
81Hierarchical pipelining of nested loops in High-level synthesis 2014 58 3

Hierarchical pipelining of nested
loops in High-level synthesis

Gergely Suba

received 15 January 2013; accepted 28 april 2014

Abstract
Pipelining of the nested loops is very important in increas-

ing the throughput of a system developed by a high-level
synthesis tool. The most pipelining methods can handle only
single loops. Therefore, nested loops are converted into a sin-
gle loop, called loop flattened loop. In consequence, i.e. the
sequential loops cannot be implemented in separate pipeline
stages. This constraint limits the throughput. In this paper, a
novel method are presented for nested loops by implementing
to avoid this limitation. The method has the advantage that
the desired restart time of the whole system can be given as
an input parameter. The necessity of the pipeline scheduling
on each loop hierarchy level can also be determined by this
method. A novel multi-rate dataflow graph is also introduced
for modeling the nested loops in an easy and abstract way.

Keywords
HLS · SDF · multi-rate · nested loops · pipeline scheduling

1 Introduction
High-level synthesis is based on many optimization methods

in order to ensure a desired performance in speed, area and cost.
The loops are essential parts of the algorithms to be implemented
by a high-level synthesis tool. Therefore, the proper loop han-
dling is unavoidable in increasing the throughput in a pipeline
system. In achieving a given pipeline throughput (as the recipro-
cal of the initiation interval or restart time1), even the loops with
constant trip count may set limit. Therefore, efforts have to make
for decreasing the latency or restart time of the loop.

In this paper, a novel method is presented for increasing the
pipeline throughput of nested loops with constant trip count.
By this method, the pipeline scheduling can be performed on
more than one level of the loop hierarchy simultaneously in
contrast with the usual solutions. Compared with the previous
works, this simultaneous scheduling has advantage, if the loop
hierarchy contains also sequential loops. The method can map
the sequential loops into successive pipeline stages2, which
may increase the throughput of a system significantly.

Contrary to the methods applied by the most HLS tools, the
desired restart time (initiation interval) of the whole system can be
given as an input parameter for the method presented in this paper.

The method can be used if every loop in the loop nest has con-
stant trip count (number of iterations). Otherwise a transforma-
tion is needed to make the trip counts constant. For example, if
an upper bound can be defined or estimated for the trip count of
a loop, this bound can be used as constant trip count. In this case,
some extra control solution ensure that the loop body is executed
in the same number of times as the original trip count. Although
this transformation increases the latency, and so it can cause some
performance loss, in many cases the benefits of pipelining sequen-
tial loops is greater than the drawback of this performance loss.

58(3), pp. 81-91 (2014)
DOI:10.3311/PPee.7610

Creative Commons Attribution b

research article

Gergely Suba

Department of Control Engineering and Information Technology,
Faculty of Electrical Engineering and Informatics,
Budapest University of Technology and Economics
Magyar tudósok krt 2., H-1117 Budapest, Hungary
e-mail: sugergo@iit.bme.hu

PPPeriodica Polytechnica
Electrical Engineering and Computer Science

1 Further the restart time (R) and Initiation Interval (II) will be used as
synonyms

2 Let Pj
k denote the data processed by the operation ej at the k-th initiation

(restart). In the set of operations E Si= ∪ , the disjoint subsets Si can be called
pipeline stages, if ∀ : =k P Ps

k
r
k holds for ∀ , ⊂ :∀e e S is r i .

http://dx.doi.org/10.3311/PPee.7610

82 Per. Pol. Elec. Eng. and Comp. Sci. Gergely Suba

It is beneficial to perform the pipeline scheduling method on
a dataflow representation, because these are formal and abstract
models of a system. The operations inside a loop body are exe-
cuted more times than the program itself, therefore a so-called
multi-rate dataflow model [14, 10, 4] can be applied to repre-
sent nested loops. The well known multi-rate dataflow graphs
(e.g. SDF, discussed later) cannot represent the nested loops in
hierarchical way. Therefore, a novel dataflow graph based on
existing single-rate dataflow models is introduced.

The paper is organized as follows. In Section 2, the previ-
ous work in the area of nested loops pipelining and the related
dataflow models are reviewed. In Section 3, a novel dataflow
graph, the so-called MR-HSDFG is introduced. In Section 4,
the latency and restart time calculation is presented in the MR-
HSDFG model. Section 5 discusses the optimization of these
two parameters. In Section 6, experimental results are pre-
sented. The conclusion is summarized in Section 7.

2 Previous Work
In this section, the most relevant methods are evaluated

regarding the pipeline scheduling of nested loops. Further on,
the dataflow graph representations are compared, which are
suitable for modeling nested loops.

One of the approaches is the hierarchical reduction [12]
method. In this way, the program (represented in dataflow
graph) is scheduled hierarchically, starting with the innermost
loop. After this scheduling, the whole loop is substituted by a
single operation. The same scheduling method will be executed
for an outer loop, if it does not contain inner loops, only opera-
tions (every loop has already been substituted by operations).
At the end of this procedure, the entire program is reduced to a
single operation. The paper [12] contains only the main concept
of the reduction, and it does not discuss the precise algorithm.

Another hierarchical approach is the hierarchical pipelining
[3]. In this method, four levels of the hierarchy are defined: sys-
tem, behavior, loop and operation. The description of the lev-
els are not uniformed; each level has its own description graph
(CFG, CDFG or DFG), and the handling of the levels of the
hierarchy is different, which is a drawback of the method. The
throughput constraint, given as input of the method, determines
the duration time of the stages. The procedure starts with filling
the stages node by node. A node is assigned to the same stage as
the predecessor node, if the duration time of the stage will not
be exceeded by this assignment. Next, the throughput constraint
of each pipeline stage is distributed among the nodes (i.e. loops)
within the stage. These distributed constraints limit the latency
of the nodes. This heuristic, which is a substantial part of the
approach, does not guarantee an optimal solution [3] in contrast
to the method presented in this paper, nevertheless this is the
nearest approach to the basic objectives of our method.

Another approach to perform pipelining is to flatten [6] the
loop nest first, then the resulted single, non-nested loop can

be pipelined using the single loop pipelining methods [11, 12].
The main idea of the loop flattening is to emulate the execu-
tion of the original loop nest by a single (called flattened) loop,
where the trip count is equal to the total sum of inner loop trip
counts. The method calculates that which iterations of the orig-
inal loops should be executed for each iteration of the flattened
loop. Several commercial HLS tools apply this approach, e.g.
Calypto Catapult C [5] or Xilinx Vivado [1].

The advantage of the loop flattening is that it can handle
also some types of loops having non-constant trip counts. The
disadvantage of the loop flattening regarding the pipelining is
that the original inner loops disappear. Therefore, the pipeline
scheduling cannot be executed level by level (e.g. the sequen-
tial loops cannot be mapped into successive pipeline stages).
Thus, the throughput of the whole system may be decreased.

Another way is to use a self-timed ring representation to per-
form the pipeline scheduling of nested loops [7]. This method
is dedicated to asynchronous pipeline mode where a hand-
shake control is assumed in each stage. This solution makes
the run-time pipeline loop scheduling easier, but the necessary
control overhead is significant. The self-timed ring method can
be applied only for asynchronous systems, which is out of the
scope in this paper.

The method presented in this paper is based on the hierarchi-
cal reduction, i.e. in contrast with the flattening way, it is made
level by level in the loop hierarchy.

In handling the nested loops, the dataflow representation is
widely used. The main types of such models can be classified
as follows.

For digital signal processing, the application of Synchronous
Data Flow (SDF) [13] is typical. In SDF the nodes represent
operations (called actors), and the edges represent communi-
cation channels realized by FIFO queues. The FIFOs connect
to the ports of the actors. For each port of an actor the num-
ber of produced or consumed tokens is defined. An input port
consumes tokens from the predecessor FIFO, and an output
port produces tokens to the successor FIFO. The number of
produced and consumed tokens of an actor can differ, because
the frequency of the fires (executions) of the actors may vary.
Therefore, the SDF can be considered as a so-called multi-rate
[14] dataflow graph.

The Homogeneous SDF (HSDF) is a simplified variant of
the SDF, where the number of produced and consumed tokens
of each actor is always 1. Therefore, the HSDF can be consid-
ered as a so-called single-rate [14] DFG.

As the HSDF is a very simplified model, it is easier to ana-
lyze than the generic SDF model. Besides, the SDF model has
disadvantage that the most analyzing and optimizing algorithms
have to start with transforming the SDF into HSDF. These
transformations increase the number of nodes significantly. [13]
Therefore, the SDF representation is practically not applicable
in case of great number of operations.

83Hierarchical pipelining of nested loops in High-level synthesis 2014 58 3

An approach resembling the HSDF is the so called Elementary
Operation Graph (EOG) [2]. This model is also single-rate, but it
contains also timing parameters in contrast with the HSDF. The
nodes are considered as elementary (not separable) operations.
For each operation, the duration (execution) time is given, where
duration time 0 refers to combinatorial unit. For the elementary
operations of the EOG, the following assumptions are made:

1. operation vi is started only after having finished ∀ ∈v Vj ,
where vj is the direct predecessor operation of vi and V is
the set of the operations

2. operation vi requires all its input data during the whole
duration time of the vi (this duration time is denoted by tvi
in the following)

3. operation vi may change its output during the whole dura-
tion time

4. after the output of vi shows, holds its current output stable
until its next start

The EOG supports the pipeline scheduling and allocation
algorithms. For calculating and optimizing the restart time, there
are algorithms in [2] that will be reused in this paper. These algo-
rithms handle the loops as single elementary operations, without
defining the inner behavior of them. Therefore, the inner opera-
tions remain hidden and so there are no way to involve them into
the pipelining algorithms. The aim of this paper is to represent
and handle each level of the loop hierarchy separately.

3 MR-HSDFG - a novel multi-rate dataflow graph
In this section, a novel dataflow model, the Multi-Rate

Homogeneous Synchronous Dataflow Graph (MR-HSDFG)
is introduced, which can be considered as an extension of the
EOG and HSDF model. The main purpose is to represent nested
loops in an abstract and formal way for performing the pipeline
scheduling efficiently. The dataflow models overviewed as pre-
vious work do not solved this problem for practical applica-
tion. The HSDF and the EOG are single-rate DFG, so they can-
not represent nested loops for an efficient pipeline scheduling.
Although, the SDF can represent nested loops, but it is always
converted the model to HSDF for analyzing and scheduling.
This step increases the number of the operations significantly.

The MR-HSDFG is a finite and directed graph. Each node rep-
resents an operation, which has zero3 or more input and zero or
one output (but, both of them cannot be zero). Each edge is a data-
flow channel, representing the data transfer between operations.

The assumptions of the MR-HSDFG differ partially from
the EOG:

1. the same as in the EOG (see Section 2)
2. the same as in the EOG (see Section 2)
3. operation vi must not change its output during the whole

duration time

4. after the output of vi shows, holds its actual output stable
until the next output value is calculated and sampled by
the clock

Based on these assumptions, the duration time of a non-
pipelined operation is identical with its so called busy time
(denoted by qvi for the operation vi) contrary to [2]. In MR-
HSDFG pipelined operations also may occur. For such opera-
tions the duration and busy times may be given separately as
parameters.

The model has five types of operations:
• Elementary operation: an operation, which is considered as

atomic (inseparable). In EOG this is the only operation type.
• Loop operation: an operation that represents a loop. The

behavior of the loop body is defined by an inner dataflow
graph (discussed later), which is also a MR-HSDFG, so
it can contain loop operations, too.

• Constant operation: an operation, which produces a con-
stant value in runtime (it has no input dataflow channel).

• Input operation: represents an input itself of the dataflow
graph (it has no input dataflow channel).

• Output operation: represents an output itself of the data-
flow graph (it has no output dataflow channel).

The duration time of the constant, input and output opera-
tions are 0 by definition.

The loop operations are essential for modeling and handling
the nested loops. The general structure of the loop operation
is shown in Figure 1, where there are special fixed operations
(Counter and Selector) and a task dependent subgraph, called
inner graph representing the loop body. (this inner graph is
illustrated by a single node in Figure 1)

In order to describe the inner graph as a MR-HSDFG, some
transformations are shown in Figure 2. The Counter, which
counts the number of the loop body executions, can be consid-
ered as an input operation of the inner graph. The Selector as an
output operation enables in a downsampling way which value
from the loop body should be transferred to the direct successor
operation. When the enable input is on, the value will be buff-
ered to the output of the Selector operation, and will be held
until the next enable sign. The input data of the loop operation
arriving from other operations are assumed to be stable during
the whole loop operation. Therefore, the input data are consid-
ered as constant operations.

A loop operation can be formally defined as a pair G tc, ,
where:

• G is the inner graph (MR-HSDFG), which represents the
loop body

• tc N∈ is the trip count of the loop, where tc > 1 (other-
wise there wouldn’t be a loop). While the loop operation
is performed once, G should be restarted tc times, i.e. tc
is used as a parameter of the Counter.

Such a MR-HSDFG representation fits to the nested loops
written in a programming language by applying the structure of

3 It is a difference between MR-HSDFG and EOG, because in EOG every
operation has at least one input and one output.

84 Per. Pol. Elec. Eng. and Comp. Sci. Gergely Suba

Figure 1, loop by loop separately. The main (top-level) func-
tion can also be described by an MR-HSDFG. The loops inside
the main function can be mapped to loop operations as shown
in Figure 1. The other parts of the main function can be rep-
resented as elementary and constant operations, because these
parts run just once during each execution of the main function.
The main function parameters and the return statement are rep-
resented as input and output operations.

The tc is the trip count of the loop, considered as a parameter
of the Counter operation for defining the upper bound of the
counting. If the trip count is data dependent, the user should
define an upper bound for tc. The commercial software tools
(e.g. Catapult C) generally also assume this user interaction.
In such cases, it is an additional task for the user to ensure a
proper function if the defined tc is exceeded.

The MR-HSDFG is illustrated by an example. Let’s consider
the following expression as the task to calculate f(a, n):

Inputs a and n are assumed to be given repeatedly. In this

case, the operation
i

n

=
∏

1
should be represented by a loop.

In a poor EOG representation the f function is practically
handled as a simple elementary operation (shown in Figure 3)
where the inner behavior is hidden. In case of this represen-
tation, pipeline scheduling cannot be performed for the inner
behavior of f. However, the f function is represented as a loop
operation in MR-HSDFG, where the inner graph represents
the behavior of the loop body as shown in Figure 4. The inner
graph without its environment is illustrated in Figure 5. Since
this inner graph doesn’t contain loop operation, it can be con-
sidered as a regular EOG. Therefore, the analyzing and opti-
mizing algorithms developed to the EOG [2] can be applied on
it by some extension. The following sections introduce these
extended algorithms.

4 Calculation of the minimal restart time on MR-HSDFG
In this section, an algorithm is introduced for calculating the

minimal restart time of the system under three constraints.
If the MR-HSDFG does not contain loop operation, the

model will be similar to the EOG.
In this case, the latency and the restart time can be calculated

in EOG as shown in [2] by assuming that the EOG is acyclic.
In the following, these algorithms are extended loop operations
by applying MR-HSDFG.

In order to form an acyclic graph, the operations inside each
cycle4 has to be substituted by a single operation first.

Let L(G) the latency of graph G (as an MR-HSDFG) as the
sum of the duration times of the longest path in G. The calcu-
lation of the minimal restart time is shown for the three cases
as follow:
•	 Non-pipelined	mode: the system is restarted when the

previous input data has already arrived at the output. In
this case, the throughput can be low, but the necessary area
may be decreased by proper scheduling and allocation.

loop operation

Counter
(0..tc-1)

Inner graph
(loop body)

(G)

Selector

to an other operation

from an other
operation (O1)

from an other
operation (O2)

value enable

Fig. 1. General construction of the loop operation (in this figure the loop
operation has two predecessor operations)

loop operation

IN
(old Counter)

Inner graph
(loop body)

(G)

OUT
(old Selector)

Constant_2
(old operation O2)

Constant_1
(old operation O1)

value enable

Fig. 2. Inner MR-HSDFG of the loop operation

f a n a i n n n
i

n

max() () [], = + , ∈ , , ∈
=
∏
1

1  (1)

Fig. 3. EOG representation of the task

IN_a

f

IN_n

OUT

R G L G tnp vi
() ()= = ∑ (2)

4 Cycle in the graph, that is directed path goes from a node to the same node.

85Hierarchical pipelining of nested loops in High-level synthesis 2014 58 3

where ∑tvi denotes the sum of all duration time in the criti-
cal (longest) data path.

•	 Pipeline	 mode	 without	 replication	 of	 operations: in
this case, the required area may be larger because of
stronger allocation constraints than in the non-pipelined
mode.

•	 Pipeline	mode	assuming	replicated	operations: in this
case, the Rmin(G) = 1 can be achieved, if each operation
is allowed to be replicated. By extending the calculation
in [2]:

where V is the set of the operations, tvi ∈ is the duration
time (number of clock periods required for execution) and
qvi ∈ is the busy time of the vi operation. Based on the above
definitions

holds.
For the calculations (2), (3) and (4), the duration and busy

time of each operation is required. For most of the operations,
these values are given by parameters. To determine the duration

and busy time of a loop operation, extra calculations
are needed. The inner behavior of the loop operation vi is
defined by the pair. For the sake of simplicity, let be assumed
that a loop operation cannot be restarted more frequently than
its latency. In this case, the duration time and the busy time are
identical. The calculation can be formulated as follows:

where R(Gi) is the restart time of the inner graph inside the
loop operation vi, and L(Gi) is the latency of that. Expression (6)
can be explained as detailed below.

The inner graph Gi of the loop operation vi is also MR-
HSDFG, and its restart time R(Gi) can be defined by the Expres-
sions (2), (3) or (4). While the loop operation is executed once,
the inner graph is restarted tc times, therefore between the first
and last restart (tci − 1) * R(Gi) time elapsed. After the last
restart, the loop operation is still busy for the time L(Gi) (this
time is needed to process the last input). Therefore, this value
should be added in the expression, to get the whole duration
and busy time of the loop operation.

For nested loops, this calculation should be applied in a bot-
tom-up recursive way beginning at the innermost loop.

5 Obtaining a desired restart
time based on MR-HSDFG
The method in [2] based on EOG operates with buffer inser-

tion and operation replication. This is a so called RESTART
algorithm, which is adapted to MR-HSDFG as follows. In

f

Counter

+ >=

*

Selector

buf

OUT

IN_a IN_n

Fig. 4. MR-HSDFG representation of the task (the =, +, <=, * and buf opera-
tions represent the loop body, called inner graph) Fig. 5. MR-HSDFG representation of the inner graph

f

IN
(old Counter)

+ >=

*

OUT
(old Selector)

buf

Const_a
(old IN_a)

Const_n
(old IN_n)

(3)
R G max q

v V
pnr v

i

i
() ()=

∀ ∈

(4)

R G max q

q
v

q v

min v

v
i

v i

i

i
i

() = ′()
′ :=

1 if can be replicated
if cannot be rreplicated





∀ ∈v Vi

(5)R G R G R Gnp pnr min() () ()>= >=

q t tc R G L Gv v i i ii i
= = − ∗ +() () ()1 (6)

G tc,

86 Per. Pol. Elec. Eng. and Comp. Sci. Gergely Suba

MR-HSDFG, the modified version of this optimization method
can be used, which will be introduced in this section.

For obtaining a desired restart time Rd, the extended RESTART
algorithm handles the loop hierarchy in a top-down recursive way.

The overview of the achieving algorithm is illustrated in Fig-
ure 6. The first step is to calculate the restart time in non-pipe-
lined mode (Rnp, details in Section 5.1). If the resulted Rnp does
not exceed Rd, the whole algorithm can be stopped successfully.
If it is not the case, each limiting operation has to be modified
by algorithm MODOP (details in Section 5.2). The extended
RESTART algorithm may fail to obtain Rd, if Rd < Rmin.

5.1 Calculating the non-pipelined restart time (Rnp)
The first step is to calculate the duration time of each loop

operation, in order to determine the non-pipelined mode restart
time. The non-pipelined mode offers the most freedom in allo-
cation. (it can result the least resource using and the largest
amount of allocating) Expressions (2) and (6) in Section 4,
detail the calculation for determining Rnp.

5.2 Modifying the loop body
If Rd is smaller than the calculated Rnp, then each such opera-

tion which limits the restart time has to be modified one by one.
This modifying algorithm (MODOP) is illustrated for a single
operation vi in Figure 7.

If vi is a loop operation, then the replication of the whole
operation is attempted to avoid by pipelining the loop body
(calculation details in the following subsection).

5.2.1 Calculation the required loop body restart time Rd(Gi)
Pipelining the loop body can reduce the duration time of the whole

loop operation, if the latency of the loop body is greater than 1.

In case of a loop operation, which doesn’t satisfy the desired
restart time Rd, an effective way is to pipeline schedule the inner
graph of the loop operation. This inner scheduling can decrease the
duration time (which is calculated for the non-pipelined mode first
as illustrated in Section 5.1) of the loop operation. In the follow-
ing, the pipeline scheduling of this inner graph will be discussed.

The aim is to set

preferably by pipelining the loop body without replication.
By substituting Expression (6) into Expression (7):

By expressing R(Gi),

holds. Since a restart time can only be a positive integer,
the required restart time of the loop body can be expressed by
applying Expression (4) as follows:

As the inner graph is an MR-HSDFG, the algorithm illus-
trated in Figure 6 has to be executed formally in a top-down
way in case of nested loops.

Calculating Rnp

Modifying each limiting operation
for obtaining Rd (MODOP)

Rnp <= Rd?

Did it succeed?

FAIL OK

yes

no

no

yes

Fig. 6. Extended RESTART algorithm

qi > R

Extended RESTART
for Rd = Rd(Gi)

Is vi loop
operation?

qi´ > Rd(Gi)

Replication of
operation vi

yes

no

yes

no

yes

no

START

STOP

Calculation the required loop
body restart time Rd(Gi)

Fig. 7. Algorithm MODOP in details

q Rv di
<

() () ()tc R G L G Ri i i d− ∗ + ≤1 (8)

R G R L G
tci
d i

i

() ()
≤

−
−1

(9)

R G max R L G
tc

R Gd i
d i

i
min i() () ()=

−
−









 ,









1

(10)

(7)

87Hierarchical pipelining of nested loops in High-level synthesis 2014 58 3

The resulted duration time tvi and busy time qvi of the whole
loop operation vi can be calculated according to Expression (6)
by substituting Rd(Gi) instead of R(Gi).

5.2.2 Replication of vi

If the operation is not a loop operation, or the inner pipelining
step (Section 5.2.1) cannot ensure the desired restart time (Rd),
then the only way to achieve Rd is the replication. The required
number of copies (ci) for vi can be determined as follows5:

6 Experimental results
In this section, two tasks as examples are analyzed. The first

one (edge detection algorithm) demonstrates the advantage of
the MR-HSDFG modeling for calculation the non-pipelined
restart time. The second one (divisor calculation) illustrates this
advantage in ensuring the desired restart time also for loops.

For comparison, Catapult C has also been applied in both
tasks.

6.1 Edge detection algorithm
The algorithm is based on the Roberts operator [15]. A 64 x 64

pixel size grayscale bitmap is assumed. This bitmap is trans-
formed to a same size bitmap for enhancing the edges of the
original bitmap. The highest intensities in the transformed bit-
map represent the edges.

The data interface of the algorithm consists of two streams,
one for the input (original) bitmap and one for the output (trans-
formed) bitmap.

According to the algorithm [15], the intensities (p1. . . p4)
of four input pixels are required for calculating the intensity
Pout(x, y) as a function of the output pixel coordinates:

where (x, y) denotes the pixel coordinates.
The calculation is based on the Roberts operator [15]:

As it can be seen, the two adjacent rows has to be used for
calculating the intensity in a given row. These two rows should
be stored simultaneously besides the current row, thus alto-
gether three rows.

As the access of the bitmap is sequential (the data arrives in
a stream), these 3 rows should be buffered.

The Catapult C source code of the algorithm is shown in Figure
8, where there are three for loops. Loop I iterates through the rows
(between 0 and 63), and loops J1, J2 iterate through the columns
(between 0 and 63 too). In each iteration of loop I, one input row
is processed, and one output row is produced. The task of loop J1
is to read the input stream, and to store the data in a temporary
buffer. Loop J2 calculates the next output pixel one by one using
the input stream and the values stored in the temporary buffer.

The MR-HSDFG constructed from this code is shown in
Figure 9. The results are summarized in Table 1. In the first
and fourth row the restart time of the outer loop I seems to
be approximately equal to the sum of the duration time of the
operations inside the loop body:

where the duration time tvi of the loop operations can
be calculated by applying the Expression (6). In this case,
R 3≈(63R 1+L 1)+(63R 2+L 2).

For the second and the third row contain the results obtained
from Catapult C by running it with flattening. In this case,
loops J1, J2 disappeared.

The parameter I I I = 1 (in Catapult C I I denotes the initia-
tion interval, which is the same as restart time) in the third row
cannot be satisfied, because the minimal restart time Rmin of the
original (without flattening) loop J2 is 2, because the two Read
operations connect to the same buffer.

The results in the fourth row are provided by Catapult C by
running it for the inner loops separately without flattening. In
this case, the desired restart time for the inner graph of loop J1
has been 1, and 2 for the inner graph of loop J2. This through-
put result (12609) seems to be the best provided by Catapult C.

The last row represents the result obtained by applying the
method presented in this paper. In this case, J1 and J2 are assigned
to different pipeline stages, therefore better result (8384 cycle
instead of 12609) is achieved compared with the Catapult C.

6.2 Divisor calculation
This task as an example calculates the average of 64 integer

input values and determines the number of divisors of this aver-
age, considered as a lower integer. The Catapult C code repre-
sents the algorithm is shown in Figure 10. The code contains two
for cycles, the first one (J1) deals with the calculation of the aver-
age, and the second one (J2) calculates the number of divisors.

The algorithm is illustrated by MR-HSDFG in Figure 12
where J1 and J2 are loop operations.

If the user defines Rd as the minimal pipeline restart time
without replication, then the following calculation provides the
result. By applying Expression (6), the duration time (and busy
time) for the loop operation J1 is (64 − 1) * 1 + 3 = 66 (for the
inner graph GJ 1, Rd = Rpnr(GJ 1) = 1 can be satisfied according to
Expression (3)). For the loop operation J2, Expression (6) pro-
vides the duration time (and busy time) (256 − 1) * 5 + 7 = 1282

c t
Ri
i= 





(11)

p P x y
p P x y
p P x y
p P x y

1

2

3

4

1 1
1 1
1 1
1 1

= − , −
= + , −
= − , +
= + , +

()
()
()
()

(12)

P x y max p p p pout (), = | − |,| − |()1 4 2 3 (13)

R tvi3 = ∑ (14)

5 In [2], the required number of copies is calculated as t
R
i + 

2 . Because of
the MR-HSDFG assumption 3 (each output is buffered), +2 can be neglected.

88 Per. Pol. Elec. Eng. and Comp. Sci. Gergely Suba

(for the inner graph GJ 2, Rd = Rpnr(GJ 2) = 5 can be satisfied accord-
ing to Expression (3)) This situation is outlined in Figure 11(a).

Let it be assumed now that the user wants to apply Rd = Rmin
for the whole algorithm. According to Expression (4) Rmin = 66,
because the replication of the operation Stream In is impossi-
ble. Therefore, the replication of the whole loop J1 is excluded.
Thus, the only obstacle in achieving Rd = Rmin = 66 is loop J2
with its R(GJ 2) =1282 in Figure 11(a). In order to eliminate this
obstacle, the required restart time for the inner graph of the
loop J2 can be calculated by applying Expression (10):

Inside the inner graph GJ 2, only the operation % is to be rep-
licated, where the number of copies is 51




 = 5 (Expression (11)).

In this case, the Rd(GJ 2) = 1 can be satisfied and the duration
time of the loop operation J2 will be (256 − 1) * 1 + 7 = 262
(Expression (6)). Thus, the loop operation J2 has to be repli-
cated in 262

66




 = 4 copies (Expression (11)) to achieve Rd = 66

for the whole algorithm. This case is outlined in Figure 11(b).
The Catapult C and MR-HSDFG results are summarized in

Table 2. Row 1 shows the Catapult results, if pipelining is not
aimed. In Row 2, loop J2 is pipelined, because it seems to be the
bottleneck in Row 1. Row 3 shows the results of flattening the
main loop. This result is similar to the previous row, because
pipelining the loop J1 is ineffective. For further increasing the

throughput, loop unrolling [8, 9] method is applied (Rows 4-6),
but the area cost will be increased significantly in this cases.
The requirement in Row 6 cannot be fulfilled, since loop J1
cannot be unrolled, because of the operation Stream In.

The results of the method presented in this paper are summa-
rized in Row 7-9. In Row 9, it is remarkable that the area is very
large, but the throughput cycle is the best and it seems not to be
achieved by the method of Catapult C. Row 8 shows the trade-
off between the area and the throughput cycle. In this solution,
the % operation inside the loop operation J2 is replicated, but
the whole J2 is not. Compared with the Catapult C result in Row
2 the area is less, and the throughput is with 20% better.

7 Conclusion
A novel method for pipelining of nested loops with con-

stant trip count, has been presented. The main advantage of the
method is that the pipeline optimization can be performed in
each level of the loop hierarchy separately. In this way shorter
restart time (initiation interval) can be achieved contrary to the
flattening based approaches. The method presented in this paper
is based on the novel dataflow graph model (MR-HSDFG) for
represented the nested loops by applying the multi-rate data-
flow property. On two experimental algorithm the method has
been evaluated and compared with the results provided by the
commercial HLS tool Catapult C.

R G maxd J()2
66 7
256 1

1 1=
−
−






,







 = (15)

Tools and mode Loop J1 (tc1=64) Loop J2 (tc2=64) Loop I (tc3=64) Throughput cycles

1 Cat. without pipelining R1=2, L1=2 R2=4, L2=4 R3=386 24705

2 Cat. I I I=2 flattened flattened R3=2 (tc3=8128) 16260

3 Cat. I I I=1 flattened flattened - cannot be satisfied

4 Cat. I I I=1, I I I=2 R1=1, L1=2 R2=2, L2=4 R3=197 12609

5 MR-HsDFG Rd=Rpnr R1=1, L1=3 R2=2, L2=4 R3=131 8384

Tab. 1. Results for the edge detection algorithm (Ri is the restart time of the inner graph, Li is the inner latency of the given loop body. The notations I I I , I I J 1 ,
I I J 2 refer to the Catapult C terminology corresponding to the restart time of the inner graph GI , GJ1 and GJ2.)

Tools and mode Loop J1 (tc1=64) Loop J2 (tc2=256) Throughput cycles Area

1 Cat. without pipelining R1=1, L1=1 R2=6, L2=6 1603 589

2 Cat. I I J 2=1 R1=1, L1=1 R2=1, L2=6 329 2880

3 Cat. I I M=1 flattened flattened (LM=8) 319 3071

4 Cat. I I J 2=1, U J 2=2 R1=1, L1=1 R2=1, L2=6 (tc2=128) 202 5733

5 Cat. I I M=1, U J 2=2 flattened flattened (tc2=128) (LM=10) 191 5968

6 Cat. I I M=1, U M=2 flattened (tc1=32) flattened (tc2=128) cannot be satisfied

7 MR-HsDFG Rd=Rpnr R1=1, L1=3 R2=5, L2=7 1282 622

8 MR-HsDFG Rd=262 R1=1, L1=3 R2=1, L2=7 262 2447

9 MR-HsDFG Rd=Rmin R1=1, L1=3 R2=1, L2=7 66 9789

Tab. 2. Results (Ri is the restart time of the inner graph, Li is the inner latency of the given loop body, The notations I I J 2 , I I M refer to the Catapult C terminol-
ogy corresponding to the restart time of the inner graph GJ 2 , I I M .)

89Hierarchical pipelining of nested loops in High-level synthesis 2014 58 3

Fig. 8. Catapult C source code of the task

#include "ac_fixed.h"
#include "ac_channel.h"
#include "type.h"

#pragma hls_design top

void test (
ac_channel<int> &data_in,
ac_channel<int> &data_out)
{
int buf[4][64];

I: for (int i=0; i<64; i++)
{
int is = i % 4;
int ia = (i-1) % 4;
int ib = (i-3) % 4;

J1: for (int j=0; j<64; j++)
{
buf[is][j] = data_in.read();

}

int a1=0, b1=0, a2=0, b2=0;

J2: for (int j=0; j<64; j++)
{
int a = buf[ia][j];
int b = buf[ib][j];

int atlo1 = a-b2;
int atlo2 = b-a2;
if (atlo1<0) atlo1 = -atlo1;
if (atlo2<0) atlo2 = -atlo2;

a2 = a1; a1 = a;
b2 = b1; b1 = b;

int el = atlo1 > atlo2
? atlo1 : atlo2;

data_out.write(el);
}

}
}

Fig. 9. MR-HSDFG of the edge detection algorithm

loop operation I

loop operation J1

loop operation J2

Counter 0..63
1

%4
0

-1
0

-3
0

Counter 0..63
1

Write
1

%4
0

Read
1

%4
0

Read
1

Stream In
1

Counter 0..63
1

Delay
0

-
0

Delay
0

-
0

Abs
0

Abs
0

Max
0

Stream Out
1

OUT

IN

90 Per. Pol. Elec. Eng. and Comp. Sci. Gergely Suba

#include "ac_fixed.h"
#include "ac_channel.h"
#include "type.h"

#pragma hls_design top

int test(ac_channel<char> &data_in)
{

int sum=0, count=0;
for (int j=0; j<64; j++) {
sum += data_in.read();

}
int number = sum / 64;
for (int i=1; i<256; i++) {
if (number%i==0 && i<=number)
count++;

}
return count;

}

Fig. 10. Catapult C source code of the divisor algorithm

IN

J1 loop op.
66

/64
0

J2 loop op.
1282

OUT

IN

J1 loop op.
66

/64
0

J2 loop op.
262

OUT

Fig. 11. MR-HSDFG of the divisor algorithm

(a) Rd=Rprn=1282 (b) Rd=Rmin=66

loop operation J1

loop operation J2

*5

Counter 0..63
1

Stream In
1

+
0

Buf
1

Selector
1

/64
0

Counter 0..255
1

%
5

>=
0

==0
0

+
0

Buf
1

Selector
1

OUT

IN

Fig. 12. MR-HSDFG of the divisor algorithm

91Hierarchical pipelining of nested loops in High-level synthesis 2014 58 3

Acknowledgement
The research work presented in this paper has been supported by the Hungarian Scientific Research Fund (OTKA 72611 and

by the "Research University Project" TAMOP IKT T5 P3.
The author thanks to his supervisor, Prof. Dr. Péter Arató for the support and help in applying and extending the algorithms in [2].

References

1 Vivado design suite user guide - high-level synthesis (v2012.4), dec.
2012.

2 Arato P., Visegrady T., Jankovits I., High Level Synthesis of Pipe-
lined Datapaths. John Wiley & Sons, Inc., New York, USA, (2001).

3 Bakshi S., Gajski D. D., Performance-constrained hierarchical
pipelining for behaviors, loops, and operations. ACM Transactions on
Design Automation of Electronic Systems, 6 (1), pp. 1-25, (2001).

 DOI: 10.1145/371254.371256
4 Chandrachoodan N., Bhattacharyaa S. S., Liu K. J. R., An effi-

cient timing model for hardware implementation of multirate data flow
graphs. In Acoustics, Speech, and Signal Processing, 2001. Proceed-
ings. (ICASSP '01). 2001 IEEE International Conference on, Vol. 2.,
pp. 1153-1156, (2001).

 DOI: 10.1109/ICASSP.2001.941126
5 Fingeroff M., High-Level Synthesis Blue Book. Xlibris Corporation,

(2010).
6 Ghuloum A. M., Fisher A. L., Flattening and parallelizing irregular,

recurrent loop nests. In Wexelblat R. L. (ed.), Proceedings of the fifth
ACM SIGPLAN symposium on Principles and practice of parallel pro-
gramming, (PPOPP '95), pp. 58-67, ACM, New York, NY, USA, (1995).

 DOI: 10.1145/209936.209944
7 Gill G., Hansen J., Singh M., Loop Pipelining for High-Throughput

Stream Computation Using Self-Timed Rings. In Computer-Aided De-
sign, 2006. ICCAD '06. IEEE/ACM International Conference on, pp.
289- 296, 5-9 Nov. 2006.

 DOI: 10.1109/ICCAD.2006.320135
8 Hennessy J. L., Patterson D. A., Computer Architecture. Fourth

Edition: A Quantitative Approach. Morgan Kaufmann Publishers Inc.,
San Francisco, CA, USA, 2006.

9 Huang J. C., Leng T., Generalized loop-unrolling: a method for
program speedup. In Application-Specific Systems and Software En-
gineering and Technology, 1999. ASSET '99. Proceedings. 1999 IEEE
Symposium on, pp. 244-248, (1999).

 DOI: 10.1109/ASSET.1999.756775
10 Ito K., Parhi K. K., Determining the iteration bounds of single-rate

and multi-rate dataflow graphs. In Circuits and Systems, 1994. APC-
CAS '94., 1994 IEEE Asia-Pacific Conference on, pp. 163-168, (1994).

 DOI: 10.1109/APCCAS.1994.514543
11 Jones R. B., Allan V. H., Software pipelining: a comparison and im-

provement. In Microprogramming and Microarchitecture. Micro 23.
Proceedings of the 23rd Annual Workshop and Symposium., Workshop
on, pp. 46-56, nov 1990.

 DOI: 10.1109/MICRO.1990.151426
12 Lam M., Software pipelining: an effective scheduling technique for

vliw machines. In Proceedings of the ACM SIGPLAN 1988 confer-
ence on Programming Language design and Implementation, PLDI '88,

 pp. 318-328, ACM, New York, NY, USA, (1988).
 DOI: 10.1145/960116.54022
13 Lee E. A., Messerschmitt D. G., Synchronous data flow. Proceed-

ings of the IEEE, 75 (9), pp. 1235-1245, (1987).
 DOI: 10.1109/PROC.1987.13876
14 Parhi K. K., Algorithm transformation techniques for concurrent pro-

cessors. Proceedings of the IEEE, 77 (12), pp. 1879-1895, (1989).
 DOI: 10.1109/5.48830
15 Roberts L. G., Machine perception of three-dimensional solids. PhD

thesis, Massachusetts Institute of Technology. Dept. of Electrical Engi-
neering, (1963).

http://dx.doi.org/10.1145/371254.371256
http://dx.doi.org/10.1109/ICASSP.2001.941126
http://dx.doi.org/10.1145/209936.209944
http://dx.doi.org/10.1109/ICCAD.2006.320135
http://dx.doi.org/10.1109/ASSET.1999.756775
http://dx.doi.org/10.1109/APCCAS.1994.514543
http://dx.doi.org/10.1109/MICRO.1990.151426
http://dx.doi.org/10.1145/960116.54022
http://dx.doi.org/10.1109/PROC.1987.13876
http://dx.doi.org/10.1109/5.48830

	1 Introduction
	2 Previous Work
	3 MR-HSDFG - a novel multi-rate dataflow graph
	4 Calculation of the minimal restart time on MR-HSDFG
	5 Obtaining a desired restart time based on MR-HSDFG
	5.1 Calculating the non-pipelined restart time (Rnp)
	5.2 Modifying the loop body
	5.2.1 Calculation the required loop body restart time Rd(Gi)
	5.2.2 Replication of vi

	6 Experimental results
	6.1 Edge detection algorithm
	6.2 Divisor calculation

	7 Conclusion
	Acknowledgement
	References

