matrix T (which is assumed to be invertible) 
involved in Eq. (3)

F
F F F

ϑϑ ϑϑ ϑϑ ϑϑ, ,T T TA TB T C( ) = − ( ) + − ( ) + − ( )A B C
2 2 2

where || ∙ ||F is the Forbenius norm [15]. The use of such a 
cost function is quite straightforward in our context when the 
objective is to solve the set of matrix equations (3). On the 
contrary, in this paper, for ω∈ ∞[ [0, ,  we concentrate on the 
difference

∑∑   ω ω ω,ϑϑ ϑϑ ϑϑ ϑϑ( ) = ( ) − ( )( ) ( ) − −( )×

−

×

−
C A BI In n i n nx x x x

1 1
C A B.

The goal of this subsection is to highlight the links between 
F (ϑ, T) and || Σ(ȷω, ϑ) ||F in order to point out why dealing 
with Σ(ȷω, ϑ) should be favored. In order to reach this goal, 

first let us determine a bound of || Σ(ȷω, ϑ) ||F , then analyze this 
bound. A straightforward calculation shows that

∑∑  



ω ω

ω

,ϑϑ ϑϑ

ϑϑ ϑϑ

( ) = −( ) ( ) −( )
+ ( ) −( ) − ( )( )

×

−

×

−

C A B

C

I T

T I

n n

n n

x x

x x

1
B

C A
11

1 1

B

A B

ϑϑ

ϑϑ ϑϑ

( )

+ − ( )( ) − −( )( ) ( )×

−

×

−
C AT I I T ω ωn n n nx x x x

.

Now, by using the identity (A−1 − B−1)−1 = A(B − A)−1B [15], 
that is, A−1 −  B−1 = B−1( B − A)A−1, the following relation can 
be deduced

T I I T

I T

 



ω ω

ω

n n n n

n n

x x x x

x x

×

−

×

− −

×

− ( )( ) − −( )( ) =

− ( )( ) (

A

A A

ϑϑ

ϑϑ ϑϑ

1 1 1

A

)) −( ) −( )−

×A AT I .
1
ω n nx x

Thus,

∑∑  



ω ω

ω

,ϑϑ ϑϑ

ϑϑ ϑϑ

( ) = −( ) ( ) −( )
+ ( ) −( ) − ( )( )

×

−

×

−

C A B

C

I T

T I

n n

n n

x x

x x

1
B

C A
11

1 1

B

A A B

ϑϑ

ϑϑ ϑϑ ϑϑ

( )

+ −( ) ( ) −( ) − ( )( ) ( )×

−

×

−
C A A ω ωI T T In n n nx x x x

.

Finally, with

∑∑

∑∑

B n n
F

C n n
F

x x

x x

 

 

ω ω

ω ω

, ,

,

ϑϑ ϑϑ ϑϑ

ϑϑ

( ) = − ( )( ) ( )

( ) = −( )
×

−

×

−

I

I

A B
1

1
C A

and because || Σ(ȷω, ϑ) ||2 ≤ || Σ(ȷω, ϑ) ||F [15], the following 
inequality can be deduced

σ ω ω

ε
ω ω

ω ω

1 ∑∑ ∑∑

∑∑ ∑∑

∑∑ ∑∑

 

 

 

, ,

, ,

, ,

ϑϑ ϑϑ

ϑϑ ϑϑ

ϑϑ ϑϑ

( )( ) ≤ ( )

≤
( ) + ( )

+ ( ) ( )




F

B C

B C








,

where σ1 (·) is the maximum singular value function [15] and 
where ε is the minimal value of the cost function F(ϑ, T). This 
inequality shows that the distance between the transfer functions 
of both system representations, i.e., A B Ci i i, ,( )  and (A(ϑ), 
B(ϑ), C(ϑ)), decreases with ε and is smaller for high values of 
ω. Indeed, even if the value of ε is small, the value of σ1(Σ(ȷω, 
ϑ)) may be quite large at some frequencies. This is the case, for 
instance, if ΣB or ΣC have large resonance peaks. For all of these 
reasons, in the Authors’ opinion, the minimization of the objec-
tive  ϑϑ( )  should be favored to identify the parameter vector 
ϑ rather than minimizing the cost function F(ϑ, T) because of

•	 the direct interpretation of the optimal cost in terms of 
input/output energy,

•	 the non-explicit involvement of the similarity matrix into 
the cost function Eq. (6).

(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13)
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2.4 Computing the H∞-norm
Based on Eq. (6), the following cost function can be defined

min
ϑϑ

ϑϑ( )

Then, in order to solve the term defined by Eq. (14), i.e., in 
order to minimize the H∞-norm of Σ(s, ϑ), the first step con-
sists of the computation of the value of this function efficiently. 
Clearly, by definition the Laplace variable with jω,

∑∑ ∑∑ ∑∑  ω λ ω ω
ω

, max , , ,
,

ϑϑ ϑϑ ϑϑ( ) = ( ) ( )( )∞ ∈ ∞[ ]

2

0 1
H

where λ1(·) is the maximum eigenvalue function. Thus, solving 
the problem given by Eq. (14) is equivalent to the following 
optimization problem

min max , , .
,ϑϑ

ϑϑ ϑϑ
ω

λ ω ω
∈ ∞[ ]

( ) ( )( )
0 1 ∑∑ ∑∑H  

The maximum eigenvalue function is a convex but a non-
smooth function [2]. As a consequence, from Eq. (16), the 
computation of the objective function seems to be a hard task 
because, by construction, the global optimum of a non-smooth 
function over [0, ∞] must be estimated. Fortunately, when Σ 
has a state-space representation, this step can be performed 
efficiently by using a bisection algorithm based on a hamil-
tonian calculus [3]. Thus, under the assumption that Σ can be 
realized by a state-space representation, the map ω → Σ(ȷω, ϑ) 
is a rational matrix function which is smooth for all ω∈ ∞[ ]0, .  
The bisection algorithm used to compute the value of the cost 
function involved in problem (16) moreover permits the com-
putation of the set of active frequencies Ω(ϑ) defined as follows

Ω ϑϑ ϑϑ ϑϑ ϑϑ( ) = ∈ ∞[ ] ( ) ( )( ) = ⋅( ){ }∞ω λ ω ω0 1
2

, : , , , .∑∑ ∑∑ ∑∑H  

This set is of prime importance for the following non-
smooth minimization algorithm. It is indeed used to define as 
well as to compute the sub-gradients of the underlying cost 
function. As shown in [3], the number of frequencies in Ω(ϑ) 
is either finite, or Ω(ϑ) = [0, ∞]. In our context, because the 
structured models (A(ϑ), B(ϑ), C(ϑ)) as well as the black-box 
ones A BC, ,( )  do not have a direct transmission from u to 
y, the case Ω(ϑ) = [0, ∞] can only be observed when the cost 
function has been identified without any error, i.e., when the 
parameter vector ϑ has been identified.

2.5 Minimizing the H∞-norm
In the last years, many algorithms have been developed for 

the minimization of non-convex and non-smooth functions 
[1,4,14]. These algorithms have been successfully applied in 
the control framework, for example, in order to synthesize sta-
bilizing controllers while this kind of problems are known to 
be NP-hard [28]. In this paper, it has been decided to use a 
proximity control algorithm, described in [29,3], to perform 

the minimization of the non-smooth function  ϑϑ( ) . Originally, 
this algorithm is an improvement of the method described in 
[1], with better convergences properties. The main idea of the 
algorithm consists in using a local convex model φ of the cost 
function as a “cutting plane generator” from which a polyhe-
dral model of the objective is built and used to generate trial 
points in order to minimize the cost function value. Because 
of the inherent unstability of the cutting plane method [5], a 
proximity control term is introduced into the model in order to 
stabilize the iterations. This algorithm is a first order method 
and is thus quite slow to converge.

In order to use this method for our identification problem, 
a local convex model for the objective function is required as 
well as specific cutting planes. This is the purpose of the next 
Subsection.

2.6 Local model and cutting planes computation
In order to compute the aforementioned local planes, the 

lines of [3] must be followed. More precisely the following 
local model for the objective function (6) at point ϑk can be 
computed

φ ω ω

ω

ω
ϑϑ ϑϑ ϑϑ ϑϑ

ϑϑ

k k Z

H
k k

k

Z

d

+ ∈ ∞[ ] ∈
( ) • ( ) ( )

+ ( ) ⋅

1 0
, max max , ,

,

, H
∑∑ ∑∑

∑∑

 

 ϑϑϑϑ ϑϑ ϑϑ

ϑϑ ϑϑ ϑϑ ϑϑ

k k
H

k

H
k k k kd

+

+

−( )( ) ( )
+ ( ) ( ) ⋅ −( )( )

1

1

∑∑

∑∑ ∑∑



 

ω

ω ω

,

, ,

where H  is the set of hermitian semi-definite positive matri-
ces with a trace equal to one, • is the Frobenuis scalar product 
and dΣ(ȷω, ϑk) denotes the differential of Σ with respect to the 
variable ϑk . A cutting planes of φ(·, ϑ1) at point ϑk+1 reads

y g y xα + −( ) ,

where

α ω ω

ω ω

ω

ω

= • ( ) ( )( )
= • ( ) ⋅ −( )( ) ( )

Z

Z

∑∑ ∑∑

∑∑ ∑∑
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 
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+ ( ) ( ) ⋅ −( )( ))∑∑ ∑∑H

k k kd ω ω, , .ϑϑ ϑϑ ϑϑ ϑϑ2

In Eq. (20), ω∈ ( )Ω ϑϑk  and Zω is such that

Zω ω ω λ ω ω• ( ) ( )( ) = ( ) ( )( )∑∑ ∑∑ ∑∑ ∑∑   , , , , .ϑϑ ϑϑ ϑϑ ϑϑk
H

k
H

k k1

There is no unique choice for the matrix Zω which satis-
fies Eq. (21), but the algorithm just needs to compute one of 
them. This matrix can be easily derived from linear algebra, for 
example by using the eig function in Matlab.

In order to use the proximity control algorithm, the dif-
ferential of the smooth function ϑ → Σ(ȷω, ϑ) must be com-
puted. Now, by assuming that Σ has the following state-
space representation

(14)

(15)

(16)

(17)

(18)

(19)

(20)

(21)
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x x u y = x= ( ) + ( ) ( )A B Cϑϑ ϑϑ ϑϑ, ,

that is, Σ(ȷω, ϑ) = C (ϑ) (ȷωI − A  (ϑ))−1 B  (ϑ), then, by defining

a b cϑϑ ϑϑ ϑϑ ϑϑ ϑϑ ϑϑ( ) = ( )( ) ( ) = ( )( ) ( ) = ( )( )vec , vec , vec ,A B C

where vec(·) is the vectorization operator [15], the differential 
of Σ with respect to variable ϑ satisfies

d h d h I

n nx x
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

ω ω

ω
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Then, by using again the vectorization operator, we get

vec ,d h
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and Ja, Jb and Jc are the Jacobian of a, b and c respectively. 
From Eq. (25), the expression of the Jacobian matrices of ϑ → 
vec(dΣ(ȷω, ϑ)) can be obtained because the vectorization oper-
ator is linear. Then, we are finally able to compute the value 
of g in Eq. (20) by applying the inverse vectorization. All the 
ingredients for the use of the proximity control algorithm are 
available: a local model and a way to compute a cutting plane 
(α, g) at some points.

3 Experimental modeling of a flexible arm
3.1 Robot manipulator description
In this study, the system is a horizontal flexible arm com-

posed of two flexible segments (nθ = 2) as depicted in Fig. 
1a. Such a structure can be found, e.g., when considering the 
two first rotoid joints of a SCARA manipulator. Under spe-
cific working conditions, this type of manipulator may have 
significant flexibilities. Indeed, even if these deformations 
only yield short displacements of the end-effector, this is suf-
ficient to restrict the bandwidth of the control loop, as shown 
in [8]. Therefore, a model of these flexible modes is necessary 
in order to design a vision-based control loop with high band-
width. For instance, these flexible characteristics are satisfied 
by a prototype designed by SINTERS and used in [11] (see 
Fig. 1b). This robot is lightweight because it was designed to 
attain fast dynamics in order to compensate the heart tissue 
motion for cardiac surgery.  As a result, it is observed that the 

bandwidth is restricted by flexible modes that can be attributed 
to small deformations of the segments. This flexible system, 
more precisely a simulator of this surgery robot, will be used in 
the following for the validation of the identification techniques 
introduced beforehand.

X 0

X 1

Y0

Y1

X *
1

Y *
1

X 2

Y2

θ1(t)

v2( 2, t)

θ2(t)

Image plane

v1( 1, t)

(a) Geometry of the flexible arm.

(b) SINTERS robot with 6 degrees of 
freedom (DoF). This picture is borrowed 

from [8].

Fig. 1. Flexible robotic manipulator.

3.2 Non-linear and linearized dynamic models
Under the assumption of Euler-Bernoulli beam, the dynamic 

equations of a flexible arm can be derived by using the assumed-
mode method where the deformation field is decomposed into 
a finite sum of elementary deformations [33]. In the current 
case, small deformations are considered and only one mode is 
chosen for the transverse deformation field. For segment #k, 
k = 1, ..., nθ , the deformation field writes δk (x, t) = x2 vk (t), 
where x represents the abscissa along the segment and vk (t) is 
the state of the deformation. Therefore, the resulting deforma-
tion at the end of the segment of length ℓk is δ νk k k kt t ,( ) = ( )2

. The dynamic model is derived from the Virtual Work Prin-
ciple using the DynaFlex toolbox developed on Maple (see 
[33]). By denoting θθ = [ ] ∈θ θ θ

1 2



n  and v = [ ] ∈v v nv
1 2


  

the resulting model relies on a generalized position vector 
q v=   ∈θθ   



nq  nq = nθ + nv , and writes (see Fig. 1a for the 
notations)

M F Gq q q q ut t t t t( )( ) ( ) = ( ) ( )( ) + ( ) ,

where  q( )  is the inertia matrix,  q q, ( )  is a generalized 
force vector which includes the Coriolis and centrifugal effects 
(see [18] for details about the mathematical expressions of the 
matrix   and the vector  ). The torque vector u = [ ]u u1 2

  
has only effects on the dynamics of the rigid positions θ1 and θ2, 
corresponding to

 =












×

×

I
0
n n

n nv

θ θ

θ

The x and y positions of the end-effector can be written from 
the geometric model, resulting in the non-linear measurement 
equation z = g(q), i.e.,

(22)

(23)

(24)

(25)

(26)

(27)
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where θ12 = θ1 + θ2 + 2ℓ1 v1. Each arm is equipped with a local 
velocity controller with input

u t t t( ) ( ) − ( )( )∗== ΛΛ  θθ θθ

(see [18] for a detailed description). In order to fix the struc-
ture of the global LPV model required by the technique intro-
duced in this paper, a standard Jacobian linearization can be 
applied to the generalized second order model given in Eq. 
(26). This linearization step removes the Coriolis terms. There-
fore, the resulting model is valid only when low velocities 
are demanded, which fits to the considered medical applica-
tion where the movements have small amplitudes around the 
involved working points. In this special case, κ = cos(θ2) is 
selected to be the scheduling variable. The input of the sys-
tem is the joint velocity reference vector denoted hereafter by 
  θθ ∗ ∗ ∗( ) = ( ) ( ) t t tθ θ1 2


.

Such a linear technique leads to the following minimal state-
space representation of order 6,



x x( ) , ( ) , ( ),t t t= ( ) + ( ) ∗A Bκκ ϑϑ κκ ϑϑ θθ

y Cx( ) ( ),t t=

x v v=  
   


θθ ,

where4
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and where M(κ, ϑ), K(κ, ϑ), G(κ, ϑ), C1 are the linearized ver-
sions of the matrices and vectors defined by Eq. (26)-(28) and 
Λ = diag(λ1, λ2) is the diagonal matrix of the control gains act-
ing on the joints. The ϑϑ == ϑ j j{ }

=1

16  vector is composed of all the 
parameters of the system matrices except the ones of C and the 
known parameters 0 and 1 found in the other matrices. More 
precisely, the matrices have the following fix structure for a 
frozen value of κ denoted hereafter by κi with i = {1, ··· , Nop},

A κκ ϑϑi i
i i i i

i i i i
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.

This system of equations (see Eq. (30)-(31)) will be used in 
the following to fix the structure of the locally-estimated mod-
els and as a linearized analytic model, computable when its 
parameters are assumed to be known, for the validation of the 
local and the global models. These “known” (or computable) 
local models will be called analytic in the sequel.

3.3 Identification results
3.3.1 Local model estimation
The work performed in the previous Subsection gives access 

to a reliable LPV model structure. Now, the steps composing 
the local identification procedure described in Section 2 can 
be addressed. First, Nop = 7 local working points, then 7 local 
I/O data sets must be selected and generated. For the specific 
test-bed considered in this paper, 7 constant values of θ2 in the 
set {iπ/8 : i = 1, ··· , 7} are selected, then 7 noise-free I/O 
data sets are acquired. This noise-free I/O data generation is 
made possible because, herein, a Simulink model of the flex-
ible robotic manipulator was developed to carry out the sim-
ulations. The inputs of the system are angular velocity refer-
ence   θθ θθ θθ∗ ∗ ∗( ) = ( ) ( ) t t t1 2


 and are chosen as two uncorrelated 

pseudo-random binary sequences built so that all the dynamics 
of the system are well-excited. The outputs of the model are y, 
i.e., the angular velocities of the fictitious rigid robot having the 
same geometry of the flexible robot. This noise-free I/O data is 
generated once for each value of θ π2 8 1 7∈ ={ }i i: , , . Then, 
a Monte Carlo simulation of size 100 is used for the estima-
tion of the local models. This Monte Carlo simulation is carried 

(28a)

(28b)

(29)

(30a)

(30b)

(30c)

(31c)

(31b)

(31a)

4 For our system, D 0= ×n nq q
.

(32)
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out by adding up on the noise-free outputs 100 realizations of 
two uncorrelated zero-mean white Gaussian noises satisfying a 
signal-noise ratio5 equal to 30dB. The length of each local data 
set is equal to 30, 000 samples with a sampling period of 0.1 
ms. For the identification, a down-sampling is performed with 
a rate equal to 10. A sample of noisy I/O data is given in Fig. 2.

The next step of the local identification procedure consists in 
estimating, for each run of the Monte Carlo simulation, reliable 
local models. To reach this goal,

•	 first the PI-MOESP algorithm [38] is applied to perform 
the local estimation from the local I/O noisy data sets. 
This subspace-based identification algorithm is indeed 
well-known to be efficient under the noisy conditions 
described beforehand,

•	 second the local fully-parametrized state-space represen-
tations are balanced (e.g., with the function balreal 
of Matlab). This balancing step is performed essentially 
because the multi-step technique developed in this article 
will be compared hereafter with the technique suggested in 
[25] where local balanced realizations are required. How-
ever, we also use this balancing procedure in our technique 
in order take advantage of the numerical reliability of the 
balanced realizations. While, for each working point, the 
local models can have different orders, the averaging step 
applied hereafter requires, for each value of i∈{ }1 7, , , 
local black-box models realized with respect to the same 
state basis and with the same order. The balanced state-
space form satisfies such a constraint (up to the sign) [27] 
and may help us if model reduction is necessary.

This two-step procedure is third completed by a discrete-to-
continuous-time transformation. This step is required because 
(i) the system under study is by construction continuous-time, 

(ii) the PI-MOESP algorithm only leads to discrete-time mod-
els. This discrete-to-continuous-time domain conversion is 
performed by using the bilinear Tustin approximation to the 
derivative (e.g., the function d2cm available in Matlab). Once 
100 local models are estimated for each operating point, 7 local 
models can be computed by averaging these 100 local models. 
Notice that during this averaging step, it is beneficial that the 
local models are balanced. These 7 average local models are 
then locally validated by considering two complementary tools

•	 two I/O fit measurements (see Eq. (33)) evaluated on Nop 

new noise-free data sets generated for this task (cross-
validation),

•	 a comparison of the frequency responses (magnitude 
Bode plots) of the estimated local model and an analytic 
local model calculated from a linearization of the non- 
linear equations governing the behavior of the system.

For k ny∈ 1, , the following fit measurements6 are intro-
duced in order to quantify the model quality on validation data 
(i.e., a data set different from the one used for the estimation)

BFT
mean

k
k k

k k

y y
y y

= × −
−

− ( )

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100 1 0max ,

ŷ
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k k
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y
y

= × −
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( )








100 1 0max

var

var
,

ŷy

Table 1 (see also the time responses in Fig. 3 for a qualita-
tive validation for θ2 = 5π / 8) gathers these fit measurements 
for θ π2 8 1 7∈ ={ }i i: , , . From these values, it can be con-
cluded that, for each operating point, the estimated local LTI 
model describes the actual system quite well. The reader must 
keep in mind that the system behavior is highly non-linear.

Fig. 2. I/O data sample.

5 The signal-to-noise ratio is defined as follows: SNR y
v

k nk
y=

{ }
{ }
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


 ∈  10 1log

cov
cov

, ,  
where v stands for the noise acting on the noise-free output yk .
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variance of •.
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Having fit measurements in the range [67%, 98%] is, accord-
ing to the Authors’ experience, more than suitable. Notice also 
that the weakest values are obtained for θ2 = π / 8, i.e., for a 
position close to singularity. This initial conclusion is enhanced 
by comparing the frequency responses of these estimated LTI 
models with the frequency responses of local analytic models. 
Figure 4 shows the magnitude Bode plots in the least favora-
ble case, i.e., θ2 = π / 8 of (i) the estimated local model (- -), 
(ii) a local analytic model of the flexible system (–) obtained 
by linearizing the non-linear equations given in Subsection 3.2, 
(iii) a local analytic model of an equivalent rigid system (-o). 
These frequency plots show that the estimated local model is 
able to approximate the system behavior in a relatively large 
range of frequencies (up to 1e4 rad/s). Notice however that the 
estimated local model has difficulties to picture the gain of the 
system when the coupling transfers y1 ↔ u2 and y2 ↔ u1 are 
considered. The comparison with a rigid model (obtained from 
the non-linear equations given in Subsection 3.2) indicates that 
the estimated local models are a lot better at capturing the flex-
ibilities of the system.

3.3.2 LPV model estimation
Once 7 average local black-box models are available, Step 

(4) of the procedure described in Section 2 can be carried out. 
More precisely, knowing the model structure (A(ϑ), B(ϑ), C(ϑ)) 

given in Subsection 3.2 as well as a set of local fully-parame-
terized state-space forms A B Ci i i, ,( )  for i∈{ }1 7, , , local 
re-structured state-space representations (A(ϑi), B(ϑi), C(ϑi)) 
are extracted by following the steps of the H∞-norm-based 
approach described in Subsection 2.2. For each working point, 
a state-space form satisfying the gray-box strucutre defined 
by Eq. (32) is estimated. Because of the specific structure of 
C (see Eq. (31) and the following discussion), this matrix is 
assumed to be known a priori. Notice that the redundancy of 
the parameters (up to the sign) obtained from the linearization 
procedure described in Subsection 3.1 (see Eq. (31)) is explic-
itly taken into account in the description of the matrices A(ϑi) 
and B(ϑi) in Eq. (32). This structural constraint can be easily 
tackled by the H∞-based algorithm developed in this paper. For 
each working point, 16 parameters are estimated with the help 
of nx(nu + ny ) = 36 equations. At this point, we may recall that, 
in order to find the desired parameter vector ϑi, i∈{ }1 7, , ,

 
(i) the global minimum of the involved objective function is 
sought, (ii) the parameters ϑi must be unique for each value of 
i∈{ }1 7, , .

 The first problem, i.e., the convergence towards 
to the global minimum of the cost function (6), can be bypassed 
by initializing the algorithm with a user-defined parameter vec-
tor in the vicinity of the global minimum. In this paper, it is 
suggested using the information available from the structure of 
the system in order to find such an initial point. More precisely, 

Tab. 1. Performance metrics for the estimated LTI models on validation data.

θ2 π / 8 2π / 8 3π / 8 4π / 8 5π / 8 6π / 8 7π / 8

BFT1 (%) 85.83 91.23 90.23 92.09 89.65 88.42 91.01

BFT2 (%) 67.42 98.18 85.07 97.83 88.97 89.82 97.23

VAF1 (%) 97.98 99.23 99.04 99.37 98.93 98.66 99.2

VAF2 (%) 89.39 99.96 97.77 99.9 98.78 98.96 99.9
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Fig. 3. Comparison of the time responses of the system (–) and the estimated local model (- -) for θ2 = 5π /8.
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Fig. 4. Comparison of the frequency responses of the analytic model (–), a rigid model (-o) and the locally-estimated model (- -) for θ2 = π /8.

if the system A B Ci i i, ,( )  can be represented with the desired 
structure (32), then there is a similarity matrix Ti such that

1 0 0 0 0 0
0 1 0 0 0 0

0 0 0 0 1 0
0 0 0 0 0 1




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T Ti iA =i ,
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
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












TiB =i ,

C i i= CT

Clearly, Eq. (34a)-(34c) are linear in Ti. So, this set of equa-
tions can be solved in the least squares sense, i.e., by using a 
Moore-Penrose pseudo-inverse [15], in order to find the optimal 
similarity matrix Ti. This set of equations must be solved in a 
least squares sense because, for this particular example, there are 
more equations than variables. Notice however that, in the gen-
eral case, using a least squares minimization should be favored 
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over, for instance, a standard LU decomposition, because of the 
measurement and numerical errors involved in the A B Ci i i, ,( )  
computations. Once the optimal Ti matrix has been computed, 
and assuming that this matrix is invertible (which is the case in 
our study), an initial parameter vector ϑϑi0

 can be extracted from 
the matrix T Ti i iA −1  and from the structure (32). The parameter 
vector ϑϑi0

 can then be used to initialize the proximity control 
algorithm described above. As mentioned in Subsection 2.2, 
the second problem is related to the local identifiability of the 
model structure defined by Eq. (30). In this paper, the study of 
the identifiability of the involved model structure is carried out 
numerically. More precisely, starting from 10 small randomly 
generated perturbations of ϑϑi0

, the H∞-norm-based optimization 
algorithm is run 10 times, then the final estimates are compared. 
Because the 10 optimizations return the same values for the 
parameters (up to the numerical precision), we can conclude that 
the model structure is identifiable, at least locally (30). Notice 
that the question of the sensitivity w.r.t noise is a challenging 
problem which will be addressed in a future study.

Remark 2. In order to increase the speed of convergence of the 
algorithm, a L-BFGS [20] method is applied before using the 
proximity control algorithm. For our numerical experiments, 
the open source software libLBFGS has been used. The com-
putations have been carried out on a Linux Desktop computer, 
with an AMD FX 8-core processor running at 3.6 GHz. The 
total computation time (initialization + optimization for the 
seven working points) is lower than 90 seconds.

Table 2 gives the normed final values of the 7 H∞-based 
cost functions used to re-structure the local state-space mod-
els, where Ganal (s, θ2) stands, more precisely, for the transfer 
function of the local analytical models. These figures prove the 
efficiency of the developed technique quantitatively. As far as 
the quality and reliability of the estimates are concerned, Fig. 
5 shows the parameter evolution w.r.t. the scheduling param-
eter of the re-structured state-space forms. A comparison of the 
curves shown by Fig. 5, i.e., a comparison of the evolution of 
the parameters (w.r.t. κ = cos(θ2)) of the estimated re-structured 
models and the analytic ones, illustrates the performance of the 
gray-box technique developed in this paper. These plots show 
indeed that the gray-box identification procedure suggested 
herein is able to give access to local models satisfying a param-
eter evolution (w.r.t. κ = cos(θ2)) similar to the one verified 
by the analytic models obtained from the non-linear equations 

given in Subsection 3.2. Notice that this dynamic evolution 
totally differs from the one satisfied by the local black-box bal-
anced matrices A B Ci i i, ,( ) , i∈{ }1 7, ,  (see Fig. 6) which 
was the case in [22] as well. This comparison shows that, at 
least locally, combining structural information with black-box 
estimates can lead to performance equivalent to the one reach-
able through a global analytic study which requires strong 
knowledge in robotics as well as the availability of all of the 
physical parameters governing the behavior of the system.

The last step of the identification procedure consists in inter-
polating the coefficients of the estimated local models in order 
to get a reliable interpolated LPV state-space model. Hereafter, 
the interpolation of the local re-structured models are com-
pared with the analytic ones as well as the estimated local bal-
anced ones as suggested in [22]. The curves in Fig. 5-6 lead us 
to choose a polynomial κ-dependent form, i.e.,

A =κκ κκ κκ( ) + +  0 1+  d
d

and similarly for B(κ) (and C(κ) and D(κ) for the balanced state-
space forms). By using suitable regressors formed from the 
scheduling variable κ = cos(θ2), a least-squares algorithm can 
be used to estimate the matrices A B C Dk k k k k d, , , , , ,∈[ ]0  
and, by extension A(κ), B(κ), C(κ) and D(κ) for each interpo-
lated LPV model. The plots in Fig. 5-6 show that the evolution 
is quite smooth and can be captured with a low-order polyno-
mial. In order to validate the interpolation step, a second fit 
measurement is used

FIT
mean

= × −
−

− ( )








100 1

ηη ηη
ηη ηη

ˆ

where η stands for a vector obtained after the vectori-
zation of all the LTI model parameters estimated for 
θ π2 8 1 7∈ ={ }i i: , ,  and ηη̂  the corresponding simulated 
vector using Eq. (35). The fits for the estimated models with d 
= 1 and d = 2 are displayed in Table 3. These figures show that 
the proposed interpolation procedure is efficient and that a low-
order polynomial LPV model, i.e., d = 2, is a good trade-off 
between complexity and efficiency.

3.3.3 LPV model validation
The final LPV model must be validated. For that, a new set 

of I/O data is generated. The system is more precisely excited 
so that the whole range of θ2 is visited (see Fig. 7). Notice that 
this evolution is relatively fast because the reachable range 

Tab. 2. Performance metrics for the restructuring step.

θ2 π / 8 2π / 8 3π / 8 4π / 8 5π / 8 6π / 8 7π / 8

 ϑϑ final

s
( )
( )

∞
Ganal ,θ2

4.03e-03 2.1e-03 1.48e-03 1.25e-03 1.03e-03 7.28e-04 4.79e-04

(35)

(36)
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Fig. 6. Evolutions of the coefficients of the estimated local balanced LTI state-space matrices w.r.t. κ = cos(θ2).

Fig. 5. Parameter evolutions obtained from the local analytical models and by re-structuring the estimated fully-parameterized state-space forms 
A B Ci i i i, , , , , ) .( ) ∈{ } ( )1 7 2 w.r.t. = cosκκ θ

(a) Evolution of  ϑ1, ··· , ϑ8 of the analytic (--o)
and the re-structured models (-o).

(b) Evolution of  −ϑ9, ··· , −ϑ16  of the analytic (--o)
and the re-structured models (-o).
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of values for θ2 is visited in almost 3s. Once again, the time 
responses for each output of the different interpolated LPV 
models are compared with the outputs of the non-linear simu-
lator (see Table 4 for a quantified comparison and Fig. 8-10 for 
specific samples). These fit measurements show that the LPV 
model designed from the technique suggested in this paper is 
able to capture the dynamic behavior of the non-linear sys-
tem. Indeed, the performance of this interpolated LPV model 
is equivalent to the one of the LPV model obtained from the 
analytic study. Notice that these results are a lot better than the 
ones obtained from the locally-estimated balanced state-space 
representation, as shown by the drops in the fit measurements. 
This final validation is compulsory because, when we look at 
Fig. 6, the parameters of the local balanced models satisfy a 
smooth variation with respect to the scheduling variable which 
can be efficiently captured by a second order polynomial func-
tion (see the last two lines of Table 3). However, as shown in 
Fig. 10, the corresponding final interpolated model fails to 

picture the behavior of the non-linear model suitably. These 
results prove that adding up prior information (through the 
knowledge of the LPV model structure) and using locally re-
structured state-space models is an efficient solution to result 
in an accurate LPV model when local data sets are available.

Tab. 3. Parameter fit between the least-squares estimates and the local model 
parameters (re-structured (struc.), analytic (anal.), balanced (bal.)) for different 
values of the degree d.

d A(κ) B(κ) C(κ) D(κ)

FIT (struc. %) 1 84.7 78.1 97.9 not det.

FIT (struc. %) 2 96.6 88.8 98.9 not det.

FIT (anal. %) 1 88.2 82.7 100 not det.

FIT (anal. %) 2 94.5 91.5 100 not det.

FIT (bal. %) 1 92 86.6 84.7 94.8

FIT (bal. %) 2 94.8 90.1 91.1 98.4

Fig. 8. Comparison of the time responses of the system (–) and the interpolated LPV model from the locally-estimated re-structured state-space forms (- -).
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Tab. 4. Performance metrics (BFT and VAF) for the experimental LPV 
models (from the re-structured (struc.), analytic (anal.), balanced (bal.) local 
models) (with d = 2) on validation data.

BFT (%) VAF (%)

y1 (struc.) 76.2 94.4

y2 (struc.) 83 97.1

y1 (anal.) 78.6 95.5

y2 (anal.) 88.4 98.7

y1 (bal.) 52.7 77.7

y2 (bal.) 79.7 95.9
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Fig. 7. Evolution of θ2 during the LPV models validation.
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4 Conclusions
In this paper, problems related to the local approach for LPV 

identification are illustrated and significant solutions are intro-
duced. More specifically, when the variations of the scheduling 
variables are fast w.r.t. to the dynamics of the system, the local 
approach may lead to unreliable LPV models when no prior 
information of the system is available. For instance, despite 
its numerical robustness, the technique suggested in [22] may 
give access to interpolated LPV models unable to capture 
the dynamics of the system as illustrated in Section 3 of this 
paper. In order to bypass these difficulties and to use the local 
approach efficiently, the introduction of prior information, 
more precisely the structure of the LPV model, seems to be a 

good solution. More particularly, the problem of recovering the 
numerical values of the parameters of a structured LPV rep-
resentation from fully-parameterized state-space forms identi-
fied locally has been addressed. To reach this goal, a technique 
based on a specific H∞-model matching criterion has been 
developed. The benefits of this new multi-step identification 
technique have been illustrated through the identification of a 
non-linear flexible robot. As a conclusion, combining a tech-
nique able to re-structure local fully-parameterized state-space 
forms with the basic idea of the local approach can be seen as 
an efficient and promising solution to ensure the coherence of 
the coordinate bases used for each local model.

Fig. 9. Comparison of the time responses of the system (–) and the interpolated LPV model from the local analytic state-space forms (- -).
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Fig. 10. Comparison of the time responses of the system (–) and the interpolated LPV model from the locally-estimated balanced state-space forms (- -).
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