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Abstract
Simulating quantum algorithms is a hard problem on classi-
cal computers, it usually needs exponential time and space. 
Viamontes et al. proposed a new data structure the Quantum 
Information Decision Diagram (QuIDD) to overcome this 
problem and implemented it in the QuIDDPro software. Using 
this structure several algorithms can be simulated on classical 
computers with polynomial time and space. In this paper we 
suggest further improvement and analyse in detail its behavior 
on Grover’s search algorithm.
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1 Introduction
While there are no quantum computers to use, testing of 

quantum circuits and algorithms has to be done by classical 
machines. Since the state of n qubits is represented by a com-
plex vector of dimension 2n and the operations which are uni-
tary transformations by matrices of size 2n × 2n , to work with 
them for not too small n is a challenging problem. One possible 
approach in simulations is to use the fact that the elementary 
quantum operations are small quantum gates, and then one can 
try to trace their effect on the exponential long vector in differ-
ent ways [8]. Another method uses a graphical representation 
of the vectors and their tensor products [7]. One can also track 
the commutators of the operators in the circuit [4].

Viamontes, Markov and Hayes suggested the QuIDD data 
structure [11] to store the state vector and the matrices used 
in a compressed form. In several cases, this way the storage 
requirement goes down from exponential to polynomial in n. 
They also showed that the basic matrix operations can be per-
formed efficiently on matrices and vectors stored in this way. 

We further analyse this data structure and show, that using 
the associativity of the matrix multiplications the simulations 
can be improved. 

Section 2 presents in detail the data structure with examples 
that are used in Section 5. Section 3 sketches the ideas, Section 
4 is a short introduction to Grover’s search that is frequently 
used as a bechmark for simulations. Section 5 presents the the-
oretical analysis with some experimental results. 

2 The QuIDD data structure
2.1 Binary Decision Diagram

To represent a Boolean function Binary Decision Diagram 
(BDD) can be used [6]. It is a rooted Directed Acyclic Graph 
(DAG), where every non-leaf node have exactly two child 
nodes. Each node is labelled with a variable of the function and 
the edges represents the 0 or 1 value of that variable. To get the 
value of the function, we traverse the tree from its root. In every 
node, we take the edge representing the value of the variable, 
and when we reach a leaf, it’s value will be the value of the func-
tion. The variables follow each other in a preset order. One of the 
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problems of this representation is that it needs 2n  leaves to store 
a function with n variables. The Reduced Order BDD (ROBDD) 
introduces two reduction rules to the following effect: 

1. There are no nodes v and v’ such that the subgraphs 
rooted at v and v’ are isomorphic. 

2. There are no internal nodes with both its edges pointing 
to the same node.

x1

x2 x2

x3 x3 x3 x3

0 0 0 1 1 1 1 1

x2

x3 x3

x1 x1 x1 x1

0 1 0 1 0 1 1 1

Fig. 1 The BDD of a function using orderings x1, x2, x3 and x2, x3, x1.
Solid lines represents 1 edges, dotted lines 0 edges
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Fig. 2 The ROBDD of the same function using the same orderings

To illustrate the difference between the two structures, Fig. 
1 and 2 show the BDD and ROBDD representations of the 
function 
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with two variable orderings. As it can be seen, the ROBDD can 
use significantly less nodes if the function and the ordering is 
right. Also, the size of the diagram depends on the ordering, as 
it can be seen in Fig. 2. 

2.2 Quantum Information Decision Diagram
The QuIDD is a variant of Algebraic Decision Diagram 

(ADD) [1], which is based on the ROBDD. It is used to store 
a matrix with complex elements. The leaves in the QuIDD are 
pointers to an array, which stores the values of nodes. These 
values can be complex numbers. 

The variables of QuIDD are the rows and columns of the 
represented matrix. More precisely the bits of the binary repre-
sentation of rows and columns. The variable Ri represents the 
i-th bit of the row, and Cj represents the j-th bit of the column. 
The numbering starts with 0, where the zeroth bit is the most 
significant one. The ordering of the variables is rows and col-
umns interleaved. This ordering is helpful when the matrices 
have some block structure, usually seen when they are con-
structed from smaller matrices by tensor products.
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Fig. 3 The Hadamard matrix acting on two qubits, and it’s QuIDD 
representation.
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For example let us see Fig. 3. If we want to check the value of 
an element in the first row (represented as R0 = 0, R1 =0), we start 
traversing the tree at its root. The first node is R0 , so we choose 
the 0 child, which is represented by the dashed line. The next 
node in this traversal is R1 , where we again choose the dashed 
line, and arrive at a leaf. The pointer in the leaf is 1, so we check 
the value in the array at the 1 place. It is 0,5, so the value in ques-
tion in the matrix is 0,5. Observe, that we did not use any column 
variable, because all the elements in the row are 0,5. 

Let us check the value of the fourth element in the third row. 
Because the numbering starts with 0, the binary representation 
of the row is 10 and the column is 11. We begin the traversal 
at the root. At the R0  node, we check the zeroth bit of the row, 
which is 1, so we follow the solid line. The next node is C0. The 
binary form of the column is 11, so again, we follow the solid 
line. The next node is R1 , and the second bit of the row is 0, so 
we follow the dashed line to the leaf containing the pointer 0, 
which means the value is -0,5. 

2.3 Important examples
The identity matrix is a good example, because it can easily 

be written as tensor product (also known as Kronecker product) 
of smaller identity matrices: In = I1 Ä In−1, where In  is the 2n × 2n  
identity matrix operating on n qubits. In matrix form:
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In the QuIDD representation this means that the iden-
tity operator on n qubits can be built by three nodes and two 
“leaves”. One leaf is the number 0, the other represents an iden-
tity operator on n − 1 qubits. Unfolding In−1 , we obtain a similar 
structure, but the “leaf” will be an n − 2 qubit identity operator, 
as it can be seen in Fig. 4. Repeating this process, we obtain 
the QuIDD representation of the n qubit identity matrix. Each 
new level of recursion adds three new nodes, therefore it has 3n 
inner nodes and two leaves. Thus the next proposition follows. 

R0

C0 C0

In−1 0 =

R0

C0 C0

R1

C1 C1

In−2 0

Fig. 4 The construction of the identity matrix from smaller identity matrices. 
Solid lines represents the 1 edges, dotted lines the 0 edges.

Proposition 1. The QuIDD representation of the n qubit iden-
tity matrix uses 3n + 2 nodes. □

One of the most used operators in quantum algorithms is the 
Hadamard operator. The one qubit version of its matrix is 

H
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It is easy to create Hadamard matrices that operate on more 
qubits, because Hn = H1 Ä Hn−1. The Hadamard matrix is a good 
fit to the QuIDD structure because of this property. We can write
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Fig. 5 The construction of the Hadamard matrix from smaller Hadamard matrices.
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and so on. The n qubit version has two “leaves”, one Hn−1 and 
one (−Hn−1). But the two “leaves” of Hn−1 and (−Hn−1) are the 
same, Hn−2 and (−Hn−2), so the number of “leaves” does not 
grow when we replace them with the trees they represent. Each 
new level of recursion consists of four nodes, as it can be seen 
on Fig. 5. So the QuIDD representation of Hn uses 4n − 2 inner 
nodes and two leaves. Thus we get:

Proposition 2. The n qubit Hadamard operator can be stored 
using 4n nodes.

Let Rn be the matrix which flips the sign of the first basis vec-
tor  | 0 >  in any n qubit vector, and leaves the rest unchanged. 
This differs from the identity matrix only in its upper left ele-
ment, which is (−1) instead of the 1 in the identity. In matrix form
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and so on. In the QuIDD we can do this by making a new path 
from the root to the upper left element. Hence we can use much 
of the QuIDD representation of In, we only have to check if we 
are in the upper left section. As Figure 6 shows this only takes 
two nodes in each level. (On the figure there are two 0 leaves. 
It is only for simplicity, in QuIDD form the two 0 leaves would 
be represented by a single node.) At the bottom of the tree the 

values in the leaves are I0 = 1 and R0 = −1. In the first level 
we need three nodes, and all the subsequent levels contain five 
nodes. There are three leaves (one for −1,0 and 1), so the total 
number of nodes are 5n + 1.

Proposition 3. The Rn matrix can be stored using 5n + 1 nodes. □

R0

C0 C0

In−1 0 Rn−1 =

R0

C0 C0

0R1

C1 C1

R1

C1

In−2 0 Rn−2

Fig. 6 The construction of matrix Rn.

Another important operator is HnRnHn. It is easy to see that  
HnRnHn = In − 2Pn, where Pn is a 2n × 2n projection matrix 
whose elements are 1 / 2

n. So the HnRnHn product can be stored 
like the identity matrix, only with different values in the leaves. 
Therefore this product also can be stored with 3n + 2 nodes.

Proposition 4. The QuIDD representation of the HnRnHn prod-
uct uses 3n + 2 nodes. □

In quantum algorithms one typical way to represent a boolean 
function f is by the operator Vf that multiplies the vector  | i >  by 
(−1)f (i). Its matrix differs from the identity in that it has (−1) 
instead of 1 where f (i) = 1. Call an i marked if f (i) = 1. In the 
case of one marked element, we can construct the QuIDD rep-
resentation like in the case of Rn. As we can see in Fig. 8, the 
place of the (−1) does not change the structure of the QuIDD, 
only the edges between the nodes. So if there is only one marked 
element, the size of Vf is the same as the size of Rn.

Fig. 7 The matrix and QuIDD representation of the product H2R2H2.
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Proposition 5. The Vf matrix operating on n qubits can be 
stored using 5n + 1 nodes, if there is one marked element. □

1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 1







R0

C0 C0

1R1

C1 C1

R1

C1

2 10

0 −1

1 0

2 1

Fig. 8 An example for a two qubit Vf, where the third element is marked.

2.4 Basic operations
The main advantage of QuIDD is that is can use the opera-

tions of the Algebraic Decision Diagram for adding, multiply-
ing or calculating the tensor product of two matrices. The basic 
operation is the Apply algorithm, which calculates the element-
wise operation op of two QuIDDs [2]. 

The Apply algorithm takes two nodes and an operator as 
parameters, and traverses the two trees, recursively calling 
itself in the process. When it reaches leaf nodes in both trees, 
it calculates (leaf1) op (leaf2). Let vf and vg be two nodes, and xi 
and xj their variables, respectively. Let T(v) and E(v) be the two 
child of v, representing the 1 and 0 choices of its variable. Then 
Apply(vf ,vg , op) first checks xi and xj in the ordering.
If xi is before xj then it calls
Apply(T(vf), vg , op) and Apply(E(vf), vg, op).
If xj is before xi, then
Apply(vf, T(vg ), op) and Apply (vf, E(vg ), op)
and if xi = xj then 
Apply (T(vf), vg , op) and Apply (E(vf), E (vg), op).

This can be used for addition. It takes O(ab) time and results 
in a structure of size O(ab), where a and b are the number of 
nodes in the two operands. 

The tensor product A Ä B of two N × N matrices is an 
N 2 × N 2 matrix, which is a block matrix built from matrices 
ai,jB. To calculate this, we first shift all the variables of B to be 
after the variables of A. Then we use the Apply. Because of the 
shift, now all of B’s elements are multiplied by A’s elements. 
The shifting of the variables have a complexity of O(b), and 
because we use the standard Apply, its complexity still O(ab). 
So the tensor product can be computed in O(ab) steps [11]. 

Matrix multiplication is more complex. It can be decom-
posed into multiple inner products. The multiplication algo-
rithm of QuIDDs uses two nested Applys, therefore its com-
plexity is O((ab)2) [1].

3 Ideas for Improvement
If we have a long chain of multiplications, as it is typical in 

case of quantum algorithms, one can pose the question what is 
the best way to calculate the product. Any bound on the time 
complexity of QuIDD’s multiplication implies an upper bound 
on the size of the product. In further multiplications one can 
calculate with this size bound to estimate the complexity. 

Using the associativity of matrix multiplication, by a stand-
ard dynamical programming approach one can find the optimal 
regrouping of the chain in polynomial time (see for example 
Introduction to Algorithms by Cormen, Leiserson, Rivest and 
Stein [3]).

However, in quantum algorithms one frequently has some 
additional information about the structure of some subproducts. 
When it is clear from the algorithm that a matrix corresponding 
to a subproduct has a small QuIDD representation then it might 
be a good idea to perform the multiplications in such order that 
we can use this information. We show how this can work on 
one of the most frequently used test problems of quantum cir-
cuit simulations, Grover’s quantum search algorithm. 

4 Grover’s search algorithm
Lov Grover’s search algorithm is the first quantum search 

algorithm. It uses ( )NΘ  quantum steps to find a marked ele-
ment in an N element set. To do this, it uses an operator Gn 
on an n qubit state vector  | x > , where n = logN. This can be 
simulated as a simple matrix-vector multiplication, x' = Gn∙ x, 
where x is the current state vector, and x' is the next. To get a 
marked element with a probability of at least 1/4, this has to be 
done approximately π N

k4
 times, where k is the number of the 

marked elements. 
The operator Gn can be written as Gn = HnRnHnVf  [5]. In this 

case Vf  corresponds to the function 

f x
x

( ) =




,1

0

if is a marked element

otherwise

If there is only one marked element, Gn differs from HnRnHn 
in one column, which is multiplied by (−1). For simplicity let 
this column be the first one. If not, the structure of the QuIDD 
representation does not change, only the edges between the 
nodes. We can build Gn from four different submatrices. Let 
Bn be the matrix where all elements are the same, Dn be the 
matrix where the diagonal elements are the same constant, 
and the additional elements are another one. Let B'n be the 
matrix, which is like Bn, but with the first column multiplied 
by (−1), and D'n obtained from Dn in the same way. Observe, 
that Gn = D'n. Using these notations we can write
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and so on.
Since Dn = In − 2Pn , and Bn = − 2Pn , the corresponding 

QuIDD structures are known (see Proposition 4). 
As we can see in Fig. 10, one new level in the QuIDD 

requires seven new nodes, and the “leaves” remain Di , B'i , 
D'i and b. So this matrix uses O(n) nodes. Using that D'n = Gn , 
see that

Proposition 6. Storing Gn using the QuIDD structure requires 
O(n) nodes. □

5 Complexity of Grover’s Algorithm using QuIDD
In the paper about the QuIDD structure [11] the potential 

speed up was illustrated through Grover’s algorithm. The run-
time complexity of the algorithm was said to be O(A16n14) where 
A is the number of nodes in the oracle, and n is the number of 
qubits. In this section, first we give a detailed explanation of 
this fact for the sake of completeness. 

5.1 The original bound
The complexity of one matrix multiplication using the 

QuIDD data structure is O((ab)2), where a and b is the number 
of nodes in the QuIDD representation of the two matrices. The 
first step in the algorithm is the initialization of the state vector 
which uses n operations. Then we apply the Hadamard operator 
Hn to the state vector  | x > . In the QuIDD structure Hn needs 
only O(n) nodes, and a vector with only one type of element 
can be stored in only one node. Therefore this multiplication 
uses O(n2) operations. However, the new state vector can be 
stored in one node, because every qubit is in the same state. 

The iteration part of the algorithm uses the operator 
(− HnRnHn Vf ) on the current state vector. Let A be the number 
of nodes in Vf . With this the first multiplication (Vf  | x >) uses 
O(A2) operations. The resulting state vector cannot use more 
nodes than this, so it can be stored with O(A2) nodes. The 
next operation is a multiplication by Hn , so the complexity is 
O((nA2)2) = O(A4n2).

The next step in the algorithm is the operator Rn. Because 
it can be stored with O(n) nodes, the cost of this operation is 
O((nA4n2)2) = O(A8n6). The last step is a multiplication with Hn 
with an overall complexity of O((nA8n6)2) = O(A16n14).

Proposition 7. One iteration of Grover’s algorithm has a run-
time complexity of O(n16 n14) which is polynomial in the number 
of qubits.

Fig. 9 The construction of matrix B'n from smaller B’i matrices.
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Fig. 10 The construction of the matrix D'n from smaller matrices.
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Table 1 Complexity and measured runtime with one marked element

complexity measured runtime 

method initialization iteration initialization (s) one iteration (s) 

original O(n) O(n30) 0,083 1,38 

HnRnHnVf  ∙ | x > O(n22) O(n2) 1,257 0,3 

(HnRnHn)  ∙ (Vf ) ∙ | x > O(n10) O(n2) 0,234 0,303

Proof. The initialization part of the algorithm has O(1) com-
plexity. The iteration part computes (−HnRnHn | x >) with a com-
plexity of O(A16n14) as shown before. □

If there is only one marked element, then A = O(n). Thus the 
complexity of one iteration is O(n30).

Proposition 8. The number of nodes needed to store the state 
vector  | x >  does not change between iterations.

Proof. The algorithm changes only the values of the marked 
and non-market elements, so the number of different coeffi-
cients stays the same. Moreover, a marked element remains 
marked and a non-marked remains non-marked during the al-
gorithm. So in the QuIDD structure we only have to change the 
two values representing the amplitudes. □

5.2 The new bounds
From the test results in the original paper, it seems this upper 

bound is very pessimistic. So we use the associative property 
of the matrix multiplication to get tighter upper bounds, and 
possibly optimize the running time of the simulation. Because 
the matrices the algorithm uses do not change during the itera-
tion, they can be computed ahead of time, and even multiplied 
together. We analyse different bracketings, and their effect on 
the complexity of the algorithm. 

For this part, we assume that there is only one marked element. 
If we calculate the matrix HnRnHn Vf 

 at the beginning of the 
algorithm, the iteration only uses one matrix multiplication. 
The complexity of the iteration phase is O((n ∙ 1)2) = O(n)2, 
because the state vector can be stored with O(1) nodes. 

In the initialization phase, we have to calculate the matrix
  

HnRnHn Vf . Because of Propositions 2, 3 and 5 the complexity 
of the matrix multiplications is O((((n ∙ n)2 ∙ n)2 ∙ n)2) = O(n22).

Proposition 9. The complexity of Grover’s algorithm using the 
QuIDD structure when we calculate the matrix HnRnHnVf in the 
initialization step is O(n22) in the initialization step and O(n2) 
in the iteration step. 

We can also examine the bracketing (HnRnHn) ∙ (Vf ) | x >. The 
initialization for this is less complex, because we only have to 
calculate the product HnRnHn, which is O(((n ∙ n)2 ∙ n)2) = O(n10).

Proposition 10. The vector Vf | x > can be stored with O(n) 
nodes. □

Proof.  | x >  can be stored with O(n) nodes, and Vf changes only 
the sign of the marked element, so the overall structure of the 
vector stays the same. □

Proposition 11. The complexity of Grover’s algorithm with 
QuIDD structure when we calculate the matrix HnRnHn in the 
initialization step is O(n10) step and O(n2) in the iteration step. 

Proof. As we shown before the complexity of calculating 
HnRnHn is O(n10). In the iteration part we have to use two matrix 
multiplications. First, we calculate  Vf  | x > in O(n2) steps. 
The resulting vector will be a QuIDD with O(n) nodes. Then 
multiplying this vector with HnRnHn takes O(n2) steps. The 
iteration part thus has an O(n2) complexity. □

Table 1 contains the simulation results of one iteration of 
Grover’s algorithm. We choose n = 100 qubits to simulate, 
in this case N = 2100 would be the number of elements in the 
search. The whole algorithm would take r ≈ 8.8 ∙ 1014 itera-
tions. The simulation was run on an Intel U7600 processor at 
1.2 GHz with 2 GB RAM. Without compression, we would 
need to store 2100 ≈ 1030 amplitudes only for the state vector, 
but with the QuIDDPro software the peak memory usage was 
under 13 MB in this simulation.

6 Conclusion
The QuIDDPro simulator helps expanding the number of 

qubits which can be used in testing algorithms, but still in a 
limited fashion. Using a simulator one can check the intermedi-
ate states of the algorithm without measurement, which can be 
very useful when someone tests an algorithm. We have shown 
that using different groupings of the operators in Grover’s algo-
rithm, the computational complexity can be shifted from the 
iteration to the initialization. The runtime measurement shows 
the same results as the estimation. 

Unfortunately, it is not clear that this works for every quan-
tum algorithm. For example it would be interesting to see if the 
matrix of the Fourier transformation can be efficiently stored in 
some similar way. 
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