
48An Idea to Improve QuIDD Based Quantum Simulations� 2015 59 2

An Idea to Improve QuIDD
Based Quantum Simulations

Katalin Friedl1, László Kabódi1*

Received 07 May 2015; accepted 26 June 2015

Abstract
Simulating quantum algorithms is a hard problem on classi-
cal computers, it usually needs exponential time and space.
Viamontes et al. proposed a new data structure the Quantum
Information Decision Diagram (QuIDD) to overcome this
problem and implemented it in the QuIDDPro software. Using
this structure several algorithms can be simulated on classical
computers with polynomial time and space. In this paper we
suggest further improvement and analyse in detail its behavior
on Grover’s search algorithm.

Keywords
quantum algorithms, QuIDD, Grover’s algorithm

1 Introduction
While there are no quantum computers to use, testing of

quantum circuits and algorithms has to be done by classical
machines. Since the state of n qubits is represented by a com-
plex vector of dimension 2n and the operations which are uni-
tary transformations by matrices of size 2n × 2n , to work with
them for not too small n is a challenging problem. One possible
approach in simulations is to use the fact that the elementary
quantum operations are small quantum gates, and then one can
try to trace their effect on the exponential long vector in differ-
ent ways [8]. Another method uses a graphical representation
of the vectors and their tensor products [7]. One can also track
the commutators of the operators in the circuit [4].

Viamontes, Markov and Hayes suggested the QuIDD data
structure [11] to store the state vector and the matrices used
in a compressed form. In several cases, this way the storage
requirement goes down from exponential to polynomial in n.
They also showed that the basic matrix operations can be per-
formed efficiently on matrices and vectors stored in this way.

We further analyse this data structure and show, that using
the associativity of the matrix multiplications the simulations
can be improved.

Section 2 presents in detail the data structure with examples
that are used in Section 5. Section 3 sketches the ideas, Section
4 is a short introduction to Grover’s search that is frequently
used as a bechmark for simulations. Section 5 presents the the-
oretical analysis with some experimental results.

2 The QuIDD data structure
2.1 Binary Decision Diagram

To represent a Boolean function Binary Decision Diagram
(BDD) can be used [6]. It is a rooted Directed Acyclic Graph
(DAG), where every non-leaf node have exactly two child
nodes. Each node is labelled with a variable of the function and
the edges represents the 0 or 1 value of that variable. To get the
value of the function, we traverse the tree from its root. In every
node, we take the edge representing the value of the variable,
and when we reach a leaf, it’s value will be the value of the func-
tion. The variables follow each other in a preset order. One of the

1Department of Computer Science and Information Theory,
Budapest University of Technology and Economics
H-1111 Budapest, Műegyetem rakpart 3., Hungary
* Corresponding author, e-mail: kabodil@cs.bme.hu

59(2), pp. 48-55, 2015
DOI: 10.3311/PPee.8214

Creative Commons Attribution b

research article

PPPeriodica Polytechnica
Electrical Engineering
and Computer Science

http://dx.doi.org/10.3311/PPee.8214

49 Period. Polytech. Elec. Eng. Comp. Sci.� K. Friedl, L. Kabódi

problems of this representation is that it needs 2n leaves to store
a function with n variables. The Reduced Order BDD (ROBDD)
introduces two reduction rules to the following effect:

1.	 There are no nodes v and v’ such that the subgraphs
rooted at v and v’ are isomorphic.

2.	 There are no internal nodes with both its edges pointing
to the same node.

x1

x2 x2

x3 x3 x3 x3

0 0 0 1 1 1 1 1

x2

x3 x3

x1 x1 x1 x1

0 1 0 1 0 1 1 1

Fig. 1 The BDD of a function using orderings x1, x2, x3 and x2, x3, x1.
Solid lines represents 1 edges, dotted lines 0 edges

x1

x2

x30

0 1

1

x2

x3

x1

10

1

Fig. 2 The ROBDD of the same function using the same orderings

To illustrate the difference between the two structures, Fig.
1 and 2 show the BDD and ROBDD representations of the
function

1 2 3 1 2 3

1 2 3

1 2 3

() ()
()
()

f x x x x x x
x x x
x x x

, , = ∨ ∨¬ ∧
∧ ∨¬ ∨ ∧
∧ ∨ ∨

with two variable orderings. As it can be seen, the ROBDD can
use significantly less nodes if the function and the ordering is
right. Also, the size of the diagram depends on the ordering, as
it can be seen in Fig. 2.

2.2 Quantum Information Decision Diagram
The QuIDD is a variant of Algebraic Decision Diagram

(ADD) [1], which is based on the ROBDD. It is used to store
a matrix with complex elements. The leaves in the QuIDD are
pointers to an array, which stores the values of nodes. These
values can be complex numbers.

The variables of QuIDD are the rows and columns of the
represented matrix. More precisely the bits of the binary repre-
sentation of rows and columns. The variable Ri represents the
i-th bit of the row, and Cj represents the j-th bit of the column.
The numbering starts with 0, where the zeroth bit is the most
significant one. The ordering of the variables is rows and col-
umns interleaved. This ordering is helpful when the matrices
have some block structure, usually seen when they are con-
structed from smaller matrices by tensor products.

1
2

1
2

1
2

1
2

1
2 − 1

2
1
2 − 1

2

1
2

1
2 − 1

2 − 1
2

1
2 − 1

2 − 1
2

1
2







R0

C0

R1 R1

C1 C1

0 1

− 1
2

1
2

Fig. 3 The Hadamard matrix acting on two qubits, and it’s QuIDD
representation.

50An Idea to Improve QuIDD Based Quantum Simulations� 2015 59 2

For example let us see Fig. 3. If we want to check the value of
an element in the first row (represented as R0 = 0, R1 =0), we start
traversing the tree at its root. The first node is R0 , so we choose
the 0 child, which is represented by the dashed line. The next
node in this traversal is R1 , where we again choose the dashed
line, and arrive at a leaf. The pointer in the leaf is 1, so we check
the value in the array at the 1 place. It is 0,5, so the value in ques-
tion in the matrix is 0,5. Observe, that we did not use any column
variable, because all the elements in the row are 0,5.

Let us check the value of the fourth element in the third row.
Because the numbering starts with 0, the binary representation
of the row is 10 and the column is 11. We begin the traversal
at the root. At the R0 node, we check the zeroth bit of the row,
which is 1, so we follow the solid line. The next node is C0. The
binary form of the column is 11, so again, we follow the solid
line. The next node is R1 , and the second bit of the row is 0, so
we follow the dashed line to the leaf containing the pointer 0,
which means the value is -0,5.

2.3 Important examples
The identity matrix is a good example, because it can easily

be written as tensor product (also known as Kronecker product)
of smaller identity matrices: In = I1 Ä In−1, where In is the 2n × 2n
identity matrix operating on n qubits. In matrix form:

1 1 1 1 2

1

1

2

2

2

2

0
0

0 0 0
0 0 0
0 0 0
0 0 0

n n n

n

n

n

n

n

n

I I I I I I
I

I

I
I

I
I

− −

 
 −
 
 

− 

 
 −
 
 

− 
 
 − 
 
 − 

= ⊗ = ⊗ ⊗ =

= =

=

In the QuIDD representation this means that the iden-
tity operator on n qubits can be built by three nodes and two
“leaves”. One leaf is the number 0, the other represents an iden-
tity operator on n − 1 qubits. Unfolding In−1 , we obtain a similar
structure, but the “leaf” will be an n − 2 qubit identity operator,
as it can be seen in Fig. 4. Repeating this process, we obtain
the QuIDD representation of the n qubit identity matrix. Each
new level of recursion adds three new nodes, therefore it has 3n
inner nodes and two leaves. Thus the next proposition follows.

R0

C0 C0

In−1 0 =

R0

C0 C0

R1

C1 C1

In−2 0

Fig. 4 The construction of the identity matrix from smaller identity matrices.
Solid lines represents the 1 edges, dotted lines the 0 edges.

Proposition 1. The QuIDD representation of the n qubit iden-
tity matrix uses 3n + 2 nodes. □

One of the most used operators in quantum algorithms is the
Hadamard operator. The one qubit version of its matrix is

H
1

1

2

1 1

1 1
=

−










It is easy to create Hadamard matrices that operate on more
qubits, because Hn = H1 Ä Hn−1. The Hadamard matrix is a good
fit to the QuIDD structure because of this property. We can write

R0

C0

−Hn−1 Hn−1 =

R0

C0

R1 R1

C1 C1

−Hn−2 Hn−2

=

R0

C0

R1 R1

C1 C1

R2 R2

C2 C2

−Hn−3 Hn−3

Fig. 5 The construction of the Hadamard matrix from smaller Hadamard matrices.

51 Period. Polytech. Elec. Eng. Comp. Sci.� K. Friedl, L. Kabódi

H H H H H H
H H
H H

H H

n n n

n n

n n

n n

= ⊗ = ⊗ ⊗

=
−

=

− −

− −

− −

















− −

1 1 1 1 2

1 1

1 1

2 2
HH H

H H H H
H H H H
H H H

n n

n n n n

n n n n

n n n

− −

− − − −

− − − −

− − −

− −
− −

− −

2 2

2 2 2 2

2 2 2 2

2 2 22 2
Hn−





























and so on. The n qubit version has two “leaves”, one Hn−1 and
one (−Hn−1). But the two “leaves” of Hn−1 and (−Hn−1) are the
same, Hn−2 and (−Hn−2), so the number of “leaves” does not
grow when we replace them with the trees they represent. Each
new level of recursion consists of four nodes, as it can be seen
on Fig. 5. So the QuIDD representation of Hn uses 4n − 2 inner
nodes and two leaves. Thus we get:

Proposition 2. The n qubit Hadamard operator can be stored
using 4n nodes.

Let Rn be the matrix which flips the sign of the first basis vec-
tor | 0 > in any n qubit vector, and leaves the rest unchanged.
This differs from the identity matrix only in its upper left ele-
ment, which is (−1) instead of the 1 in the identity. In matrix form

R
R

I

R
I

I
I

n
n

n

n

n

n

n

=

=

−

−

















−

−

−

−










1

1

2

2

2

2

0

0

0 0 0

0 0 0

0 0 0

0 0 0





















and so on. In the QuIDD we can do this by making a new path
from the root to the upper left element. Hence we can use much
of the QuIDD representation of In, we only have to check if we
are in the upper left section. As Figure 6 shows this only takes
two nodes in each level. (On the figure there are two 0 leaves.
It is only for simplicity, in QuIDD form the two 0 leaves would
be represented by a single node.) At the bottom of the tree the

values in the leaves are I0 = 1 and R0 = −1. In the first level
we need three nodes, and all the subsequent levels contain five
nodes. There are three leaves (one for −1,0 and 1), so the total
number of nodes are 5n + 1.

Proposition 3. The Rn matrix can be stored using 5n + 1 nodes. □

R0

C0 C0

In−1 0 Rn−1 =

R0

C0 C0

0R1

C1 C1

R1

C1

In−2 0 Rn−2

Fig. 6 The construction of matrix Rn.

Another important operator is HnRnHn. It is easy to see that
HnRnHn = In − 2Pn, where Pn is a 2n × 2n projection matrix
whose elements are 1 / 2

n. So the HnRnHn product can be stored
like the identity matrix, only with different values in the leaves.
Therefore this product also can be stored with 3n + 2 nodes.

Proposition 4. The QuIDD representation of the HnRnHn prod-
uct uses 3n + 2 nodes. □

In quantum algorithms one typical way to represent a boolean
function f is by the operator Vf that multiplies the vector | i > by
(−1)f (i). Its matrix differs from the identity in that it has (−1)
instead of 1 where f (i) = 1. Call an i marked if f (i) = 1. In the
case of one marked element, we can construct the QuIDD rep-
resentation like in the case of Rn. As we can see in Fig. 8, the
place of the (−1) does not change the structure of the QuIDD,
only the edges between the nodes. So if there is only one marked
element, the size of Vf is the same as the size of Rn.

Fig. 7 The matrix and QuIDD representation of the product H2R2H2.

1
2 − 1

2 − 1
2 − 1

2

− 1
2

1
2 − 1

2 − 1
2

− 1
2 − 1

2
1
2 − 1

2

− 1
2 − 1

2 − 1
2

1
2







R0

C0 C0

R1

C1 C1

0 1

1
2

− 1
2

52An Idea to Improve QuIDD Based Quantum Simulations� 2015 59 2

Proposition 5. The Vf matrix operating on n qubits can be
stored using 5n + 1 nodes, if there is one marked element. □

1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 1







R0

C0 C0

1R1

C1 C1

R1

C1

2 10

0 −1

1 0

2 1

Fig. 8 An example for a two qubit Vf, where the third element is marked.

2.4 Basic operations
The main advantage of QuIDD is that is can use the opera-

tions of the Algebraic Decision Diagram for adding, multiply-
ing or calculating the tensor product of two matrices. The basic
operation is the Apply algorithm, which calculates the element-
wise operation op of two QuIDDs [2].

The Apply algorithm takes two nodes and an operator as
parameters, and traverses the two trees, recursively calling
itself in the process. When it reaches leaf nodes in both trees,
it calculates (leaf1) op (leaf2). Let vf and vg be two nodes, and xi
and xj their variables, respectively. Let T(v) and E(v) be the two
child of v, representing the 1 and 0 choices of its variable. Then
Apply(vf ,vg , op) first checks xi and xj in the ordering.
If xi is before xj then it calls
Apply(T(vf), vg , op) and Apply(E(vf), vg, op).
If xj is before xi, then
Apply(vf, T(vg), op) and Apply (vf, E(vg), op)
and if xi = xj then
Apply (T(vf), vg , op) and Apply (E(vf), E (vg), op).

This can be used for addition. It takes O(ab) time and results
in a structure of size O(ab), where a and b are the number of
nodes in the two operands.

The tensor product A Ä B of two N × N matrices is an
N 2 × N 2 matrix, which is a block matrix built from matrices
ai,jB. To calculate this, we first shift all the variables of B to be
after the variables of A. Then we use the Apply. Because of the
shift, now all of B’s elements are multiplied by A’s elements.
The shifting of the variables have a complexity of O(b), and
because we use the standard Apply, its complexity still O(ab).
So the tensor product can be computed in O(ab) steps [11].

Matrix multiplication is more complex. It can be decom-
posed into multiple inner products. The multiplication algo-
rithm of QuIDDs uses two nested Applys, therefore its com-
plexity is O((ab)2) [1].

3 Ideas for Improvement
If we have a long chain of multiplications, as it is typical in

case of quantum algorithms, one can pose the question what is
the best way to calculate the product. Any bound on the time
complexity of QuIDD’s multiplication implies an upper bound
on the size of the product. In further multiplications one can
calculate with this size bound to estimate the complexity.

Using the associativity of matrix multiplication, by a stand-
ard dynamical programming approach one can find the optimal
regrouping of the chain in polynomial time (see for example
Introduction to Algorithms by Cormen, Leiserson, Rivest and
Stein [3]).

However, in quantum algorithms one frequently has some
additional information about the structure of some subproducts.
When it is clear from the algorithm that a matrix corresponding
to a subproduct has a small QuIDD representation then it might
be a good idea to perform the multiplications in such order that
we can use this information. We show how this can work on
one of the most frequently used test problems of quantum cir-
cuit simulations, Grover’s quantum search algorithm.

4 Grover’s search algorithm
Lov Grover’s search algorithm is the first quantum search

algorithm. It uses ()NΘ quantum steps to find a marked ele-
ment in an N element set. To do this, it uses an operator Gn
on an n qubit state vector | x > , where n = logN. This can be
simulated as a simple matrix-vector multiplication, x' = Gn∙ x,
where x is the current state vector, and x' is the next. To get a
marked element with a probability of at least 1/4, this has to be
done approximately π N

k4
 times, where k is the number of the

marked elements.
The operator Gn can be written as Gn = HnRnHnVf [5]. In this

case Vf corresponds to the function

f x
x

() =




,1

0

if is a marked element

otherwise

If there is only one marked element, Gn differs from HnRnHn
in one column, which is multiplied by (−1). For simplicity let
this column be the first one. If not, the structure of the QuIDD
representation does not change, only the edges between the
nodes. We can build Gn from four different submatrices. Let
Bn be the matrix where all elements are the same, Dn be the
matrix where the diagonal elements are the same constant,
and the additional elements are another one. Let B'n be the
matrix, which is like Bn, but with the first column multiplied
by (−1), and D'n obtained from Dn in the same way. Observe,
that Gn = D'n. Using these notations we can write

53 Period. Polytech. Elec. Eng. Comp. Sci.� K. Friedl, L. Kabódi

G D B

B D

D B B B

B D

n
n n

n n

n n n n

n n

=
′

′

=

′

′

− −

− −

















− − − −

− −

1 1

1 1

2 2 2 2

2 2
BB B

B B D B

B B B D

n n

n n n n

n n n n

− −

− − − −

− − − −






















′
′

2 2

2 2 2 2

2 2 2 2









and so on.
Since Dn = In − 2Pn , and Bn = − 2Pn , the corresponding

QuIDD structures are known (see Proposition 4).
As we can see in Fig. 10, one new level in the QuIDD

requires seven new nodes, and the “leaves” remain Di , B'i ,
D'i and b. So this matrix uses O(n) nodes. Using that D'n = Gn ,
see that

Proposition 6. Storing Gn using the QuIDD structure requires
O(n) nodes. □

5 Complexity of Grover’s Algorithm using QuIDD
In the paper about the QuIDD structure [11] the potential

speed up was illustrated through Grover’s algorithm. The run-
time complexity of the algorithm was said to be O(A16n14) where
A is the number of nodes in the oracle, and n is the number of
qubits. In this section, first we give a detailed explanation of
this fact for the sake of completeness.

5.1 The original bound
The complexity of one matrix multiplication using the

QuIDD data structure is O((ab)2), where a and b is the number
of nodes in the QuIDD representation of the two matrices. The
first step in the algorithm is the initialization of the state vector
which uses n operations. Then we apply the Hadamard operator
Hn to the state vector | x > . In the QuIDD structure Hn needs
only O(n) nodes, and a vector with only one type of element
can be stored in only one node. Therefore this multiplication
uses O(n2) operations. However, the new state vector can be
stored in one node, because every qubit is in the same state.

The iteration part of the algorithm uses the operator
(− HnRnHn Vf) on the current state vector. Let A be the number
of nodes in Vf . With this the first multiplication (Vf | x >) uses
O(A2) operations. The resulting state vector cannot use more
nodes than this, so it can be stored with O(A2) nodes. The
next operation is a multiplication by Hn , so the complexity is
O((nA2)2) = O(A4n2).

The next step in the algorithm is the operator Rn. Because
it can be stored with O(n) nodes, the cost of this operation is
O((nA4n2)2) = O(A8n6). The last step is a multiplication with Hn
with an overall complexity of O((nA8n6)2) = O(A16n14).

Proposition 7. One iteration of Grover’s algorithm has a run-
time complexity of O(n16 n14) which is polynomial in the number
of qubits.

Fig. 9 The construction of matrix B'n from smaller B’i matrices.

C0

B′
n−1 −2 1

2n
=

C0

C1

B′
n−2 −2 1

2n

=

C0

C1

C2

B′
n−3 −2 1

2n

R0

C0 C0

Dn−1 B′
n−1 b D′

n−1 =

R0

C0 C0

R1 R1

C1 C1 C1 C1 C1

Dn−2 b B′
n−2 Dn−2 D′

n−2 b

Fig. 10 The construction of the matrix D'n from smaller matrices.

54An Idea to Improve QuIDD Based Quantum Simulations� 2015 59 2

Table 1 Complexity and measured runtime with one marked element

complexity measured runtime

method initialization iteration initialization (s) one iteration (s)

original O(n) O(n30) 0,083 1,38

HnRnHnVf ∙ | x > O(n22) O(n2) 1,257 0,3

(HnRnHn) ∙ (Vf) ∙ | x > O(n10) O(n2) 0,234 0,303

Proof. The initialization part of the algorithm has O(1) com-
plexity. The iteration part computes (−HnRnHn | x >) with a com-
plexity of O(A16n14) as shown before. □

If there is only one marked element, then A = O(n). Thus the
complexity of one iteration is O(n30).

Proposition 8. The number of nodes needed to store the state
vector | x > does not change between iterations.

Proof. The algorithm changes only the values of the marked
and non-market elements, so the number of different coeffi-
cients stays the same. Moreover, a marked element remains
marked and a non-marked remains non-marked during the al-
gorithm. So in the QuIDD structure we only have to change the
two values representing the amplitudes. □

5.2 The new bounds
From the test results in the original paper, it seems this upper

bound is very pessimistic. So we use the associative property
of the matrix multiplication to get tighter upper bounds, and
possibly optimize the running time of the simulation. Because
the matrices the algorithm uses do not change during the itera-
tion, they can be computed ahead of time, and even multiplied
together. We analyse different bracketings, and their effect on
the complexity of the algorithm.

For this part, we assume that there is only one marked element.
If we calculate the matrix HnRnHn Vf

 at the beginning of the
algorithm, the iteration only uses one matrix multiplication.
The complexity of the iteration phase is O((n ∙ 1)2) = O(n)2,
because the state vector can be stored with O(1) nodes.

In the initialization phase, we have to calculate the matrix

HnRnHn Vf . Because of Propositions 2, 3 and 5 the complexity
of the matrix multiplications is O((((n ∙ n)2 ∙ n)2 ∙ n)2) = O(n22).

Proposition 9. The complexity of Grover’s algorithm using the
QuIDD structure when we calculate the matrix HnRnHnVf in the
initialization step is O(n22) in the initialization step and O(n2)
in the iteration step.

We can also examine the bracketing (HnRnHn) ∙ (Vf) | x >. The
initialization for this is less complex, because we only have to
calculate the product HnRnHn, which is O(((n ∙ n)2 ∙ n)2) = O(n10).

Proposition 10. The vector Vf | x > can be stored with O(n)
nodes. □

Proof. | x > can be stored with O(n) nodes, and Vf changes only
the sign of the marked element, so the overall structure of the
vector stays the same. □

Proposition 11. The complexity of Grover’s algorithm with
QuIDD structure when we calculate the matrix HnRnHn in the
initialization step is O(n10) step and O(n2) in the iteration step.

Proof. As we shown before the complexity of calculating
HnRnHn is O(n10). In the iteration part we have to use two matrix
multiplications. First, we calculate Vf | x > in O(n2) steps.
The resulting vector will be a QuIDD with O(n) nodes. Then
multiplying this vector with HnRnHn takes O(n2) steps. The
iteration part thus has an O(n2) complexity. □

Table 1 contains the simulation results of one iteration of
Grover’s algorithm. We choose n = 100 qubits to simulate,
in this case N = 2100 would be the number of elements in the
search. The whole algorithm would take r ≈ 8.8 ∙ 1014 itera-
tions. The simulation was run on an Intel U7600 processor at
1.2 GHz with 2 GB RAM. Without compression, we would
need to store 2100 ≈ 1030 amplitudes only for the state vector,
but with the QuIDDPro software the peak memory usage was
under 13 MB in this simulation.

6 Conclusion
The QuIDDPro simulator helps expanding the number of

qubits which can be used in testing algorithms, but still in a
limited fashion. Using a simulator one can check the intermedi-
ate states of the algorithm without measurement, which can be
very useful when someone tests an algorithm. We have shown
that using different groupings of the operators in Grover’s algo-
rithm, the computational complexity can be shifted from the
iteration to the initialization. The runtime measurement shows
the same results as the estimation.

Unfortunately, it is not clear that this works for every quan-
tum algorithm. For example it would be interesting to see if the
matrix of the Fourier transformation can be efficiently stored in
some similar way.

55 Period. Polytech. Elec. Eng. Comp. Sci.� K. Friedl, L. Kabódi

Acknowledgement
Research is supported by OTKA-108947.

References
[1]	 Bahar, R. I., Frohm, E. A., Gaona, C. M., Hachtel, G. D., Macii, E.,

Pardo, A., Somenzi, A. "Algebraic Decision Diagrams and Their Appli-
cations.” Journal of Formal Methods in System Design. 10 (2/3). pp.
171-206. 1993. DOI: 10.1023/A:1008699807402

[2]	 Bryant, R. A. "Graph-Based Algorithms for Boolean Function Manipula-
tion.” IEEE Transactions on Computers. C-35 (8). pp. 677-691. 1986.
DOI: 10.1109/TC.1986.1676819

[3]	 Cormen, T. H., Leiserson, C. E., Rivest, R. L., Stein, C. "Introduction to
Algorithms." 3rd ed. MIT Press. 2009.

[4]	 Gottesman, D. "The Heisenberg Representation of Quantum Computers."
[Plenary speech at the 1998 International Conference on Group Theo-
retic Methods in Physics.] 1998. http://arxiv.org/pdf/quant-ph/9807006

[5]	 Grover, L. K. "A fast quantum mechanical algorithm for database
search." In: Proceedings of the Twenty-eighth Annual ACM Symposium
on Theory of Computing. 1996. http://arxiv.org/pdf/quant-ph/9605043

[6]	 Jukna, S. "Boolean Function Complexity: Advances and Frontiers." Ber-
lin Heidelberg: Springer-Verlag. 2012. DOI: 10.1007/978-3-642-24508-4

[7]	 Kawaguchi, A., Shimizu, K., Tokura, Y., Imoto, N. "Classical simulation
of quantum algorithms using the tensor product representation." 2004.
http://arxiv.org/pdf/quant-ph/0411205

[8]	 Obenland, K. M., Despain, A. M. "A parallel quantum computer simu-
lator, High Performance Computing." 1998. http://arxiv.org/pdf/quant-
ph/9804039

[9]	 Viamontes, G. F. "Efficient quantum circuit simulation." PhD thesis. 2007.
[10]	 Viamontes, G. F., Markov, I. L., Hayes, J. P. "Graph-based simulation of

quantum computation in the density matrix representation, Defense and
Security." 2004. http://arxiv.org/pdf/quant-ph/0403114

[11]	 Viamontes, G. F., Markov, I. L., Hayes, J. P. "Improving Gate-Level
Simulation of Quantum Circuits." Quantum Information Processing. 2
(5). 2003. DOI: 10.1023/B:QINP.0000022725.70000.4a

http://dx.doi.org/10.1023/A:1008699807402
http://dx.doi.org/10.1109/TC.1986.1676819
http://arxiv.org/pdf/quant-ph/9807006
http://arxiv.org/pdf/quant-ph/9605043
http://dx.doi.org/10.1007/978-3-642-24508-4
http://arxiv.org/pdf/quant-ph/0411205
http://arxiv.org/pdf/quant-ph/9804039
http://arxiv.org/pdf/quant-ph/9804039
http://arxiv.org/pdf/quant-ph/0403114
http://dx.doi.org/10.1023/B:QINP.0000022725.70000.4a

	1 Introduction
	2 The QuIDD data structure
	2.1 Binary Decision Diagram
	 2.2 Quantum Information Decision Diagram
	2.3 Important examples
	2.4 Basic operations

	3 Ideas for Improvement
	4 Grover’s search algorithm
	5 Complexity of Grover’s Algorithm using QuIDD
	5.1 The original bound
	5.2 The new bounds

	6 Conclusion
	Acknowledgement
	References

