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Abstract
The paper deals with the time optimal control of automati-

cally driven electric cars in a test path under state and input 
constraints. The problem can be formulated as a dynamic 
nonlinear optimal control problem (DNOCP). The resulting 
DNOCP is solved by reformulating it to a static nonlinear pro-
gram (NLP) using time discretization and direct multiple shoot-
ing methods. A novel method is presented to convert the optimal 
solution obtained using the single-track model to the optimal 
control of four-in-wheels-motors driven (4WD) cars. The con-
version assures similar motion of the COG of both models and 
optimal distribution of the longitudinal wheel forces. A discrete 
model predictive control (MPC) is proposed for the linearized 
4WD vehicle model under perturbations which uses the distrib-
uted wheel forces and optimizes the perturbations with analyti-
cally solvable end constraints. The elaborated method can form 
the basis to generate an offline database of a general collision 
avoidance system (CAS).

Keywords
4WD electric vehicle · Time optimal control · Direct multiple 

shooting · Nonlinear programming · Optimal force distribution 
· Model predictive control

1 Introduction
Pursuit of optimal behavior in technical and other (biological, 

economical etc.) type of systems is a common goal of human 
research. In this area dynamic and static optimization problems 
are of different complexity. Especially, the difficulty increases if 
some of the optimization variables are integer or binary valued 
as in the case of combustion engine driven cars where the gear 
shift in the control is an integer variable. Solution of such MIOCP 
(mixed-integer optimal control) problem was presented in an ear-
lier work [1]. Similar problems were discussed in the literature for 
cars described by ordinary (ODE) or differential-algebraic (DAE) 
equations in [2-4] considering fixed or moving time interval or 
based on moving horizon predictive approaches [5,6].

There are several techniques to solve dynamic nonlinear 
optimal control (DNOCP) problems: dynamic programming 
approach by solving the Hamilton-Jacobi-Bellmann equation, 
indirect methods (known as first optimize, then discretize) 
and direct methods (first discretize, then optimize). The latter 
group of techniques can be applied to large-scale optimal con-
trol problems. In direct methods the continuous time infinite 
dimensional DNOCP problem is first discretized and reformu-
lated to a finite-dimensional static nonlinear program (NLP). 

A professional software package to solve the original con-
tinuous time problem may be MUSCOD-II [7], however it is 
not an open software. Hence, the novel professional and open 
optimization system OPTI [8] was chosen, which has also an 
interface to AMPL modeling language to formulate optimum 
problems at high level and has better performance than MAT-
LAB Optimization Toolbox.

A novel method will be presented to solve the time optimal 
control of electric cars first using a single track dynamic model, 
i.e. the time optimal control of two-in-wheel-motors driven 
(2WD) cars, in order to decrease the complexity of the opti-
mization problem. In the discussion the contact forces between 
tire and road will be modeled using Pacejka’s magic formu-
las which assure more accurate modeling than using cornering 
stiffnesses and linearization. The reason is that time optimality 
results in large acceleration/deceleration forces leaving the lin-
ear domain of the slip angle and force characteristics.
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Having solved the 2WD time optimal control task, the next 
step is the optimal distribution of the control forces for the 
four-in-wheel-motors driven (4WD) case. The distribution of 
longitudinal forces has a large influence on vehicle handling 
characteristics such as the driver/vehicle interaction, road hold-
ing and yaw stability, in particular during combined traction/
braking and cornering near the grip limit of the tires. In order 
to select and develop suitable active control that provide con-
sistent driver/vehicle handling, maximum road holding and 
sufficient yaw stability margins, it is essential to understand 
the influence of a particular drive force distribution on these 
handling characteristics.

Due to the highly non-linear interaction between the longi-
tudinal and lateral forces near the grip limit, the studies in this 
area have thus far focused on prototype testing and/or simula-
tions with sophisticated vehicle models. From the recent results 
we refer here to some works.

Sawase and Ushiroda [9] described the calculation of vehicle 
dynamics improvement by means of right-and-left torque vec-
toring system in various types of drive trains and analyzed the 
effectiveness for front wheel drive (FWD) and rear wheel drive 
(RWD) vehicles based on the tire maximum friction circle. 

Ono et al. [10] proposed a method for 4W distributed steer-
ing and 4W distributed traction/braking system based on fric-
tion circle of each wheel. The distribution algorithm used SQP 
(Sequential Quadratic Programming) for calculating the mag-
nitude and directions of tire forces which satisfy constraints 
corresponding the resultant force and moment of the vehicle 
motion and maximize each tire grip margin. 

Klomp [11] developed a method for the distribution of the 
longitudinal tire forces using quadratically constrained linear 
programming (QCLP) in order to maximize the global force in 
a predetermined direction relative to the longitudinal direction 
of the vehicle.

We have investigated all these methods and stated that their 
effectiveness is not satisfactory for high speed vehicle motion 
between corridors. Hence, we present a novel method that is 
based on linearly constrained quadratic programming (LCQP) 
and assure similar motion of the 2WD and 4WD car.

Unfortunately, the initial state of the car typically differs 
from those of the 2WD time optimal solution, hence a quick 
real time method is needed to reduce the effect of differences in 
the initial states. For this purpose 4WD moving horizon model 
predictive control (MPC) will be suggested which tries to elim-
inate the error at the end of each horizon and can be solved 
analytically using Lagrange multiplier technique. The method 
can tolerate the differences in the initial state while saving the 
form of the optimal trajectory after a short transient. Using this 
method, limits of the control forces can not be considered but 
fortunately the transient errors are quickly decaying and there 
is good chance to take into consideration the constraints. If it 
would be critical then MPC can be formulated as a Quadratic 

Programming (QP) under state and control constraints which 
can be converted to a problem solvable by OPTI.

The novel methods can be integrated to a Collision Avoid-
ance System (CAS) which starts using the database of offline 
computed and stored time optimal control solutions over a 
parameter grid, then the system selects the nearest optimal one 
for the actual traffic situation, performs optimal force distribu-
tion, exploits the tolerance in the initial state and realizes near-
optimal behavior of the CAS system.

In the sequel it will be assumed that robust servosystems are 
available for the wheels for which the longitudinal force limit 
can be converted to torque limit (based on the effective tire 
radius) and this limit is available for the optimization.

The structure of the paper is as follows. In Section 2 the 
time optimal control problem of the single-track vehicle is for-
mulated and it is solved in Section 3 by the multiple shoot-
ing method using time, state and control discretization with 
the novel algorithm of computing the derivatives of the com-
plex trajectory joining constraints for the Jacobians. Section 4 
describes the method of the 2WD optimal wheel force distribu-
tion to the four-wheel driven vehicle. In Section 5 the distrib-
uted control forces of the 4WD vehicle are used in the moving 
horizon predictive control scheme in order to tolerate differ-
ences in the initial states. Numerical results of the problems 
are given in the corresponding sections. Finally, the paper is 
concluded in Section 6.

2 Concept of Time Optimal Control Problem
2.1 Single-track vehicle model
Consider an electric car moving in a horizontal plane driven 

by the rear wheels and steered by the front wheels. It is assumed 
that the right (r) and left (l) side of the vehicle is symmetrical, 
thus the two halves can be merged to a single-track model, see 
Fig. 1. In this paper, only the planar motion of the vehicle is 
considered. This means that other dynamics such as rolling, 
pitching of the vehicle are neglected. 

Fig. 1. Single-track model of vehicle

The states of the vehicle model are px , py , ν , δw , β , ψ , ωz , i.e. 
the x-y position of the center of gravity (CoG), the magnitude 
of velocity, steering angle of the front wheel, the side-slip angle, 
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the orientation and the yaw rate respectively. The control vari-
ables that represent the driver’s input to the vehicle are denoted 
with ωδ , UF , UR , which are respectively, the angular velocity of 
the steering wheel and the front and right longitudinal control 
force (traction and braking) due to the engines’ torques.

The single-track dynamics of the car can be given in the form 
of 2 ( )Wx f x u= ,  by the following system of ordinary differen-
tial equations (ODE) similar in [12] and [13]:

xp v = +cos( )ψ β

yp v = +sin( )ψ β

v
m

F F F

F F F

lR Ax lF w

tR Ay tF

= − + −

+ − −

1 [( )cos( ) cos( )

( )sin( ) sin(

β δ β

β δδ βw − )]

wδ ωδ=

β β δ β

β

= − + −

+ − +

1
mv

F F F

F F F

Ax lR lF w

tR Ay tF

[( )sin( ) sin( )

( )cos( ) cos(( )]δ β ωw z− −

ψ ω= z

z
zz

tF f w tR R Ay SP

lF F w

I
F l F l F e

F l

ω δ

δ

= − −

+

1 [ cos( )

sin( )]

with state and control variable vectors of 

x p p v u U Ux y w z
T

F R
T= , , , , , , , = , ,( ) ( )δ β ψ ω ωδ

External forces Ft, Fl, FA, are the transversal, longitudinal and 
aerodynamic forces acting on the car respectively. The second 
subscripts R, F and x, y indicate the rear, front wheel and the 
direction of the aerodynamic force respectively. 

The rolling resistance of the front and rear wheel is com-
puted from the friction as a velocity dependent function and the 
static load distribution, see [5], as follows: 

f v v vr ( ) = ⋅ + . ⋅ + . ⋅− − −9 10 7 2 10 5 038848 103 5 10 4

F f v ml g
l l

F f v ml g
l lrF r

R

F R
rR r

F

F R

=
+

=
+

( ) ( )

The total longitudinal wheel forces consist of the control 
forces UF , UR and the rolling resistances 

F U F j F Rlj j rj= − , = ,{ }

The transversal (lateral) forces are described by Pacejka’s 
magic formula, see in [14] and [15]. The front and rear slip 
angles and transversal forces can be given by

α δ
ψ β

βf w
fl v
v

= −
+







arctan

sin
cos


α ψ β
βr

rl v
v

=
−







arctan sin

cos

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E B B

tF tR f r f r f r f r

f r f r f r f

, , , , ,

, , ,

= −

−

sin( arctan(

( arctan(

α

α ,, ,r f rα ))))

It is assumed that only longitudinal drag force acts on the 
vehicle (i.e. no side wind). Thus, the aerodynamic force due to 
air resistance can be determined by 

F c Av FAx w Ay= , =
1
2

02ρ

The numerical parameters of the dynamical model are from 
[3] and contained in Table 1.

2.2 Test path
A test path between corridors is considered as a double-lane 

change maneuver. The driver is required to overtake a static 
obstacle by changing and returning to the car’s initial lane. The 
corridor is defined by twice differentiable cubic polynomials 
and the lower Pl(x) and upper Pu(x) path boundaries are shown 
in Fig. 4. For safety reasons, the car is restricted to move in the 
region of B = 0.84 m half track width vertically from the path 
boundaries. Details on similar test path can be found in [16].

2.3 Dynamic optimal control problem
The aim is to drive the car as fast as possible through the test 

path by maintaining a smooth comfort level (i.e. minimal steer-
ing effort). A natural objective function to this problem may be 
to minimize the total time tf  needed to complete the path and 
regulate the driver’s input ωδ . Thus, the resulting dynamic non-
linear optimal control problem (DNOCP) can be read as

min ( )
( ) ( )x u t f

t

f

f

t t dt
⋅ , ⋅ ,

+ ∫
0

2ωδ

s t. . = ,x t f x t u tW( ) ( ( ) ( ))2

p t P p t B P p t By l x u x( ) [ ( ( )) ( ( )) ]∈ + , −

p tx ( ) [ ]∈ ,0 170

v t( ) [ ]∈ ,10 40

δw t( ) [ ]∈ − . , .0 5 0 5

β ( ) [ ]t ∈ − . , .0 2 0 2

ψ π π( ) [ ]t ∈ − / , /2 2

ωz t( ) [ ]∈ − ,1 1

ωδ ( ) [ ]t ∈ − . , .0 5 0 5

(1a)

(1b)

(1c)

(1d)

(1e)

(1f)

(1g)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9b)

(9c)

(9d)

(9e)

(9f)

(9a)

(9g)

(9h)

(9i)

(9j)
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U t U tF R( ) ( ) [ ], ∈ − ,10 104 4

x t( ) ( )0 0 10 0 0 0 0= , , , , , ,free

p t tx f f( ) ( )= , =170 0ψ

where f2W is the ODE system described in (1). The path bound-
ary conditions are formulated in (9c), the constraints on the 
states and control inputs are given in (9d–9i) and (9j–9k) re-
spectively. Initial and final values are defined by Eqs. (9l) and 
(9m). Notice, that the initial vertical position of the car can be 
chosen freely. All dimensions are in SI units.

Tab. 1. Parameters used in the vehicle models

Value Unit Description 

m 1.239 × 103 kg mass of car 

g 9.81 m/s2 gravity constant 

lF 1.190 m front wheel distance to cog 

lR 1.375 m rear wheel distance to cog 

bf 0.84 m front half track width 

br 0.84 m rear half track width 

IZZ 1752 kg × m2 moment of inertia 

ρ 1.249512 kg/m3 air density 

A 1.4378946874 m2 effective flow surface 

eSP 0.5 m drag mount distance to cog 

cW 0.3 air drag coefficient 

Bf 10.96 Pacejka parameter (stiffness) 

Br 12.67 Pacejka parameter (stiffness) 

Cf, r 1.3 Pacejka parameter (shape) 

Df 4560.4 Pacejka parameter (peak) 

Dr 3947.81 Pacejka parameter (peak) 

Ef, r -0.5 Pacejka parameter (curvature) 

3 Implementation strategies
In this section the control design possibilities based on exist-

ing software systems are discussed and the novel design strat-
egy is presented. To solve the time-optimal problem introduced 
in Section 3, the application of OPTI Toolbox [8] and the non-
commercial, open source solver IPOPT [17] was preferred. For 
further details on these software systems see [18] and [19].

The standard form of nonlinear program (NLP) that can be 
solved by using OPTI is of type

min ( )
x

f x

s t. . ≤Ax b

A x beq eq=

c x d( ) ≤

c x deq eq( ) =

lb ≤ x ≤ lu

xi ∈

In order to solve the dynamic optimization problem (9), it 
has to be transformed into the form of (10) using control and 
state discretization, see [6].

3.1 Discretization for varying final time
The final time varies, thus discretization for normalized 

interval [0,1] has to be performed in order to make the controls 
and states independent from tf . The time transformation is 

t t t tf( ) ( )τ τ= + −0 0

where m is the number of grid points and τ0 = 0 < τ1 < ∙∙∙ <
τm-1 < τm = 1 is the equidistantly discretized interval with step 
size h = 1/m . In the sequel t0 = 0 and the time grid will be
ti = ihtf  for i = 0,1,...,m. 

3.2 Direct multiple shooting
The time-optimal control problem of the 2WD vehicle 

motion is solved by using the direct multiple shooting method. 
The purpose of this technique is to transform the DNOCP prob-
lem (9) into a finite dimensional nonlinear optimization pro-
gram by discretization of the state and control functions on the 
time grid, first described in [20] and [21]. 

The origin of the strategy lies in the observation that for 
unstable or weakly damped systems the ODE solvers may have 
important errors which can further increase during the numeri-
cal optimization. Similarly, the initial and final values of the 
trajectory are often only partially defined, thus it is an exten-
sive problem finding feasible initial solutions for starting the 
numerical optimization. 

Hence, perturbations were introduced in the initial state at the 
boundaries of the time intervals in the grid to obtain by force, 
i.e. by appropriately chosen additional equality constraints, that 
the entire state trajectory becomes a continuous solution in the 
progress of the numerical optimization.

In the sequel, the control inputs are considered to be piecewise 
constant functions and the time grid is assumed to be the same 
for both multiple shooting and control. Consider the grid Gm with 
subintervals [ti , ti+1], i = 0,...,m − 1. On each interval [ti , ti+1] of 
the grid the solution xi (t) of the initial value problem (IVP) with 
modified initial value si has to be found which satisfies 

i i i i i

i i i

x t f t x t q t t t
x t s


( ) ( ( ) ) [ ]
( )

= , , , ∀ ∈ ,
=

+1

where qi is the constant control signal in the actual time interval.
This means that an initial value is shot out and the solu-

tion is determined that belongs to it in the interval. Denote 
with xi (t, si , qi ) the solution of the IVP. Notice that for the 
integration a further subdivision of the interval [ti , ti+1] has 

(9m)

(10a)

(10b)

(10c)

(10d)

(10e)

(10f)

(10g)

(11)

(12)

(9k)

(9l)
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been introduced which was chosen to n =20 in the application 
independently of the number of grid points m. 

As a consequence, separate solutions can be obtained for 
each interval that are not necessarily connected continuously 
at the boundaries of the intervals. Hence, an additional equality 
constraint has to be introduced for each interval guaranteeing 
continuity of the entire solution: 

s x t s q i mi i i i i+ +− , , = , = −1 1 0 0 1( ) , ,

Subsequently ( 1)
0( ) xn mT

ms s … s R += , , ∈  further discrete var-
iables have to be optimized. 

Let us define z = (tf , s0 , ..., sm , q0 , ..., qm-1), then the time 
optimal control problem is of type 

min ( ) ( ) ( )
z
F z G z H zs t. . ≤ , =0 0

3.3 Calculations of gradients and Jacobians
The applicability of OPTI needs the gradient F' of the objec-

tive function and the Jacobians G' and H' of the constraints. 
Let us here consider only the condition of trajectory join-

ing as the most complex problem of computing the derivatives 
of the intermediate state in trajectory joining constraints. The 
derivative of nonlinear equality constraint (13) by si+1 is simple, 
however the derivative of x(ti) by si is much more complicated 
as will be illustrated. 

The question is how to determine the derivatives of x(t, s, q)  
by the initial condition s, i.e. the shooting, and the parameter q, 
i.e. the actual control.

S t dx t
ds

dS
dt

d
dt
dx t
ds

d
ds
dx t
dt

d
ds
f t x t q

fx

( ) ( )

( ) ( ) ( ( ) )
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= = = , ,

= (( ( ) ) ( )

( ) ( ( ) ) ( ) ( )

t x t q dx t
ds
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, ,
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dq
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dt

d
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dx t
dq

d
dq
dx t
dt

d
dq
f t x t q

fx
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= = = , ,
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dq

f t x t q

Q t f t x t q Q t f t

q

x q

, , + , ,

= , , + ,, , , =x t q Q( ) ) ( )0 0

The results can be collected in the following matrix differ-
ential equation: 

� �

� ��� ���
�

S t Q t f t x t q f t x t q

W

x q( ) ( ) ( ( ) ) ( ( ) )
0 0 0 0









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
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
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
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
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
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
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I
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I

W
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( )
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Notice that x(t) and W(t) should be integrated numerically 
between ti and ti+1. Because of the special structure of the 
matrix ODE, the Runge-Kutta method RK4 can be applied in 
matrix form.

3.4 Results of DNOCP
In this section the numerical results of the time optimal con-

trol problem are presented. The algorithm described in Sec-
tion 3.2–3.3 was implemented in MATLAB with the software 
package OPTI. The NLP problem was solved by using IPOPT 
with interior point filtered line search method. The computation 
of the gradients and Jacobians are time consuming due to the 
large number of optimization variables, hence all of them were 
implemented in sparse forms. 

The computation were performed on a Windows 7 x64 based 
PC equipped with Intel Core i5 3.30 GHz processor and 8 GB 
of RAM. The optimization subproblems were solved to a toler-
ance level of 10-6 . Numerical results were computed for grid 
points m = 80 and 160. Table 2 gives an overview of the num-
ber of variables and constraints (terminal, equality, inequality, 
lower and upper bound).

Tab. 2. Dimensions of 2WD optimization problem

Nvar Nterm Neq Nineq Nbound Nsum

m 10m + 8 8 7m 2m + 2 20m + 16 29m + 26

80 808 8 560 162 1616 2346  

160 1608 8 1120 322 3216 4666  

The optimal paths, state trajectories and control inputs of the 
double lane changing maneuver are shown in Fig. 2. As it can 
be seen, the solution of the discretized motion of the car satis-
fies all path, state and control input constraints. 

The vehicle accelerates in the entire time interval as it was 
expected for time optimal solution. The resulting final time to 
take the maneuver are tf = 5.5180s and tf = 5.54874s for grid 
points m = 80 and m = 160 respectively. 

From a good initial guess, it took approximately 10–30 itera-
tions to find the optimal solution in case of m = 160 grid points. 
The average computational time of one iteration was around 
200 − 500 msec.

4 Optimal wheel force distribution
4.1 Four-wheel driven vehicle model
The 4WD front-steered vehicle model used is shown in Fig. 

3. It is assumed that the front (FL and FR) and rear (RL and 
RR) wheels are identical and the length of the half front (bf) 
and the rear (br) axles are the same. The total Fx and Fy forces 
can be expressed in the global reference frame as the function 
of the wheels’ longitudinal (l) and lateral (t) forces:

(13)

(14)

(15)

(16)

(17)
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F F F C F F S

F F F
x lFL lFR tFL tFR

lRL lRR Ax

w w
= + − +

+ + −

( ) ( )δ δ

F F F S F F C

F F F
y lFL lFR tFL tFR

tRL tRR Ay

w w
= + + +

+ + −

( ) ( )δ δ

where Cδw= cosδw and Sδw= sinδw are used for shorthand. There-
fore, the torque about the z-axis can be formed 

M b S F F C F F

l S F F C
z f tFL tFR lFL lFR

f lFL lFR

w w

w w

= − − −

+ + +

[ ( ) ( )]

[ ( )
δ δ

δ δ (( )]

( ) ( )

F F

b F F l F F
tFL tFR

r lRL lRR r tRL tRR

+

− − − +

Since bf = br the rolling resistances of the front and rear 
wheels equal to FrF /2 and FrR /2 respectively. Thus, the lon-
gitudinal wheel forces can be determined similarly to (4) for 
each wheel

F U F j FL FR RL RRlj j rj= − , = , , ,{ }

where Uj is the longitudinal control force as input of the vehicle. 
The slip angles are computed from the velocities of the 

wheels as follows 

v vC b v lFL FR f z S f z
T

, = , +( )β ω β ω

v vC b v lRL RR r z S r z
T

, = , −( )β ω β ω

α δFL w FL FLv v
y x

= − /arctan( )

α δFR w FR FRv v
y x

= − /arctan( )

αRL RL RLv v
y x

= − /arctan( )

αRR RR RRv v
y x

= − /arctan( )

The front and rear transversal wheel forces can be deter-
mined by equations (21) and the magic formula (7) with peak 
parameter Df /2 and Dr /2 respectively. 

The dynamic model of the 4WD car can be given in the fol-
lowing form

xp vC = +ψ β

yp vS = +ψ β

v
m
C F S Fx y= +

1 ( )β β

wδ ωδ=

β ωβ β= − −
1
mv

C F S Fy x z( )

ψ ω= z

z
z

zz

M
I

ω =

with state and control variable vectors of 
x p p v
u U U U U

x y w z
T

FL FR RL RR
T

= , , , , , ,

= , , , ,

( )

( )

δ β ψ ω

ωδ

4.2 Problem formulation
The aim is to find the 4WD control forces such that the result-

ing motion of the center of gravity is similar to the one of the 
2WD’s. This is achieved by distributing the 2WD control forces 
on each wheel individually such that the errors of the global 

Fig. 2. Solution of 2WD nonlinear optimization problem for grid points m = 80 (top row) and 160 (bottom row)

(21a)

(21b)

(21c)

(21d)

(21e)

(21f)

(20)

(22a)

(22b)

(22c)

(22d)

(22e)

(22f)

(22g)

(19)

(18a)

(18b)
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forces and torques (vector sum of all tire forces and torques) 
acting on the different CoG points are minimized. The main rea-
son for this is that the distributed longitudinal forces can be used 
as nominal controls in the moving horizon algorithm.

Fig. 3. Four-wheel driven model of the vehicle

Define the control vector zw= (UF L, UF R, UR L, UR R)T and the 
global forces and torque of the 2WD time optimal solution 

xF ∗ , yF ∗ , zM ∗ . The optimal wheel force distribution can be 
formulated as a static, linearly constrained quadratic program-
ming (LCQP) problem 

min ( ) ( ) ( )
z x x y y z z
w

c F F c F F c M M1
2

2
2

3
2− + − + −∗ ∗ ∗

s t. . =z zw w w3 1η δcos

4 2 cosw w wz zη δ=

4[ 5000 5000]wz ∈ − ,

where c1, c2 and c3 are positive weighting constants. The objec-
tive function (23a) minimizes the errors in a least-squares sense. 
The constraints (23b)–(23c) defines the longitudinal force ratio 
of the FL, RL and FR, RR wheels by the constant parameter η. 
Here, the states such as δw , are from the actual 4WD states.

Optimal Force Distribution Algorithm 
For every i = 0,..., m-1, grid points repeat the following steps: 
1.	 Calculate the constant forces and torque x iF ∗

, , y iF ∗
, , z iM ∗

,  
for the actual grid point using the time optimal solution 
x2W, i. If i = 0 set the initial state x4W, 0 := x2W, 0 .

2.	 Determine the optimal solution zw by solving the quad-
ratic programming defined in Eq.(23). 

3.	 Use RK4 scheme to integrate 4 4 4( )W W W wf x zx = ,
  to 

obtain x4W, i+1. Set x4W, i :=  x4W, i+1 .

4.3 Results of the LCQP problem
The resulting motion with the original 2WD time optimal 

and the LCQP optimally distributed control for η = 1 is shown 
in Fig. 4. The weights were chosen c1= 4e-5 , c2= 4e-5 and c3= 
6e-4. The comparison of the 2WD optimal forces xF ∗ , yF ∗  and 

moment zM ∗  with the LCQP optimally distributed 4WD forces 
Fx, Fy , and moment Mz together with the reached RMSE error 
measures are shown in Fig. 5. The original and optimally dis-
tributed longitudinal control forces are given in Fig. 6 being in 
accord with the chosen value of η = 1. It can be seen that the 
LCQP distribution is efficient. Notice that the tire slip angles 
and the transversal forces are newly computed for the 4WD 
case because the velocities are changed. 

Fig. 4. Resulting motion with the original and the distributed controls

Fig. 5. Original and LCQP approximation of forces and torque with the 
reached RMSE errors

Fig. 6. Original and optimally distributed longitudinal control forces
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5 Model predictive control of 4WD vehicle
In this section the moving horizon model predictive control 

(MPC) algorithm of the four-in-wheel-motors driven vehicle is 
presented.

In general, model predictive control optimizes a cost func-
tion in open loop using the prediction of the system future 
behavior based on the dynamic model. It determines the future 
optimal control sequence within the horizon, applies the first 
element of the control sequence in closed loop to the real sys-
tem, and repeats these steps for the new horizon which is the 
previous one shifted by the sampling time T. An open question 
is the stability of the closed loop nonlinear system, but the 
chance for stability is increasing with increasing the horizon 
length N, see [22].

If the nonlinear dynamic model is used for prediction, then usu-
ally a nonlinear optimization has to be solved in real-time which 
is time-critical for fast systems. Hence, linearization around the 
prescribed nominal trajectory may be suggested and optimization 
of the perturbations using quadratic cost and analytically manage-
able end-constraints can be used. If the control has been deter-
mined in the previous horizon and the errors are small relative 
to the prescribed path, then this control can be used as nominal 
control in the actual horizon, for which the optimal perturbations 
have to be found that decrease the path error. Clearly, a good ini-
tial nominal control is needed for the very first horizon.

5.1 Nominal values and perturbations
Denote with {u0, u1, ..., uN − 1} the nominal control sequence 

within the horizon and with {x0, x1, ..., xN} the nominal state 
sequence belonging to it computed from the nonlinear vehi-
cle model 4 ( )Wx f x u= , , described by (22). Let the initial 
state 0x̂  be different from x0, i.e. an estimation of the ini-
tial state, and define the state and control perturbations be 

00 0 1ˆ Nx x x … xxδ δ δ= − , , ,  and δu0, δx1, . . . ,   δxN  respectively. 
The 4WD nonlinear dynamic model can be discretized by 

using the RK4 scheme with sampling time T. This approxi-
mated system then can be linearized around the nominal 
sequences. The resulting linear time-varying system (LTV) for 
the perturbations can be given in the form 

δ δ δx A x B ui i i i i+ = +1

δ δy C xi i=

where 4
( )

W

i i

f
i x uxA ∂

,∂= | , 4
( )

W

i i

f
i x uuB ∂

,∂= |  and C is a constant selec-
tor matrix. The output is assumed to be y = (px, py, δw, ψ)T. 

Let {yi = Cxi} be the computed nominal output sequence for 
i = 0, ..., N and {yd0, yd1, ..., ydN} be the desired output sequence. 
Then, the output errors due to the perturbations are 

y C x x e y i Ndi i i i i− + = − , =( ) , ,δ δ 0

The transients of the perturbed LTV system can be deter-
mined as a function of the perturbation of the initial state and 

the perturbations of the control inputs in the actual horizon by 
iteratively using (24) and (25):
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5.2 MPC optimization using end constraints
The goal is to find the control perturbation δU such that error 

from the desired trajectory is minimized at the end of the hori-
zon. This problem can be formulated as a quadratic program-
ming structure with equality constraint. The MPC optimization 
problem reads as 

min
δ

δ δ
U i

N

Qi i
i

N

ie y u1
2

1
21

1
2

0

1
2

=

−

=

−

∑ ∑− +
Λ

s t. . − =e yN Nδ 0

where (28) is the objective function that penalizes both output 
errors and large deviations from the nominal control and the 
constraint (29) assures zero output error at the end of the hori-
zon. The order of the input perturbations and output errors can 
be influenced by the weighting matrices Λ and Q respectively.

5.3 Integral control
It is possible to incorporate integrator in the controller using 

augmented state 1( )T T
i i ix x uδ δ δ −= ,  and δui = δui−1 + δri where 

the change of the control δri  has to be optimized. Substituting

A
A B
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the earlier results remain valid in the new variables. However, 
in this case, δR is the optimal change of the control differences 
and the optimal δU is the cumulative sum of δR.

5.4 MPC algorithm
The solution of the MPC optimization problem is derived 

by the Lagrange multiplier method. Because λ is reserved for 
weighting factor, the Lagrange multiplier will be denoted by μ. 

First, the objective function is augmented with the con-
straint multiplied by the vector Lagrange multiplier, then it 
is differentiated and the derivative is set to zero. The solution
δU (μ) is substituted into the constraints equation in a linear 
way. From the resulting linear equation, μ can be expressed and 

(24)

(25)

(26)

(27)

(30)

(28)

(29)
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plugged into δU (μ) that results the optimal control perturbation 
sequence. Details of the calculations can be found in [22]. 

The final result can be summarized in the following form for 
non-integral control: 

L H Q HT
e e1 1 1= + Λ

L Q H L H QN
T

Nµ =
−

2 1
1

2

R H Q L QT
N N= −

2
1
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e= + −{
− + − }

− −

−

1
1

2 1
1

1

2 2 1
1

0

( )

[ ( )]

where Qe and Λe are the block diagonal matrices by N -1 times 
of Q and Λ respectively and 1 2 1( )T T T

NE e e … e −= , , ,  is the vector 
of the nominal output errors. The closed loop control is u0 + δu0 
where u0 is the nominal control and δu0 is the first element of 
the open loop optimal control sequence δU.

In case of integral control (3.5) is used to obtain δR and the 
optimal δU is the cumulative sum of δR.

MPC Integral Control Algorithm 
In every horizon, the following steps are repeated: 
1.	 From the initial state x0 and the nominal control sequence 

{ui}, calculate the nominal state sequence {xi} using the 
discrete nonlinear dynamics of the system. Here, x0  is 
coming from the shifted previous horizon and can dif-
fer from the estimated state 0x̂ . In case of the very first 
horizon, use the first N elements of the time optimal 
solution ωδ and the LCQP optimally distributed forces 
as nominal controls.

2.	 Determine the matrices Ai and Bi for i = 0, ...., N − 1 using 
the nominal states, controls and Eq. (30). 

3.	 Set up P1, P2 and H1, H2 matrices and compute the state 
{δxi} and output perturbations {δyi} by Eq. (27). 

4.	 From the 2WD time optimal solution, choose the desired 
output sequence {ydi = (pxi, pyi, δwi, ψi)

T} and use (26) to 
determine the output error vector E. 

5.	 Compute the optimal change of the control differences 
δR by Eqs. (31)–(35) using 00 0ˆx xxδ = −  where 0x̂  is the 
estimated state. Calculate δU as the cumulative sum of 
δR. Update the optimal control sequence U := U + δU   
and apply its first element u0 in closed loop. 

6.	 Set the new initial state x0 for the next horizon as the 
result of the applied control u0 . Initialize the nominal 
control sequence for the next horizon using the optimal 
control U as {u1, u2, ..., uN-1, uN-1}, i.e. shift it by one and 
repeat the last element.

More clever methods exist for the choice of uN-1 instead of 
the repetition [22].

5.5 Results of the MPC integral control
The MPC control algorithm was implemented by using the m 

= 160 grid point solution of the time optimal control problem. 
Sampling time ft

mT =  and horizon N = 40 were chosen. The 
weighting matrices were set as follows:

Λ i

iQ
= , ⋅ , ⋅ , ⋅ , ⋅
= , , ,

− − − −diag
diag

( )
(
2000 2 10 2 10 2 10 2 10
2 2 2000

4 4 4 4

22000
1 1 1000 1000

)
( )QN = , , ,diag

The output trajectories with time optimal 2WD and the mov-
ing horizon MPC control are shown in Fig. 7. Desired output 
signals ( )T

d x y w dy p p δ ψ= , , ,  for the MPC control were con-
sidered as the result of the subset of the state variables belong-
ing to LCQP optimal wheel force distribution. Notice the dif-
ference in the initial state for MPC. The optimally distributed 
nominal and the MPC control signals are compared in Fig. 8 
and Fig. 9. Notice that the nominal control is used only in the 
very first horizon. 

The results demonstrate the efficiency of the moving horizon 
MPC, especially the errors between the paths decay quickly and 
vanishes after 40m in x-direction. The 4WD MPC control forces 
are well in their prescribed domain and the braking forces, i.e. 
where the longitudinal forces are negative, are also small in 
accord with the form and dimensions of the path. The difference 
between nominal and MPC steering angle derivatives decays 
after 0.7s. The derivatives of the steering angles are smooth.

Fig. 7. Output trajectory of the MPC algorithm if the real initial state differs 
from the optimal one

Fig. 8. Nominal and MPC control signals if the real initial state differs from 
the optimal one

(31)

(32)

(33)

(34)

(35)
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Fig. 9. MPC controlled angular velocity of the steering angle

5.6 Collision Avoidance System (CAS)
The number of test path parameters is 5 + 3 = 8, hence a 

grid of parameters can be chosen and for all grid points (i.e. 
path) the time optimal control trajectory can be determined 
offline and stored in a database. For a given situation of lane 
change or collision avoidance in the presence of static obstacle 
the nearest solution in the database can be selected, perhaps 
interpolation can be involved and the control trajectory can be 
performed in real-time. 

If the state trajectory is also stored in the database then it can 
be applied in the case of additional moving obstacle to check in 
real-time whether the obstacle avoidance can be performed or 
emergency braking is necessary.

6 Conclusion
In this paper, we investigated the extensively researched time 

optimal control problem for 4WD electric cars. The problem was 

solved by using time discretization and multiple shooting method. 
The approach was implemented with the aid of non-commercial 
software packages that substantially use the gradients of the 
objective function and the Jacobians of the constraints. For the 
latter, we presented a novel algorithm for computing the deriva-
tives of the complex trajectory joining equations. This algorithm 
was given in the form of matrix differential equations whose 
structure allowed to compute their solution using RK4 in matrix 
form. Because of the large number of variables the gradients and 
Jacobians were performed in sparse form. 

A novel method was presented for the optimal distribution 
of the 4WD longitudinal forces. For tolerating the differences 
between optimal and real initial states a moving horizon 
MPC method was elaborated which does not need numerical 
optimization.

The methods for optimal force distribution and MPC con-
trol are usable in real time. The 2WD time optimization is an 
offline method. However a database of optimal control trajecto-
ries over a grid of path parameters can be prepared for a general 
CAS system. For a given situation of lane change or collision 
avoidance in the presence of static obstacle the nearest solution 
in the database can be selected and the control trajectory can 
be performed in real-time using the developed optimal force 
distribution and MPC method. 

Our solution showed competitive results to the ones obtained 
by closed source and state of the art commercial solvers.

Future research will concentrate on the development of a 
quasi time-optimal MPC control method for general paths that 
does not need any offline optimization and obtain the solution 
nearly real time. 
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