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Abstract
Pipelining of the nested loops is very important in increas-

ing the throughput of a system developed by a high-level 
synthesis tool. The most pipelining methods can handle only 
single loops. Therefore, nested loops are converted into a sin-
gle loop, called loop flattened loop. In consequence, i.e. the 
sequential loops cannot be implemented in separate pipeline 
stages. This constraint limits the throughput. In this paper, a 
novel method are presented for nested loops by implementing 
to avoid this limitation. The method has the advantage that 
the desired restart time of the whole system can be given as 
an input parameter. The necessity of the pipeline scheduling 
on each loop hierarchy level can also be determined by this 
method. A novel multi-rate dataflow graph is also introduced 
for modeling the nested loops in an easy and abstract way.
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1 Introduction
High-level synthesis is based on many optimization methods 

in order to ensure a desired performance in speed, area and cost. 
The loops are essential parts of the algorithms to be implemented 
by a high-level synthesis tool. Therefore, the proper loop han-
dling is unavoidable in increasing the throughput in a pipeline 
system. In achieving a given pipeline throughput (as the recipro-
cal of the initiation interval or restart time1), even the loops with 
constant trip count may set limit. Therefore, efforts have to make 
for decreasing the latency or restart time of the loop.

In this paper, a novel method is presented for increasing the 
pipeline throughput of nested loops with constant trip count. 
By this method, the pipeline scheduling can be performed on 
more than one level of the loop hierarchy simultaneously in 
contrast with the usual solutions. Compared with the previous 
works, this simultaneous scheduling has advantage, if the loop 
hierarchy contains also sequential loops. The method can map 
the sequential loops into successive pipeline stages2, which 
may increase the throughput of a system significantly.

Contrary to the methods applied by the most HLS tools, the 
desired restart time (initiation interval) of the whole system can be 
given as an input parameter for the method presented in this paper.

The method can be used if every loop in the loop nest has con-
stant trip count (number of iterations). Otherwise a transforma-
tion is needed to make the trip counts constant. For example, if 
an upper bound can be defined or estimated for the trip count of 
a loop, this bound can be used as constant trip count. In this case, 
some extra control solution ensure that the loop body is executed 
in the same number of times as the original trip count. Although 
this transformation increases the latency, and so it can cause some 
performance loss, in many cases the benefits of pipelining sequen-
tial loops is greater than the drawback of this performance loss.
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1 Further the restart time (R) and Initiation Interval (II) will be used as 
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2 Let Pj
k  denote the data processed by the operation ej at the k-th initiation 

(restart). In the set of operations E Si= ∪ , the disjoint subsets Si can be called 
pipeline stages, if ∀ : =k P Ps

k
r
k  holds for ∀ , ⊂ :∀e e S is r i .

http://dx.doi.org/10.3311/PPee.7610


82 Per. Pol. Elec. Eng. and Comp. Sci. Gergely Suba

It is beneficial to perform the pipeline scheduling method on 
a dataflow representation, because these are formal and abstract 
models of a system. The operations inside a loop body are exe-
cuted more times than the program itself, therefore a so-called 
multi-rate dataflow model [14, 10, 4] can be applied to repre-
sent nested loops. The well known multi-rate dataflow graphs 
(e.g. SDF, discussed later) cannot represent the nested loops in 
hierarchical way. Therefore, a novel dataflow graph based on 
existing single-rate dataflow models is introduced.

The paper is organized as follows. In Section 2, the previ-
ous work in the area of nested loops pipelining and the related 
dataflow models are reviewed. In Section 3, a novel dataflow 
graph, the so-called MR-HSDFG is introduced. In Section 4, 
the latency and restart time calculation is presented in the MR-
HSDFG model. Section 5 discusses the optimization of these 
two parameters. In Section 6, experimental results are pre-
sented. The conclusion is summarized in Section 7.

2 Previous Work
In this section, the most relevant methods are evaluated 

regarding the pipeline scheduling of nested loops. Further on, 
the dataflow graph representations are compared, which are 
suitable for modeling nested loops.

One of the approaches is the hierarchical reduction [12] 
method. In this way, the program (represented in dataflow 
graph) is scheduled hierarchically, starting with the innermost 
loop. After this scheduling, the whole loop is substituted by a 
single operation. The same scheduling method will be executed 
for an outer loop, if it does not contain inner loops, only opera-
tions (every loop has already been substituted by operations). 
At the end of this procedure, the entire program is reduced to a 
single operation. The paper [12] contains only the main concept 
of the reduction, and it does not discuss the precise algorithm.

Another hierarchical approach is the hierarchical pipelining 
[3]. In this method, four levels of the hierarchy are defined: sys-
tem, behavior, loop and operation. The description of the lev-
els are not uniformed; each level has its own description graph 
(CFG, CDFG or DFG), and the handling of the levels of the 
hierarchy is different, which is a drawback of the method. The 
throughput constraint, given as input of the method, determines 
the duration time of the stages. The procedure starts with filling 
the stages node by node. A node is assigned to the same stage as 
the predecessor node, if the duration time of the stage will not 
be exceeded by this assignment. Next, the throughput constraint 
of each pipeline stage is distributed among the nodes (i.e. loops) 
within the stage. These distributed constraints limit the latency 
of the nodes. This heuristic, which is a substantial part of the 
approach, does not guarantee an optimal solution [3] in contrast 
to the method presented in this paper, nevertheless this is the 
nearest approach to the basic objectives of our method.

Another approach to perform pipelining is to flatten [6] the 
loop nest first, then the resulted single, non-nested loop can 

be pipelined using the single loop pipelining methods [11, 12]. 
The main idea of the loop flattening is to emulate the execu-
tion of the original loop nest by a single (called flattened) loop, 
where the trip count is equal to the total sum of inner loop trip 
counts. The method calculates that which iterations of the orig-
inal loops should be executed for each iteration of the flattened 
loop. Several commercial HLS tools apply this approach, e.g. 
Calypto Catapult C [5] or Xilinx Vivado [1].

The advantage of the loop flattening is that it can handle 
also some types of loops having non-constant trip counts. The 
disadvantage of the loop flattening regarding the pipelining is 
that the original inner loops disappear. Therefore, the pipeline 
scheduling cannot be executed level by level (e.g. the sequen-
tial loops cannot be mapped into successive pipeline stages). 
Thus, the throughput of the whole system may be decreased.

Another way is to use a self-timed ring representation to per-
form the pipeline scheduling of nested loops [7]. This method 
is dedicated to asynchronous pipeline mode where a hand-
shake control is assumed in each stage. This solution makes 
the run-time pipeline loop scheduling easier, but the necessary 
control overhead is significant. The self-timed ring method can 
be applied only for asynchronous systems, which is out of the 
scope in this paper.

The method presented in this paper is based on the hierarchi-
cal reduction, i.e. in contrast with the flattening way, it is made 
level by level in the loop hierarchy.

In handling the nested loops, the dataflow representation is 
widely used. The main types of such models can be classified 
as follows.

For digital signal processing, the application of Synchronous 
Data Flow (SDF) [13] is typical. In SDF the nodes represent 
operations (called actors), and the edges represent communi-
cation channels realized by FIFO queues. The FIFOs connect 
to the ports of the actors. For each port of an actor the num-
ber of produced or consumed tokens is defined. An input port 
consumes tokens from the predecessor FIFO, and an output 
port produces tokens to the successor FIFO. The number of 
produced and consumed tokens of an actor can differ, because 
the frequency of the fires (executions) of the actors may vary. 
Therefore, the SDF can be considered as a so-called multi-rate 
[14] dataflow graph.

The Homogeneous SDF (HSDF) is a simplified variant of 
the SDF, where the number of produced and consumed tokens 
of each actor is always 1. Therefore, the HSDF can be consid-
ered as a so-called single-rate [14] DFG.

As the HSDF is a very simplified model, it is easier to ana-
lyze than the generic SDF model. Besides, the SDF model has 
disadvantage that the most analyzing and optimizing algorithms 
have to start with transforming the SDF into HSDF. These 
transformations increase the number of nodes significantly. [13] 
Therefore, the SDF representation is practically not applicable 
in case of great number of operations.
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An approach resembling the HSDF is the so called Elementary 
Operation Graph (EOG) [2]. This model is also single-rate, but it 
contains also timing parameters in contrast with the HSDF. The 
nodes are considered as elementary (not separable) operations. 
For each operation, the duration (execution) time is given, where 
duration time 0 refers to combinatorial unit. For the elementary 
operations of the EOG, the following assumptions are made:

1. operation vi is started only after having finished ∀ ∈v Vj , 
where vj is the direct predecessor operation of vi and V is 
the set of the operations

2. operation vi requires all its input data during the whole 
duration time of the vi (this duration time is denoted by tvi 
in the following)

3. operation vi may change its output during the whole dura-
tion time

4. after the output of vi shows, holds its current output stable 
until its next start

The EOG supports the pipeline scheduling and allocation 
algorithms. For calculating and optimizing the restart time, there 
are algorithms in [2] that will be reused in this paper. These algo-
rithms handle the loops as single elementary operations, without 
defining the inner behavior of them. Therefore, the inner opera-
tions remain hidden and so there are no way to involve them into 
the pipelining algorithms. The aim of this paper is to represent 
and handle each level of the loop hierarchy separately.

3 MR-HSDFG - a novel multi-rate dataflow graph
In this section, a novel dataflow model, the Multi-Rate 

Homogeneous Synchronous Dataflow Graph (MR-HSDFG) 
is introduced, which can be considered as an extension of the 
EOG and HSDF model. The main purpose is to represent nested 
loops in an abstract and formal way for performing the pipeline 
scheduling efficiently. The dataflow models overviewed as pre-
vious work do not solved this problem for practical applica-
tion. The HSDF and the EOG are single-rate DFG, so they can-
not represent nested loops for an efficient pipeline scheduling. 
Although, the SDF can represent nested loops, but it is always 
converted the model to HSDF for analyzing and scheduling. 
This step increases the number of the operations significantly.

The MR-HSDFG is a finite and directed graph. Each node rep-
resents an operation, which has zero3 or more input and zero or 
one output (but, both of them cannot be zero). Each edge is a data-
flow channel, representing the data transfer between operations.

The assumptions of the MR-HSDFG differ partially from 
the EOG:

1. the same as in the EOG (see Section 2)
2. the same as in the EOG (see Section 2)
3. operation vi must not change its output during the whole 

duration time

4. after the output of vi shows, holds its actual output stable 
until the next output value is calculated and sampled by 
the clock

Based on these assumptions, the duration time of a non-
pipelined operation is identical with its so called busy time 
(denoted by qvi for the operation vi) contrary to [2]. In MR-
HSDFG pipelined operations also may occur. For such opera-
tions the duration and busy times may be given separately as 
parameters.

The model has five types of operations:
• Elementary operation: an operation, which is considered as 

atomic (inseparable). In EOG this is the only operation type.
• Loop operation: an operation that represents a loop. The 

behavior of the loop body is defined by an inner dataflow 
graph (discussed later), which is also a MR-HSDFG, so 
it can contain loop operations, too.

• Constant operation: an operation, which produces a con-
stant value in runtime (it has no input dataflow channel).

• Input operation: represents an input itself of the dataflow 
graph (it has no input dataflow channel).

• Output operation: represents an output itself of the data-
flow graph (it has no output dataflow channel).

The duration time of the constant, input and output opera-
tions are 0 by definition.

The loop operations are essential for modeling and handling 
the nested loops. The general structure of the loop operation 
is shown in Figure 1, where there are special fixed operations 
(Counter and Selector) and a task dependent subgraph, called 
inner graph representing the loop body. (this inner graph is 
illustrated by a single node in Figure 1)

In order to describe the inner graph as a MR-HSDFG, some 
transformations are shown in Figure 2. The Counter, which 
counts the number of the loop body executions, can be consid-
ered as an input operation of the inner graph. The Selector as an 
output operation enables in a downsampling way which value 
from the loop body should be transferred to the direct successor 
operation. When the enable input is on, the value will be buff-
ered to the output of the Selector operation, and will be held 
until the next enable sign. The input data of the loop operation 
arriving from other operations are assumed to be stable during 
the whole loop operation. Therefore, the input data are consid-
ered as constant operations.

A loop operation can be formally defined as a pair G tc, , 
where:

• G is the inner graph (MR-HSDFG), which represents the 
loop body

• tc N∈  is the trip count of the loop, where tc > 1 (other-
wise there wouldn’t be a loop). While the loop operation 
is performed once, G should be restarted tc times, i.e. tc 
is used as a parameter of the Counter.

Such a MR-HSDFG representation fits to the nested loops 
written in a programming language by applying the structure of 

3 It is a difference between MR-HSDFG and EOG, because in EOG every 
operation has at least one input and one output.
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Figure 1, loop by loop separately. The main (top-level) func-
tion can also be described by an MR-HSDFG. The loops inside 
the main function can be mapped to loop operations as shown 
in Figure 1. The other parts of the main function can be rep-
resented as elementary and constant operations, because these 
parts run just once during each execution of the main function. 
The main function parameters and the return statement are rep-
resented as input and output operations.

The tc is the trip count of the loop, considered as a parameter 
of the Counter operation for defining the upper bound of the 
counting. If the trip count is data dependent, the user should 
define an upper bound for tc. The commercial software tools 
(e.g. Catapult C) generally also assume this user interaction.  
In such cases, it is an additional task for the user to ensure a 
proper function if the defined tc is exceeded.

The MR-HSDFG is illustrated by an example. Let’s consider 
the following expression as the task to calculate f(a, n):

Inputs a and n are assumed to be given repeatedly. In this

case, the operation
i

n

=
∏

1
should be represented by a loop.

In a poor EOG representation the f function is practically 
handled as a simple elementary operation (shown in Figure 3) 
where the inner behavior is hidden. In case of this represen-
tation, pipeline scheduling cannot be performed for the inner 
behavior of f. However, the f function is represented as a loop 
operation in MR-HSDFG, where the inner graph represents 
the behavior of the loop body as shown in Figure 4. The inner 
graph without its environment is illustrated in Figure 5. Since 
this inner graph doesn’t contain loop operation, it can be con-
sidered as a regular EOG. Therefore, the analyzing and opti-
mizing algorithms developed to the EOG [2] can be applied on 
it by some extension. The following sections introduce these 
extended algorithms.

4 Calculation of the minimal restart time on MR-HSDFG
In this section, an algorithm is introduced for calculating the 

minimal restart time of the system under three constraints.
If the MR-HSDFG does not contain loop operation, the 

model will be similar to the EOG.
In this case, the latency and the restart time can be calculated 

in EOG as shown in [2] by assuming that the EOG is acyclic. 
In the following, these algorithms are extended loop operations 
by applying MR-HSDFG.

In order to form an acyclic graph, the operations inside each 
cycle4 has to be substituted by a single operation first.

Let L(G) the latency of graph G (as an MR-HSDFG) as the 
sum of the duration times of the longest path in G. The calcu-
lation of the minimal restart time is shown for the three cases 
as follow:
•	 Non-pipelined	mode: the system is restarted when the 

previous input data has already arrived at the output. In 
this case, the throughput can be low, but the necessary area 
may be decreased by proper scheduling and allocation.

loop operation

Counter
(0..tc-1)

Inner graph
(loop body)

(G)

Selector

to an other operation

from an other
operation (O1)

from an other
operation (O2)

value enable

Fig. 1. General construction of the loop operation (in this figure the loop 
operation has two predecessor operations)

loop operation

IN
(old Counter)

Inner graph
(loop body)

(G)

OUT
(old Selector)

Constant_2
(old operation O2)

Constant_1
(old operation O1)

value enable

Fig. 2. Inner MR-HSDFG of the loop operation

f a n a i n n n
i

n

max( ) ( ) [ ], = + , ∈ , , ∈
=
∏
1

1  (1)

Fig. 3. EOG representation of the task

IN_a

f

IN_n

OUT

R G L G tnp vi
( ) ( )= = ∑ (2)

4 Cycle in the graph, that is directed path goes from a node to the same node.
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where ∑tvi denotes the sum of all duration time in the criti-
cal (longest) data path.

•	 Pipeline	 mode	 without	 replication	 of	 operations: in 
this case, the required area may be larger because of 
stronger allocation constraints than in the non-pipelined 
mode.

•	 Pipeline	mode	assuming	replicated	operations: in this 
case, the Rmin(G) = 1 can be achieved, if each operation 
is allowed to be replicated. By extending the calculation 
in [2]:

where V is the set of the operations, tvi ∈ is the duration 
time (number of clock periods required for execution) and 
qvi ∈  is the busy time of the vi operation. Based on the above 
definitions

holds.
For the calculations (2), (3) and (4), the duration and busy 

time of each operation is required. For most of the operations, 
these values are given by parameters. To determine the duration 

and busy time of a loop operation, extra calculations 
are needed. The inner behavior of the loop operation vi is 
defined by the pair. For the sake of simplicity, let be assumed 
that a loop operation cannot be restarted more frequently than 
its latency. In this case, the duration time and the busy time are 
identical. The calculation can be formulated as follows:

where R(Gi) is the restart time of the inner graph inside the 
loop operation vi, and L(Gi) is the latency of that. Expression (6) 
can be explained as detailed below.

The inner graph Gi of the loop operation vi is also MR-
HSDFG, and its restart time R(Gi) can be defined by the Expres-
sions (2), (3) or (4). While the loop operation is executed once, 
the inner graph is restarted tc times, therefore between the first 
and last restart (tci − 1) * R(Gi) time elapsed. After the last 
restart, the loop operation is still busy for the time L(Gi) (this 
time is needed to process the last input). Therefore, this value 
should be added in the expression, to get the whole duration 
and busy time of the loop operation.

For nested loops, this calculation should be applied in a bot-
tom-up recursive way beginning at the innermost loop.

5 Obtaining a desired restart
time based on MR-HSDFG
The method in [2] based on EOG operates with buffer inser-

tion and operation replication. This is a so called RESTART 
algorithm, which is adapted to MR-HSDFG as follows. In 

f

Counter

+ >=

*

Selector

buf

OUT

IN_a IN_n

Fig. 4. MR-HSDFG representation of the task (the =, +, <=, * and buf opera-
tions represent the loop body, called inner graph) Fig. 5. MR-HSDFG representation of the inner graph
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MR-HSDFG, the modified version of this optimization method 
can be used, which will be introduced in this section.

For obtaining a desired restart time Rd, the extended RESTART 
algorithm handles the loop hierarchy in a top-down recursive way.

The overview of the achieving algorithm is illustrated in Fig-
ure 6. The first step is to calculate the restart time in non-pipe-
lined mode (Rnp, details in Section 5.1). If the resulted Rnp does 
not exceed Rd, the whole algorithm can be stopped successfully. 
If it is not the case, each limiting operation has to be modified 
by algorithm MODOP (details in Section 5.2). The extended 
RESTART algorithm may fail to obtain Rd, if Rd < Rmin.

5.1 Calculating the non-pipelined restart time (Rnp)
The first step is to calculate the duration time of each loop 

operation, in order to determine the non-pipelined mode restart 
time. The non-pipelined mode offers the most freedom in allo-
cation. (it can result the least resource using and the largest 
amount of allocating) Expressions (2) and (6) in Section 4, 
detail the calculation for determining Rnp.

5.2 Modifying the loop body
If Rd is smaller than the calculated Rnp, then each such opera-

tion which limits the restart time has to be modified one by one. 
This modifying algorithm (MODOP) is illustrated for a single 
operation vi in Figure 7.

If vi is a loop operation, then the replication of the whole 
operation is attempted to avoid by pipelining the loop body 
(calculation details in the following subsection).

5.2.1 Calculation the required loop body restart time Rd(Gi)
Pipelining the loop body can reduce the duration time of the whole 

loop operation, if the latency of the loop body is greater than 1.

In case of a loop operation, which doesn’t satisfy the desired 
restart time Rd, an effective way is to pipeline schedule the inner 
graph of the loop operation. This inner scheduling can decrease the 
duration time (which is calculated for the non-pipelined mode first 
as illustrated in Section 5.1) of the loop operation. In the follow-
ing, the pipeline scheduling of this inner graph will be discussed.

The aim is to set

preferably by pipelining the loop body without replication. 
By substituting Expression (6) into Expression (7):

By expressing R(Gi),

holds. Since a restart time can only be a positive integer, 
the required restart time of the loop body can be expressed by 
applying Expression (4) as follows:

As the inner graph is an MR-HSDFG, the algorithm illus-
trated in Figure 6 has to be executed formally in a top-down 
way in case of nested loops.

Calculating Rnp

Modifying each limiting operation
for obtaining Rd (MODOP)

Rnp <= Rd?

Did it succeed?

FAIL OK

yes

no

no

yes

Fig. 6. Extended RESTART algorithm

qi > R

Extended RESTART
for Rd = Rd(Gi)

Is vi loop
operation?

qi´ > Rd(Gi)

Replication of
operation vi

yes

no

yes

no

yes

no

START

STOP

Calculation the required loop
body restart time Rd(Gi)

Fig. 7. Algorithm MODOP in details
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<
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( ) ( )
≤

−
−1
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i
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
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The resulted duration time tvi and busy time qvi of the whole 
loop operation vi can be calculated according to Expression (6) 
by substituting Rd(Gi) instead of R(Gi).

5.2.2 Replication of vi

If the operation is not a loop operation, or the inner pipelining 
step (Section 5.2.1) cannot ensure the desired restart time (Rd), 
then the only way to achieve Rd is the replication. The required 
number of copies (ci) for vi can be determined as follows5:

6 Experimental results
In this section, two tasks as examples are analyzed. The first 

one (edge detection algorithm) demonstrates the advantage of 
the MR-HSDFG modeling for calculation the non-pipelined 
restart time. The second one (divisor calculation) illustrates this 
advantage in ensuring the desired restart time also for loops.

For comparison, Catapult C has also been applied in both 
tasks.

6.1 Edge detection algorithm
The algorithm is based on the Roberts operator [15]. A 64 x 64 

pixel size grayscale bitmap is assumed. This bitmap is trans-
formed to a same size bitmap for enhancing the edges of the 
original bitmap. The highest intensities in the transformed bit-
map represent the edges.

The data interface of the algorithm consists of two streams, 
one for the input (original) bitmap and one for the output (trans-
formed) bitmap.

According to the algorithm [15], the intensities (p1. . . p4) 
of four input pixels are required for calculating the intensity 
Pout(x, y) as a function of the output pixel coordinates:

where (x, y) denotes the pixel coordinates.
The calculation is based on the Roberts operator [15]:

As it can be seen, the two adjacent rows has to be used for 
calculating the intensity in a given row. These two rows should 
be stored simultaneously besides the current row, thus alto-
gether three rows.

As the access of the bitmap is sequential (the data arrives in 
a stream), these 3 rows should be buffered.

The Catapult C source code of the algorithm is shown in Figure 
8, where there are three for loops. Loop I iterates through the rows 
(between 0 and 63), and loops J1, J2 iterate through the columns 
(between 0 and 63 too). In each iteration of loop I, one input row 
is processed, and one output row is produced. The task of loop J1 
is to read the input stream, and to store the data in a temporary 
buffer. Loop J2 calculates the next output pixel one by one using 
the input stream and the values stored in the temporary buffer.

The MR-HSDFG constructed from this code is shown in 
Figure 9. The results are summarized in Table 1. In the first 
and fourth row the restart time of the outer loop I seems to 
be approximately equal to the sum of the duration time of the 
operations inside the loop body:

where the duration time tvi  of the loop operations can 
be calculated by applying the Expression (6). In this case, 
R 3≈(63R 1+L 1)+(63R 2+L 2).

For the second and the third row contain the results obtained 
from Catapult C by running it with flattening. In this case, 
loops J1, J2 disappeared.

The parameter I I I = 1 (in Catapult C I I  denotes the initia-
tion interval, which is the same as restart time) in the third row 
cannot be satisfied, because the minimal restart time Rmin of the 
original (without flattening) loop J2 is 2, because the two Read 
operations connect to the same buffer.

The results in the fourth row are provided by Catapult C by 
running it for the inner loops separately without flattening. In 
this case, the desired restart time for the inner graph of loop J1 
has been 1, and 2 for the inner graph of loop J2. This through-
put result (12609) seems to be the best provided by Catapult C. 

The last row represents the result obtained by applying the 
method presented in this paper. In this case, J1 and J2 are assigned 
to different pipeline stages, therefore better result (8384 cycle 
instead of 12609) is achieved compared with the Catapult C.

6.2 Divisor calculation
This task as an example calculates the average of 64 integer 

input values and determines the number of divisors of this aver-
age, considered as a lower integer. The Catapult C code repre-
sents the algorithm is shown in Figure 10. The code contains two 
for cycles, the first one (J1) deals with the calculation of the aver-
age, and the second one (J2) calculates the number of divisors.

The algorithm is illustrated by MR-HSDFG in Figure 12 
where J1 and J2 are loop operations.

If the user defines Rd as the minimal pipeline restart time 
without replication, then the following calculation provides the 
result. By applying Expression (6), the duration time (and busy 
time) for the loop operation J1 is (64 − 1) * 1 + 3 = 66 (for the 
inner graph GJ 1, Rd = Rpnr(GJ 1) = 1 can be satisfied according to 
Expression (3)). For the loop operation J2, Expression (6) pro-
vides the duration time (and busy time) (256 − 1) * 5 + 7 = 1282 

c t
Ri
i= 





(11)

p P x y
p P x y
p P x y
p P x y

1

2

3

4

1 1
1 1
1 1
1 1

= − , −
= + , −
= − , +
= + , +

( )
( )
( )
( )

(12)

P x y max p p p pout ( ), = | − |,| − |( )1 4 2 3 (13)

R tvi3 = ∑ (14)

5 In [2], the required number of copies is calculated as t
R
i + 

2 . Because of 
the MR-HSDFG assumption 3 (each output is buffered), +2 can be neglected.
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(for the inner graph GJ 2, Rd = Rpnr(GJ 2) = 5 can be satisfied accord-
ing to Expression (3)) This situation is outlined in Figure 11(a).

Let it be assumed now that the user wants to apply Rd = Rmin 
for the whole algorithm. According to Expression (4) Rmin = 66, 
because the replication of the operation Stream In is impossi-
ble. Therefore, the replication of the whole loop J1 is excluded. 
Thus, the only obstacle in achieving Rd = Rmin = 66 is loop J2 
with its R(GJ 2) =1282 in Figure 11(a). In order to eliminate this 
obstacle, the required restart time for the inner graph of the 
loop J2 can be calculated by applying Expression (10):

Inside the inner graph GJ 2, only the operation % is to be rep-
licated, where the number of copies is 51




  = 5 (Expression (11)). 

In this case, the Rd(GJ 2) = 1 can be satisfied and the duration 
time of the loop operation J2 will be (256 − 1) * 1 + 7 = 262 
(Expression (6)). Thus, the loop operation J2 has to be repli-
cated in 262

66




  = 4 copies (Expression (11)) to achieve Rd = 66 

for the whole algorithm. This case is outlined in Figure 11(b).
The Catapult C and MR-HSDFG results are summarized in 

Table 2. Row 1 shows the Catapult results, if pipelining is not 
aimed. In Row 2, loop J2 is pipelined, because it seems to be the 
bottleneck in Row 1. Row 3 shows the results of flattening the 
main loop. This result is similar to the previous row, because 
pipelining the loop J1 is ineffective. For further increasing the 

throughput, loop unrolling [8, 9] method is applied (Rows 4-6), 
but the area cost will be increased significantly in this cases. 
The requirement in Row 6 cannot be fulfilled, since loop J1 
cannot be unrolled, because of the operation Stream In.

The results of the method presented in this paper are summa-
rized in Row 7-9. In Row 9, it is remarkable that the area is very 
large, but the throughput cycle is the best and it seems not to be 
achieved by the method of Catapult C. Row 8 shows the trade-
off between the area and the throughput cycle. In this solution, 
the % operation inside the loop operation J2 is replicated, but 
the whole J2 is not. Compared with the Catapult C result in Row 
2 the area is less, and the throughput is with 20% better.

7 Conclusion
A novel method for pipelining of nested loops with con-

stant trip count, has been presented. The main advantage of the 
method is that the pipeline optimization can be performed in 
each level of the loop hierarchy separately. In this way shorter 
restart time (initiation interval) can be achieved contrary to the 
flattening based approaches. The method presented in this paper 
is based on the novel dataflow graph model (MR-HSDFG) for 
represented the nested loops by applying the multi-rate data-
flow property. On two experimental algorithm the method has 
been evaluated and compared with the results provided by the 
commercial HLS tool Catapult C.

R G maxd J( )2
66 7
256 1

1 1=
−
−






,







 = (15)

Tools and mode Loop J1 (tc1=64) Loop J2 (tc2=64) Loop I (tc3=64) Throughput cycles

1 Cat. without pipelining R1=2, L1=2 R2=4, L2=4 R3=386 24705

2 Cat. I I I=2 flattened flattened R3=2 (tc3=8128) 16260

3 Cat. I I I=1 flattened flattened - cannot be satisfied

4 Cat. I I I=1, I I I=2 R1=1, L1=2 R2=2, L2=4 R3=197 12609

5 MR-HsDFG Rd=Rpnr R1=1, L1=3 R2=2, L2=4 R3=131 8384

Tab. 1. Results for the edge detection algorithm (Ri is the restart time of the inner graph, Li is the inner latency of the given loop body. The notations I I I , I I J 1 , 
I I J 2  refer to the Catapult C terminology corresponding to the restart time of the inner graph GI , GJ1 and GJ2.)

Tools and mode Loop J1 (tc1=64) Loop J2 (tc2=256) Throughput cycles Area

1 Cat. without pipelining R1=1, L1=1 R2=6, L2=6 1603 589

2 Cat. I I J 2=1 R1=1, L1=1 R2=1, L2=6 329 2880

3 Cat. I I M=1 flattened flattened (LM=8) 319 3071

4 Cat. I I J 2=1, U J 2=2 R1=1, L1=1 R2=1, L2=6 (tc2=128) 202 5733

5 Cat. I I M=1, U J 2=2 flattened flattened (tc2=128) (LM=10) 191 5968

6 Cat. I I M=1, U M=2 flattened (tc1=32) flattened (tc2=128) cannot be satisfied

7 MR-HsDFG Rd=Rpnr R1=1, L1=3 R2=5, L2=7 1282 622

8 MR-HsDFG Rd=262 R1=1, L1=3 R2=1, L2=7 262 2447

9 MR-HsDFG Rd=Rmin R1=1, L1=3 R2=1, L2=7 66 9789

Tab. 2. Results (Ri is the restart time of the inner graph, Li is the inner latency of the given loop body, The notations I I J 2 , I I M  refer to the Catapult C terminol-
ogy corresponding to the restart time of the inner graph GJ 2 , I I M .)
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Fig. 8. Catapult C source code of the task

#include "ac_fixed.h"
#include "ac_channel.h"
#include "type.h"

#pragma hls_design top

void test (
ac_channel<int> &data_in,
ac_channel<int> &data_out)
{
int buf[4][64];

I: for (int i=0; i<64; i++)
{
int is = i % 4;
int ia = (i-1) % 4;
int ib = (i-3) % 4;

J1: for (int j=0; j<64; j++)
{
buf[is][j] = data_in.read();

}

int a1=0, b1=0, a2=0, b2=0;

J2: for (int j=0; j<64; j++)
{
int a = buf[ia][j];
int b = buf[ib][j];

int atlo1 = a-b2;
int atlo2 = b-a2;
if (atlo1<0) atlo1 = -atlo1;
if (atlo2<0) atlo2 = -atlo2;

a2 = a1; a1 = a;
b2 = b1; b1 = b;

int el = atlo1 > atlo2
? atlo1 : atlo2;

data_out.write(el);
}

}
}

Fig. 9. MR-HSDFG of the edge detection algorithm
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#include "ac_fixed.h"
#include "ac_channel.h"
#include "type.h"

#pragma hls_design top

int test(ac_channel<char> &data_in)
{

int sum=0, count=0;
for (int j=0; j<64; j++) {
sum += data_in.read();

}
int number = sum / 64;
for (int i=1; i<256; i++) {
if (number%i==0 && i<=number)
count++;

}
return count;

}

Fig. 10. Catapult C source code of the divisor algorithm
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Fig. 11. MR-HSDFG of the divisor algorithm

(a) Rd=Rprn=1282 (b) Rd=Rmin=66
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Fig. 12. MR-HSDFG of the divisor algorithm
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