
107RTL Design Methods for SoCs Used in CPS Applications� 2016 60 2

Semi-Automatic RTL Methods for
System-on-Chip IP Delivery in the
Cyber-Physical System Era

Péter Horváth1*, Gábor Hosszú1, Ferenc Kovács2

Received 26 August 2015; accepted after revision 20 December 2015

Abstract
With the dawn of Cyber-Physical Systems (CPS) the relevance
of System-on-Chips equipped with run-time configurable, appli-
cation-specific macrocells increases as numerous tasks has to
be taken over from the microprocessors in order to cope with
the real-time requirements typical of CPS applications. One of
the largest challenges of macrocell design is to conform to the
demand for increasing computation capacities while keeping
the development effort low to handle time-to-market require-
ments and reduce design cost. This article presents a novel
method for creating RTL models of SoCs’ reusable macrocells.
The proposed method is based on a novel modeling language
(AMDL) offering a reduced design time while making the micro-
architectural details fully accessible for the designer to ensure
the required level of optimization. Beside the formal definitions
of the language’s semantic elements, the results of design effi-
ciency investigations, moreover, a comparison of AMDL and the
similar solutions are also presented.

Keywords
ARTL, AMDL, CPS, SoC, microarchitecture, RTL design

1 Introduction
In the recent decade the most spectacular change in the

field of digital system design has been the rise of the design
entry’s abstraction level and the usage of automated methods
in the early stages of the design process. This is caused by the
ever-increasing time-to-market and time-on-market pressure
which has become one of the most important design objec-
tives nowadays. With the dawn of the Cyber-Physical Sys-
tems (CPS) integrating physical processes and computation
systems directly influencing each other via feedback loops, a
huge amount of possible applications emerged and, since the
development platforms and tools are very efficient and widely
known, the development time has become the key factor on the
common market [1, 2, 3].

Because of these characteristics of the backend application
requirements, the central data processing hardware components
of these systems [4, 5] mainly comprise pre-designed, optimized,
and pre-verified macrocells and the focus of digital design shifted
to the high level methods used for integrating these components
into functionally complete, intelligent systems [6-9].

The foresaid demand for a fast development process in the
application area implicitly places major demands upon the
computation capacities of the underlying SoCs as well: The
intelligence of the CPS applications is usually provided by
the software environment running on an embedded micropro-
cessor. These software applications tend to be more and more
complex, therefore, the significance of the operating system-
based runtime environments is also increasing, even in small
designs. Similarly to the hardware development, the tool
chains of the application software products are also based on
the increasing abstraction (interpreted scripting languages, vir-
tual machines etc.) requiring microprocessors with impressive
computation capacities. Moreover, CPS applications are typi-
cally real-time systems necessitating predictable computation
delays. This predictability is mainly handled by outsourcing
the timing-critical tasks to application-specific, highly con-
figurable Intellectual Property (IP) cores instead of perform-
ing them in software running on an Instruction-Set Processor
(ISP) [10-13]. Since the overall characteristics of SoCs, such

1 Department of Electron Devices, Faculty of Electrical Engineering and
Informatics, Budapest University of Technology and Economics,
H-1117 Budapest, P.O.B. 91., Hungary
2 Faculty of Information Technology and Bionics
Pázmány Péter Catholic University
H-1083 Budapest, P.O.B. 278., Hungary
* Corresponding author, e-mail: horvathp@eet.bme.hu

60(2), pp. 107-124, 2016
DOI: 10.3311/PPee.8527

Creative Commons Attribution b

research article

PPPeriodica Polytechnica
Electrical Engineering
and Computer Science

horvathp@eet.bme.hu
http://dx.doi.org/10.3311/PPee.8527

108 Period. Polytech. Elec. Eng. Comp. Sci.� P. Horváth, G. Hosszú, F. Kovács

as power-consumption, computation performance and cost sig-
nificantly depend on the properties of the IPs constituting them;
it is expectable that, beside the new approaches addressing sys-
tem level integration and high level verification, the demand
for fast design methods aiming high-quality and optimized
hardware models of macrocells will arise as well. In this article
an overview of the existing tools and design languages aiming
automated Register-Transfer Level (RTL) model generation of
application-specific IPs is provided. A novel design method for
IP-core design is also proposed, which is developed to improve
the efficiency of design process and decrease design time of
SoCs’ macrocells providing the required computation capaci-
ties in CPS applications.

This paper is organized as follows: Section 2 presents the
existing methods used for automated RTL generation of SoCs’
macrocells and it discusses their advantages and disadvantages.
In Section 3 the concept of a novel abstraction level called
Algorithmic RTL (ARTL) is introduced, which is intended to
unite the above mentioned design methods. Section 4 presents
a novel modeling language (AMDL) and synthesis process rep-
resenting the ARTL abstraction and in Section 5 an alternative
macrocell design flow is recommended involving the novel
modeling language. Section 6 discusses the experiences gained
during AMDL design efficiency investigations and in Section 7
a brief comparison of AMDL and the existing RTL modeling
methods is provided. Section 8 draws conclusions.

2 Related work
2.1 The traditional SoC design flow

The traditional SoC design flow consists of numerous steps
requiring different modeling means, formal languages, and
Computer-Aided Design (CAD) tools. In this section a brief
overview of this process is provided in order to make it possi-
ble to better understand the integration of our proposed method
into the traditional SoC design approach.

Complex SoC design projects usually start with a textual
specification directly created according to the user require-
ments. Based on this informal specification important decisions
have to be made with regard to the hardware-software parti-
tioning and the interfaces between these two elementary parts
of the design. This partitioning step has a huge influence on
the characteristics of the entire product; therefore, it is usually
made by experienced system designers. Although, there are
modern techniques which may be applied at this point (see Sec-
tion 2.2), in the traditional design flow partitioning is mostly
an intuitive task resulting in a series of simpler, more specific
module specifications, which are still expressed in an informal
manner. The submodules may be software or hardware compo-
nents, but, since our paper is exclusively hardware-related, the
subsequent steps of the SoC design flow are discussed from the
viewpoint of a hardware designer.

Based on the informal specification a more reliable and
unambiguous model has to be prepared using a formal lan-
guage. The main objective of this model is to capture the behav-
ior of the module and it is not concerned in the implementation
details. It is basically used as a golden reference during the sub-
sequent design steps. As the formal specification is complete,
RTL modeling may start resulting in a synthesizable model of
the module. In the traditional design flow RTL modeling is the
last step, that is performed completely manually. The subse-
quent steps, such as RTL synthesis constructing gate-level rep-
resentation of the circuit based on the RTL model, and physical
design concerned in technology-dependent optimizations are
mainly done by software tools implementing well-known algo-
rithms and internal representations. These back-end steps are
not part of our discussion. Figure 1 shows the relevant steps of
the SoC design flow and the most widely used languages used
at the different design steps.

Fig. 1 The front-end steps of the traditional SoC design flow.

2.2 Model-based approaches
The most compelling drawback of the above described

design process is that the fully automated, correct per con-
struction steps are preceded by intuitive, hand-optimized tasks,
which are prone to errors and inconsistencies. Therefore, in
the last decade, significant effort has been made to improve
the front-end of this design flow. The so-called model-based
approach is a general term used to unite these modern solu-
tions intended to handle the aforementioned difficulties. There
are two main directions of this field of research. One of them
makes the specification more formal and independent from all
implementation details. In this case the ambiguities of natural-
language specifications are absent, making time-consuming
and costly redesign iterations caused by the misunderstanding
of the specification unnecessary. The tool for making this com-
plete independence possible is Unified Modeling Language

109RTL Design Methods for SoCs Used in CPS Applications� 2016 60 2

(UML), which is a set of graphical representations originally
developed for describing the structure1 and communication
mechanisms in complex software systems. However, because
of its general nature, it is able not only to model the structure of
SoCs but its behavior-oriented diagram types make it possible
to automatically generate executable specifications [14, 15],
which may be used during the implementation and the verifica-
tion phase of the SoC as well.

The other type of model-based approaches does not want
to make the specification independent of the implementation
but it uses front-end languages capable of describing the func-
tionality and the structure of software and hardware parts of
the design in the same time on a wide scale of abstraction. The
most widely known solution is the hardware-related extension
of C++ called SystemC [16]. SystemC is a class library mak-
ing it possible to describe the hardware and software parts of
the design in the exact same language environment (traditional
C++ with additional pre-defined macros) and the SystemC sim-
ulation kernel is able to co-simulate them. Beside the improved
flexibility ensured by the interchangeability of the hardware
and software versions of the same module, SystemC hardware
models are also capable of underlying an automated RTL syn-
thesis process.

Both directions of the model-based approach tend to
improve the design flow by raising the abstraction level of the
design entry and by extending the scope of automated pro-
cesses to these high level representations. The most spectacu-
lar advantage of these methods is that they significantly reduce
design time but the increase in efficiency comes at the cost of
more limited capabilities of modeling architectural details on a
lower level of abstraction. Without the opportunity of low-level
access to the microarchitecture, hardware designers may expe-
rience difficulties when the demand for detailed optimization
is strong enough to throw the significance of reduced develop-
ment time into the shade.

2.3 Methods for optimized architectural design
When the optimization level regarding the timing, power-

consumption and/or resource requirement plays a primary role,
hand-crafted RTL is the traditional means which IP designers
can apply. Transaction level models and languages such as
C++, SystemC, or SystemVerilog are used during the design
space exploration but the final RTL implementations intended
to be the starting point of automated RTL synthesis are usu-
ally created manually. However, there are existing solutions for
generating RTL based on specific design languages and unique
model generation procedures.

Bluespec SystemVerilog (BSV) is a multipurpose modeling
language which can be used for describing executable speci-
fications, transaction level behavior, virtual platforms for the
software components of SoCs and even RTL models [17].
Moreover, a synthesis method capable of generating gate-level
representations from the RTL descriptions written in BSV is
also available. The most specific characteristics of the BSV lan-
guage are that (i) the interfaces, beside the modules, are inde-
pendent design units themselves, so they can be reused with-
out any modifications performed on the modules using them
and that (ii) the concurrencies of the subcircuits constituting
the macrocells are described as atomic transactions. With the
usage of the rule-semantics realizing atomic transactions the
designer does not have to deal with the interferences between
the submodules, the whole system can be handled as a set of
small, independently designed pieces. Both of these solutions
are intended to make the RTL modeling more efficient. The
main drawback of BSV is that the output model is difficult to
read and modify, however it is often necessary, since the syn-
thesis procedure and the language elements used in the RTL
model are inflexible and cannot take the implementation tech-
nology into consideration. Therefore, the generated RTL model
is usually modified by hand before RTL synthesis to cope with
the requirements of the coding style guides of the design team
and the implications of the underlying technology (e.g. block
RAM modeling in case of FPGAs) [18, 19].

Architecture Description Languages (ADLs), also known
as Processor Description Languages (PDLs) are very specific
design languages developed for describing instruction set pro-
cessors. They are similar to BSV with regard to the level of
abstraction. These languages have been developed to describe
Application-Specific Instruction-Set Processors (ASIPs) in a
more efficient way than traditional hardware description lan-
guages as e.g. Verilog and VHDL. ADLs and the associated
synthesis tools always provide target architecture models deter-
mining some basic characteristics of the described system. The
more rigid and detailed the target architecture model is, the
more efficient the synthesis can be. Although the skeleton of the
model is mainly pre-defined, the designer has some freedom to
fit it to the needs of the specification (e.g. unique instructions
and accelerators, additional pipeline stages etc.). However,
there are two main drawbacks of ADL-based methods. (i) The
limitations of the above mentioned target architecture models
may inhibit the designer to accurately optimize the design [18-
21] and (ii) they have a very limited scope, since only stored-
program microprocessors can be described with them [22, 23].

HLS (High Level Synthesis) is a method used to directly
generate synthesizable RTL models from algorithmic specifica-
tions, predominantly written in C-like languages [24, 25]. This
approach has proved to be very efficient in terms of design
time, since it automatizes a time-consuming and error-prone
part of digital design; moreover, it is also favorable in terms

1 The structural modeling capabilities of UML are exploited in our work as
well, although in a less elaborated form than in the aforementioned solutions.
As it may be seen in Section 4, the target architecture models of our method are
defined with UML class diagrams.

110 Period. Polytech. Elec. Eng. Comp. Sci.� P. Horváth, G. Hosszú, F. Kovács

of reusability, since an algorithmic specification is, contrary
to high quality RTL models, completely independent from the
backend technology. Nevertheless, there are some major limi-
tations which have inhibited HLS from completely replacing
hand-optimized RTL in the IP design flow. The most important
drawbacks are that (i) in case of designs demanding a high opti-
mization level the designer interfaces of the HLS tools often
seem to be unsatisfactory. Once the input model has been ade-
quately prepared for a specific synthesis tool, the designer has
only a limited set of constraints to “steer” the process toward
the intended microarchitecture [24, 26, 27]. The other limita-
tion which has to be taken into account is that (ii) HLS methods
have been essentially developed for loop-and-array algorithms.
That means that their capabilities can only be taken advantage
of by DSP (Digital Signal Processing) applications comprising
simple pipeline stages and inter-stage FIFO channels [28].

It is common to the above mentioned approaches that they
lend some aspects of higher abstraction levels; the rule seman-
tic of BSV makes hardware design very similar to object ori-
ented programming, while HLS and ADLs use ANSI-C-like
language constructs for describing the behavior.

2.4 Earlier work
Earlier stages of this work are reported in [29] and [30].

The concept of ARTL abstraction has been reconsidered ever
since and an exact definition has been created which is pre-
sented in Section 3. In our earlier approach ARTL represented
the abstraction level exclusively concerned about AMDL lan-
guage while the definition presented in this paper describes
ARTL as a common set of key properties of certain existing
modeling languages including AMDL. The AMDL language
itself has also been significantly improved and the underlying
target architecture models have been comprehensively elabo-
rated resulting in well-defined structural and behavioral models
presented in Section 4.1 in this paper. Both of the earlier papers
concentrated on the synthesis-related issues of AMDL includ-
ing detailed discussions of the AMDL software tools chain,
the synthesis algorithms, test systems’ architectures and RTL
synthesis results. In this paper we emphasize the formal defini-
tions of the language elements (see Section 4.2) and, instead of
paraphrasing the details of the synthesis, we show how AMDL
is intended to be integrated into the traditional digital system
design flow (see Section 5). However, for the sake of complete-
ness, a brief overview of quantitative design efficiency investi-
gations is also presented in Section 6.

3 The concept of Algorithmic RTL abstraction
The digital IP design flow recommends modeling languages

for the abstraction levels. The abstraction levels themselves
are traditionally illustrated with the Gajski-Kuhn Y-diagram
(GK-diagram) which investigates them from three different
points of view. The functional point of view shows how the

specific abstraction level models the behavior, the structural
point of view describes the typical components of a model on
that level and the physical point of view deals with the physi-
cal appearance of the particular abstraction level’s design units.
Although the abstraction levels of the GK-diagram have their
own widely used languages and tools, there are some modern
modeling means which cannot be unambiguously fit into the
diagram. E.g. the aforementioned BSV and the ADLs describe
the behavior in a slightly more abstract form than traditional
RTL while the structural elements of their formal models are
equivalent to those used by traditional RTL models. In order
to adequately integrate these special types of modeling means
into the GK-diagram a novel level of abstraction called Algo-
rithmic Register-Transfer Level (ARTL) is proposed. The main
property of the proposed abstraction level is that it is based on
the traditional RTL but from the functional point of view it has
a moderate rise in abstraction (see Fig. 2).

Fig. 2 The GK-diagram with the proposed abstraction level.

Beside the high level functional modeling style ARTL
languages and methods have other common, more factual
properties.

•	 Contrary to traditional RTL languages they do not use the
concept of the clock cycle and clock signal.

•	 The pure structural modeling elements (such as com-
ponents instantiations) are less frequently used or com-
pletely missing.

•	 The resources responsible for scheduling the operations
do not appear in an explicit form in the formal language
models, the control mechanisms are hidden into semantic
rules of the specific language.

•	 A subset of the datapath resources used to describe the
functionality is directly correlated to the traditional RTL
models’ components (e.g. state registers in BSV and
REGISTER resources of LISA).

111RTL Design Methods for SoCs Used in CPS Applications� 2016 60 2

•	 They need a specific synthesis mechanism for converting
the formal language models into other ones compatible
with the subsequent tools (e.g. RTL synthesis tools) of
the design flow.

The most important common properties may be summarized
in the following definition of ARTL:

A formal language or method represents the ARTL
abstraction, when a language-specific subset of the datapath
resources used to describe the functionality can be directly
mapped to the elements of the target RTL representation, while
it describes the controlling mechanisms through language-
specific semantic rules.

According to the above presented definition BSV and
ADLs may be considered ARTL methods while HLS does not,
since the datapath resources of an algorithmic model cannot
be directly mapped to their RTL counterparts in the generated
RTL model. This is caused by the automated scheduling and
resource sharing mechanisms realized by the HLS tools. In an
HLS process we cannot tell whether an internal variable in the
C code will be a wire or a register in the generated RTL because
it depends on the automatically determined pipeline stages.
Moreover, we cannot tell how many actual arithmetic circuits
will be our operator calls mapped to during the resource shar-
ing which is also automated and can only be indirectly affected
by the design constraints.

4 Algorithmic Microarchitecture Description
Language (AMDL)
4.1 Target architecture models

It is a typical technique among ADLs and their underlying
synthesis tools that they provide target architecture models
defining the common properties of the systems that may be
obtained with the methods themselves. E.g. the target archi-
tecture model of a SystemC-based ADL called ArchC [31]
declares that the described system is an ISP with a single-issue
pipeline. It also defines a strict interrupt-handling mechanism
and it does not make the instruction pointer accessible for the
designer. The resources responsible for scheduling the instruc-
tion execution are pre-defined and identical in every generated
output model (note that ArchC may also be considered an ARTL
modeling tool). Since the circuit structures implementing these
common details are pre-defined and may be highly optimized,
the target architecture models defining many implementation
details implicitly mean more efficient, fast and reliable syn-
thesis procedures on the cost of limited freedom with regard to
architectural details.

The aim of AMDL’s target architecture model is two-fold:
(i) It defines the structural and behavioral characteristics thus
the semantic view (also known as programmer’s view in case
of high level languages) of the language elements which are

indispensable for the designer and (ii) it also defines the struc-
ture and the behavior which have to be implemented by the syn-
thesis procedure’s output model as well. Accordingly, the target
architecture model is a common language for the designer and
the underlying synthesis tool during the development process.
AMDL’s target architecture model describes the data process-
ing macrocells as a set of so-called architecture elements which
may be recursively integrated into each other. There are three
architecture elements, namely the multicycle processor, the
data stream processor, and the instruction stream processor. In
order to ensure a wide applicability, the architecture elements
do not limit the designer regarding the functionality, only minor
scheduling and structural properties are pre-defined. During the
discussion of the architecture elements’ details the following
notations are used:

•	 ENV (environment): resources of the circuit environment
•	 CU (control unit): resources of the control unit
•	 DP (datapath): resources of the datapath
•	 sig = [id, value]: id, value: state of a signal (identifier

and current value)
•	 CS = {sig1…sign}: state of the control signals (CU → DP)
•	 SS = {sig1…sign}: state of the status signals (DP → CU)
•	 CO = {sig1…sign}: state of the control outputs (CU → ENV)
•	 CI = {sig1…sign}: state of the control inputs (ENV → CU)
•	 DI = {sig1…sign}: state of the data inputs (ENV → DP)
•	 DO = {sig1…sign}: state of the data outputs (DP → ENV)
•	 env(…): a function defined by the environment
•	 cu(…): a function defined by the control unit
•	 dp(…): a function defined by the datapath
•	 SE ⊆ CS: sig.value ϵ {active, inactive} ∀ sig ϵ SE (stor-

age enable): state of the storage enable signals
•	 SEassertable ⊆ SE: set of the assertable storage enable sig-

nals. An SE signal can be activated only if it is in the set
SEassertable. The data storage resources assigned to the sig-
nals being in the set SEassertable work concurrently.

•	 S = {s1…sn}: internal states of the control unit
•	 [CS, CO, srecent, snext, sinit]: srecent, snext, sinit ϵ S: recent state

of the control unit
•	 exit ϵ {false, true}: exit condition
•	 bypass ϵ {false, true}: bypass condition

Structural properties. The architecture elements comprise
two sets of resources, namely control resources and datapath
resources. The control structures implement the operation
scheduling (see below) and they may not be directly accessed
by the designer. The datapath resources implement data manip-
ulation and internal storage. Every instance of this resource type
is explicitly declared by the designer. The control structures and
the datapath structures communicate with each other and with
the environment via unidirectional signals. Figure 3a) shows the
general structure of the architecture elements and Fig. 3b) pre-
sents an exemplary circuit with the above listed notations.

112 Period. Polytech. Elec. Eng. Comp. Sci.� P. Horváth, G. Hosszú, F. Kovács

Fig. 3 The general structure of the architecture elements (a)
and a circuit example (b).

The structural hierarchy of the architecture elements is
shown by the UML [32] class diagram in Fig. 4. The associa-
tion between the architecture element class and the instruc-
tion set class indicate that every architecture element is able to
describe ISPs.

Fig. 4 Structural hierarchy of the architecture elements.

Behavioral properties. The behaviors of the architectural
elements are described by specific algorithms. These algo-
rithms are derived from the abstract Mealy Finite State Machine
(FSM) model and they involve only minor inherent scheduling
attributes. Using the notations defined above the behaviors of
the multicycle processor, the data stream processor, and the
instruction stream processor are shown in Fig. 5, Fig. 6, and
Fig. 7, respectively.

Fig. 5 Behavior of the multicycle processor architecture element.

The most important properties of the multicycle processor
are that the set SEassertable is a real subset of SE and it can be
changed during the operation of the circuit. This means that a
certain storage resource included in the datapath can be acti-
vated only in the control states it is assigned to.

Fig. 6 Behavior of the data stream processor architecture element.

The difference between the multicycle processor and the
data stream processor is that in the first case the set SEassertable is
assigned to the recent control state but in the second case this
set cannot be changed during the operation. In fact, the control
unit of the data stream processor has only a single state and the
values of the control signals and control outputs exclusively
depend on the control inputs and the status signals.

The instruction stream processor is similar to the data stream
processor but it can be switched into multicycle operation mode
(bypass) depending on the values of the control inputs and the
status signals. The bypass mechanism may be used to implement
exception-handling typical of instruction set microprocessors.

113RTL Design Methods for SoCs Used in CPS Applications� 2016 60 2

Fig. 7 Behavior of the instruction stream processor architecture element.

4.2 Language overview
Algorithmic Microarchitecture Description Language

(AMDL) is an ARTL modeling language inspired by the afore-
mentioned special RTL modeling tools. The main goal of the
language is to improve the efficiency of hand-crafted RTL
design’s most intuitive tasks such as resource allocation, sched-
uling, and resource sharing. To achieve this, AMDL borrows
the key concepts of HLS and ADLs in the following manner:

•	 An AMDL model describes the behavior of the system
with high-level language constructs, similar to those ap-
plied in the HLS environments. However, the basic ex-
pressions constituting the high-level language elements
provide the designer with comprehensive low-level ac-
cess to the microarchitectural details.

•	 Similarly to ADLs, AMDL also defines target architec-
ture models (see Section 4.1) to improve the efficiency
of the synthesis procedure. Contrary to those offered by
ADLs, these architecture models are more widely ap-
plicable since they do not involve any architectural and
functional limitations.

Because of the limited available space, instead of the formal
definitions of AMDL syntax elements, the grammar of the lan-
guage is presented in a form of characteristic exemplary expres-
sions. The exact definition of the grammar is provided in Annex
A as an Extended Backus-Naur Form (EBNF) description.

4.2.1 Resources
The definition of the ARTL abstraction declares that an

ARTL model explicitly includes a set of resources which may
be directly mapped to their traditional RTL counterparts in the
output model generated by a specific synthesis process. In case
of AMDL this set of resources appears in the resource declara-
tion part of the description and it includes all datapath resources
of the system, namely the data storing resources (registers and
register files), the data manipulating resources (operators), and
the interface signals (ports). These resources are functional
units communicating via their own interfaces called terminals.
In the model body the designer explicitly defines the intercon-
nections of these terminals while expressing the behavior of
the system as well. Table 1 summarizes the resources and the
interfaces of AMDL resources.

Table 1 AMDL resource types.

Resource
type

Resource
subtype

Input terminals Output terminals

interface
signal (port)

control input -
dout: value written
on the port

control
output

din: value to be sent -

data
input

-
dout: value written
on the port

data output din: value to be sent -

storage

register
din: value to be
stored

dout: stored value

register file

aid: address input of
interface i
din,id: value to be
stored at address aid

dout,id: value stored
at address aid

operator

async

defined by the designersync

multicycle

The interface signals represent the traditional RTL ports.
They do not store any data. Table 2 shows the different inter-
face signal types and their declaration syntax.

Table 2 Interface signal types and their declaration syntax.

Signal
type

Declaration syntax Declaration example

control
input

controlport <id>:

input [<size>]
controlport load: input [1]

control
output

controlport <id>:

output [<size>]

controlport ready: output

[1]

data input
dataport <id>:

input [<size>]
dataport init: input [8]

data
output

dataport <id>:

output [<size>]
dataport cout: output [8]

114 Period. Polytech. Elec. Eng. Comp. Sci.� P. Horváth, G. Hosszú, F. Kovács

The registers are the basic storage elements of AMDL. They
are able to store n-bit logic vectors and may be used as internal
variables. Register files are sets of registers with unidirectional
read and write interfaces. The number of their interfaces is
declared by the designer. A register file interface comprises an
address vector and a data input/output vector, depending on the
direction of the interface. Table 3 shows the different storage
resource types and their declaration syntax.

Table 3 Storage resource types and their declaration syntax.

Storage
resource type

Declaration syntax Declaration example

register
storage <id>: reg

[<size>]
storage ir: reg [32]

register file

storage <id>: regfile

[<number of write

interfaces>]

[<number of write

interfaces >]

[<address size>]

[<data size>]

storage rf: regfile

[2][2][5][32]

The data manipulations are performed by operators in
AMDL. The operators are similar to functions of high level
programming languages. They have an interface through which
they can be “called” in the behavioral description of the circuit.
Their interface (the number, directions and sizes of their ter-
minals) is defined by the designer. Table 4 shows the different
operator types and their declaration syntax.

Table 4 Operator types and their declaration syntax.

Operator type Declaration syntax Declaration example

asynchronous

operator <id>:

async

(<inputs>)

(<outputs>)

operator adder: async

(opa[32],opb[32])(sum[33])

synchronous

operator <id>:

sync

(<inputs >)

(<outputs >)

operator alu: sync

(func[3],opa[32],opb[32])

(result[32],carry)

multicycle

operator <id>:

multicycle

(<inputs >)

(<outputs >)

operator nth_root:

multicycle

(request,arg[32],n[32])

(ready,nth_root[32])

The asynchronous operators describe combinatorial circuits;
their latency is zero, which means that their outputs immedi-
ately change whenever their inputs change. The synchronous
operators and the multicycle operators describe sequential cir-
cuitry. The difference between them is that the synchronous
operators’ latency is constant while the multicycle operators’

may vary depending on the operands. Therefore, multicycle
operators’ interfaces usually implement hand-shaking.

4.2.2 Semantics of expressions and basic
assignments

The key concept of AMDL is that its expressions used in the
assignments explicitly describe the circuit structure realizing a
particular data transfer. The expressions directly refer to the re-
sources and their terminals not only in case of storage elements
but in case of data manipulating resources, operators as well.
Moreover, if a value of a register file is read out or a value is
written into a register file, the designer can explicitly determine,
which interface of the register file should be used to perform
the read/write operation. So, contrary to HLS, the designer is
responsible to the resource allocation, scheduling and binding
tasks. This detailed nature of the basic expressions makes it pos-
sible to comprehensively optimize the design.

Figure 8 and Fig. 9 present examples of register, register file,
and operator expressions and the intended RTL circuit struc-
tures. In case of registers the expressions do not explicitly refer
to its terminals. If the expression is a right-value, the name of
the register refers to its dout terminal, otherwise the name rep-
resents the din terminal.

Fig. 8 Register and register file expressions.

Fig. 9 Operator expressions.

115RTL Design Methods for SoCs Used in CPS Applications� 2016 60 2

In case of register files the interfaces are identified by let-
ters. Every read and write operations are performed through the
explicitly expressed interface.

In case of operator calls the expression defines the operator
itself, its output terminal, and optionally a parameter list (this
latter one is optional because the operator permanently has an
active parameter set which may be omitted).

The semantics of the basic AMDL assignment is defined by
a two-step (preparation and writeback), recursive procedure
with two parameters. The parameters are used by the control
structures using the basic assignments to slightly modify their
behavior (see in Section 4.2.3). To formally describe the mean-
ing of the basic assignment the following notations are used:

•	 LOAD: [parent,type,id,value] = {set of the input
terminals}

°	 parent: parent resource of the terminal
°	 type ϵ {output, regInput, regfileWriteAddress,

regfileReadAddress, regfileDataInput, operatorInput}:
type of the terminal

°	 id: identifier of the terminal
°	 value: logic vector, the current value of the terminal

•	 DRIVER: [parent,type,id,value] = {set of the output
terminals}

°	 parent: parent resource of the terminal
°	 type ϵ {input, regOutput, regfileOutput,

operatorOutput}: type of the terminal
°	 id: identifier of the terminal
°	 value: logic vector, the current value of the terminal

•	 State of the system: ST = {STconnection ⋃ STstorage}
°	 STconnection = {dlink: [load,driver,evaluated] |

load ϵ LOAD, driver ϵ DRIVER, evaluated ϵ {true,
false}}: active data connections of the system (data
link)

°	 STstorage = {strg: [id,value]}: current content of the
registers and register files

The definition of the basic assignment is shown in Fig. 10.
The assignment comprises two main steps; the preparation

phase and the writeback phase. In the preparation phase the con-
nections between the resource terminals are established. These
connections are realized by the controller FSM by determining
the values of the routing resources’ (multiplexers) control lines.
This change in the control lines causes a chain of reactions
throughout the datapath, which settles on the data inputs of
storage resources. Figure 11 shows the complete AMDL model
of an exemplary counter circuit and its intended architecture.
In the preparation phase of the assignment in line 17 the FSM
sets the control lines of multiplexers M1 and M2 establishing
the emphasized local datapath.

The result of the preparation phase is a logic vector pro-
vided by the right-value expression. In the writeback phase this
logic vector is stored into the storage element referred to by

the left-value expression. If the left-value expression refers to
a non-storage element (e.g. a data output port) or the assign-
ment’s behavior is modified by the embedding control structure
(e.g. structure statement block, see in Section 4.2.3) then the
writeback has no effect.

Fig. 10 The formal definition of the AMDL assignment.

Fig. 11 The AMDL model of a counter circuit.

4.2.3 Control structures
As may be seen in Fig. 11 AMDL uses the elements of

structured programming (statement sequences, loops, and deci-
sions) for behavioral modeling. Additionally, it also has spe-
cific language structures improving the scheduling capabilities
of the language. These language elements are statement blocks

116 Period. Polytech. Elec. Eng. Comp. Sci.� P. Horváth, G. Hosszú, F. Kovács

incorporating each other and the basic assignments. The dif-
ferent statement blocks slightly modify the semantics of their
included basic assignments by setting its parameters accurately
before calling the procedure shown in Fig. 10. Figure 12 shows
the definition of the concurrent statement block.

Fig. 12 Definition of the concurrent statement block.

In a concurrent block the preparation phase of all the assign-
ments included in the block are performed before any write-
backs. In other words the assignments inside the same con-
current block are evaluated concurrently. Figure 13 shows the
definition of the structure statement block.

Fig. 13 Definition of the structure statement block.

The structure block is similar to the concurrent block except
that it does not perform the writeback phase of its assignments.
The structure block is used to define static connections between
the resource terminals (e.g. the aforementioned permanent
parameters of the operators).

Beside the machine design unit, such as that presented in
Fig. 11, another design unit type is available for realizing
the behavior of the data stream processor and the instruction
stream processor target architecture models. The design unit
called pipeline is syntactically and conceptually more than the
statement blocks described before; however, its behavior can
be discussed with the same formalism. Figure 14 shows the
definition of the pipeline design unit.

All pipeline design units are assigned to a host machine,
which enables/disables the pipeline based on the control inputs
and internal status signals. Multiple pipelines may be assigned
to the same host machine. This is a superscalar-like architec-
ture making it possible for more than one instruction at a time
to be executed. The pipeline itself comprises a set of concur-
rently performed assignments organized into stage blocks.
During the operation of the pipeline the following subtasks are
performed cyclically: After the preparation of the stage blocks’
assignments, a so-called observer block monitors the datapath.
If any exceptional event occurs, the execution is passed to a

bypass-block outside the concurrently executed part of the pipe-
line. The exception detection is done by conditional statements
reading the status signals and control inputs. A single bypass
call instruction is assigned to every conditional statement inside
the observer block. The bypass blocks’ semantics is identical
to that used in case of the basic machine; their statements are
executed sequentially. There is a special instruction (return) to
pass the execution back to the concurrent part. If no exceptional
events occur, the writeback of the stage blocks’ assignments is
performed. Figure 15 shows a three-stage pipelined, unsigned
multiplier implemented using the pipeline design unit.

Fig. 14 Definition of the pipeline design unit.

4.3 Synthesis process
4.3.1 Implementation scheme-based model
transformation

The existing tools generating RTL models usually imple-
ment a bottom-up synthesis which means that the low level
constructs of the front-end language have generic circuit struc-
tures and their back-end language models. The whole output
model consists of these relatively small subcircuits and their
interconnections. E.g. conditional statements are transformed
into multiplexers and priority encoders, HDL loops turn into
combinational circuits during RTL synthesis, and during HLS
the loops of high level languages may become FSMs with asso-
ciated datapath element implementing the functionality of the
loop body. The synthesis process developed to AMDL follows
the top-down method, where an implementation frame is gen-
erated first based on the target architecture model used then
this frame is complemented with low level implementation
details. This synthesis process uses so-called implementation

117RTL Design Methods for SoCs Used in CPS Applications� 2016 60 2

schemes during model transformation. The implementation
schemes define how the AMDL target architecture model ele-
ments should be implemented using VHDL. In fact, the imple-
mentation schemes are basically subsets of VHDL language
elements, which are allowed to participate in constituting the
output model and a set of design guidelines how to use them.
Figure 16 and Fig. 17 illustrate this model generation method
using the exemplary pipeline presented in Fig. 15. The pos-
sible structural elements and interconnections of the pipeline
architectural model, which are not utilized in the example, are
denoted by dashed lines and frames.

Fig. 15 A three-stage pipelined, unsigned multiplier.

Capturing overall architecture. The AMDL model of the
multiplier implies that the so-called instruction stream proces-
sor abstract model should be used. The structural RTL imple-
mentation scheme of the instruction stream processor discussed
later in this section could include a single host machine and
multiple pipelines assigned to it. The host machine consists of a
FSM and a datapath but the multiplier does not require any data
processing resources in the host machine’s datapath. Moreo-
ver, the abstract model of the pipelined multiplier only needs a
single pipeline. The pipeline itself also comprises a FSM and a
datapath. There are two dedicated signals between the FSMs,
namely the start/stop control signal and the overflow status flag.

Fig. 16 Implementation framework construction.

Fig. 17 Embedding the implementation details.

Capturing implementation details. The above described
overall architecture is captured based on the AMDL model
structure but the details, such as exact states of the FSMs,
storage and arithmetic operators inside the datapath, are deter-
mined based on the statements included in the AMDL descrip-
tion. The datapath is generated from the assignment statements;
the RTL netlist is constructed directly by the AMDL designer
by explicitly expressing the connections between storage and
arithmetic/logic elements.

The model transformation algorithm is responsible for
resolving the multiply driven resource inputs by inserting the
appropriate multiplexers into the netlist. Once the RTL netlist
is complete, the model generator algorithm creates the HDL

118 Period. Polytech. Elec. Eng. Comp. Sci.� P. Horváth, G. Hosszú, F. Kovács

models of the datapath resources and organizes them into lan-
guage constructs defined by the implementation scheme. If the
AMDL model includes design-specific operators then the data-
path should be complemented by their VHDL models as well.

The control unit generation is based on specific mapping
rules determining the required control states implementing the
different AMDL control structures. The control unit generation
includes two main steps. The first is the control state allocation
step, in which the model transformation algorithm performs the
above mentioned mapping between AMDL control structures
and their VHDL implementations. In this step a hierarchical data
structure (practically a tree) containing FSM-snippets is gener-
ated. In the second step the required clock cycles are minimized
by detecting the possible concurrencies between the control
states. The RTL model generator then creates the whole FSM
implementation based on the optimized tree of control states.

4.3.2 VHDL implementation schemes
We have developed two implementation schemes called

behavioral RTL and structural RTL models. Their naming
reflects the fact that these two models represent slightly differ-
ent levels of abstraction within RTL. Behavioral RTL is a com-
pact, one-process description of FSMs, which includes the data
storage resources as internal signals and the data manipulating
resources as operator calls embedded into the FSM’s behavio-
ral description. Figure 18 shows an exemplary behavioral RTL
model of an accumulator circuit.

Fig. 18 Behavioral RTL model of an accumulator circuit.

The structural RTL model is a more detailed one with
regard to the circuit structure. It describes the AMDL resources
declared in the declaration part as independent entity-archi-
tecture pairs interconnected in a separate datapath model. In
this case the FSM scheduling the operation of the datapath
resources is implemented as a separate entity-architecture pair

as well. Figure 19 shows certain details of the accumulator cir-
cuit’s structural RTL implementation.

Fig. 19 Structural RTL model of an accumulator circuit.

The steps of the top-down AMDL to VHDL model transfor-
mation are the following:

1.	 An implementation frame is created which comprises the
VHDL language elements describing the details which
are identical in every model using the same target archi-
tecture model (e.g. general model structure and hierar-
chy, FSM templates including common states and sig-
nals, etc.)

2.	 The implementation frame is complemented with the de-
sign-specific details. The pre-defined VHDL counterparts
of the AMDL resources are integrated into the datapath
model and the control states realizing the applied control
structures are embedded into the FSM templates.

5 A recommended AMDL-based design flow
Traditional RTL design includes several subtasks which

may be classified based on the amount of required intuitive
decisions. In our discussion resource allocation, operation
scheduling, and binding are considered completely intuitive
tasks, therefore they are called primary RTL subtasks. An RTL
designer also has to deal with subtasks which mainly depend on
chip-level decisions or may be performed mechanically. These
secondary RTL subtasks include timing model selection (latch
vs. flip-flop), phase signal generation and propagation, design-
ing the reset mechanism and reset circuitry etc. AMDL-based
design flow represents a middle course between HLS and hand-
optimized RTL in the following manner:

•	 It provides the designer with high level language con-
structs in order to improve design time.

•	 It forces the designer to manually perform the primary
RTL subtasks in order to ensure the possibility of com-
prehensive datapath and scheduling optimization.

•	 It automatizes the secondary RTL subtasks.

119RTL Design Methods for SoCs Used in CPS Applications� 2016 60 2

Figure 20 shows the intended AMDL-based design flow.

Fig. 20 Integrating AMDL into the traditional design flow.

The AMDL language is basically a very specific means
for the RTL designer, therefore it incorporates the traditional
design flow after the formal specification (usually an execut-
able specification described with a high level programming
language such as C or C++) is done. The primary RTL sub-
tasks are then performed in the language environment provided
by AMDL. Once the AMDL model is prepared, the secondary
RTL subtasks may be performed using the synthesis method
presented in Section 4.3. Note that the AMDL model itself
is not functionally complete, since it does not describe the
operators’ behavior. There are two ways to complete the out-
put model; (i) An RTL component library can be prepared and
the required elements of it can be selected for complementing
the output model, since the operators embedded in an AMDL
model are typically widely used arithmetic/logic circuits whose
VHDL representations are available in generic forms. (ii) If
the operator’s functionality is application-specific, its VHDL
model may be prepared by hand. In extreme cases, when the
area and/or timing requirements are very rigorous, the designer
may want to implement all operators by hand. In this case the
AMDL synthesis tool is used only for generating the VHDL
model of the control unit and for creating a “shell” for the data-
path resources which can be manually completed with hand-
made, highly optimized code.

6 Experimental results
Numerous test systems have been developed to ascertain the

efficiency of the proposed modeling method and to ensure that
the qualities of the generated RTL models are sufficient. Because
of the specific synthesis method based on the implementation

schemes discussed before, the following investigation could be
performed: The implementation schemes define strictly how the
elements of an algorithmic specification should be implemented
in the RTL model. This means that the behavioral RTL and the
structural RTL implementations can be created not only with
the AMDL synthesis tool we developed but by hand-crafted
RTL coding as well. To compare hand-optimized and AMDL-
based design efficiencies, the traditional hand-optimized RTL
and the above discussed AMDL-based design flow have been
performed concurrently. The behavioral RTL and structural
RTL implementation schemes were used in both design flows
as guidelines for implementation details. Since the output RTL
models obtained were practically identical, the development
times and manually prepared code sizes could be directly com-
pared. The test systems have the following features:

•	 MULT: 32×32-bit unsigned shift&add multiplier.
•	 PIEZO: Application-specific digital pre-processor devel-

oped for a piezoresistive MEMS force sensor system. (1)
gives the realized equation. E, a, b, π, l, A, VT , n, and Vref
are run-time configurable parameters characteristic of the
MEMS structure and the analog read-out circuitry which
the digital post-processor is connected to, and Vout,d is the
output of the A/D converter. It uses 32-bit fixed-point
arithmetic, the precision is synthesis parameter.

F Eab

l AV
V V

V V

T ref out d
n

ref out d
n=

−










×
2

3
2 2

2
π ,

,

•	 FIR4: 4-channel FIR filter including an SPI interface
circuitry. Through this programming interface the order
(up to 255) and the coefficients of the channels may be
configured in runtime. The circuit uses 32-bit fixed-point
arithmetic with a precision of 2-20.

•	 TYLR: An arithmetic unit capable of calculating the val-
ues of sin, ln and exp functions in a limited range based
on their Taylor-polynomials. The required degree and the
base of the polynomials are automatically determined
based on the argument. The circuit uses 32-bit fixed-
point arithmetic with a precision of 2-26.

•	 FFT: Generic n-point Fast Fourier Transform unit imple-
menting the Cooley-Tukey Radix-2 algorithm where n is
a synthesis parameter. The circuit uses 32-bit fixed-point
arithmetic with a precision of 2-20. General-purpose in-
put and an output FIFO interfaces are also provided. The
circuit reads the samples in natural order (bit-reverse re-
ordering is included).

•	 MINK: Arithmetic unit calculating the Minkowski-norm
of vectors defined by (2),

d w x xij k
r

ik jk

r

k

p
r= × −()

=
∑

1

(1)

(2)

120 Period. Polytech. Elec. Eng. Comp. Sci.� P. Horváth, G. Hosszú, F. Kovács

•	 where p and r are run-time configurable parameters. The
circuit uses 32-bit fixed-point arithmetic with a precision
of 2-20. It implements the Newton-iteration method for rth
root calculation including a shift&subtract divisor.

•	 ISP1: Programmable processor implementing a 3-address
instruction set with a 3-stage 32-bit wide pipelined data-
path including a 32-word register file, a DSP ALU and a
64-bit wide accumulator storing the results of the 5 DSP
instructions. The core provides high-speed external input
and output FIFO interfaces. To minimize the control haz-
ard occurrence the core performs 2-bit dynamic branch
prediction with a 256-entry branch history table. To pre-
vent data hazards the microarchitecture implements data
forwarding.

•	 ISP2: Educational case study for hardware accelerator-
based ASIPs. The 32-bit wide 5-stage pipelined datapath
implements 64 instructions (based on MIPS and SPARC
ISAs) including 9 DSP instructions. The data forward-
ing and branch prediction system is equivalent to that ap-
plied in ISP1. Additionally, it includes a loosely-coupled
accelerator with a 32-word input parameter table and
a dedicated interface to the data cache controller. This
general-purpose interface makes it possible to implement
different accelerator functionalities for different applica-
tion domains. In the default configuration the accelerator
implements fixed-point and integer division algorithms
(shift&subtract). The data cache interface is WISH-
BONE-compatible.

Table 5 shows the results of the development efficiency
investigations in case of the above test systems.

Table 5 AMDL vs. hand-crafted VHDL development effort comparisons.

Test
system

Dev. time (PH) VHDL LOC
(bhv / str)

AMDL LOC
(AMDL + VHDL)VHDL AMDL

MULT 3 0.3 100 / 180 40 + 0

PIEZO 6 1.5 240 / 730 190 + 0

FIR4 20 6 390 / 730 210 + 0

TYLR 10.2 3.4 430 / 720 300 + 0

FFT 60-70 14.6 770 / 1300 440 + 0

MINK 17.7 4.2 430 / 620 420 + 0

ISP1 280-300 50-60 600 / 2900 500 + 190

ISP2 400-450 150-170 1900 / 3800 800 + 900

In Table 5 PH stands for Person-Hour and LOC stands for
Lines of Code. In the column labeled VHDL LOC the numbers
indicate the code sizes of the behavioral RTL and the struc-
tural RTL implementations respectively. In the last column the
VHDL code sizes of the unique operators are also indicated,

since these code snippets have to be prepared by hand in the
AMDL-based design flow as well. Zero VHDL code size in
this column means that the applied operators were available
as reusable library elements. The conclusion can be drawn that
the AMDL-based design flow ensures a much more effective
development than tradition hand-crafted RTL coding, while it
also ensures the quality of the results because of its synthesis
process based on strictly defined implementation schemes.

7 A qualitative comparison of IP delivery methods
The aims and scopes of the design methods discussed in

Section 2 are very similar to those addressed by AMDL, there-
fore a comparison of them is provided in this section.

BSV has been developed for describing parallelized data
processing constructs. The designer can concentrate on sim-
ple pieces of the system without needing to explicitly handle
concurrencies. The atomic transaction-based semantics of BSV
has proved to be especially useful in case of flexible pipelines
which are not directly supported in AMDL. Contrary to this,
AMDL is effective in describing algorithmic content, which is
favorable in case of SoCs underlying CPS applications, since
the specifications of such systems, including the components
intended to be realized in a hardware accelerator, are usually
described with a high level algorithm that can be more easily
transformed into AMDL than into BSV.

Similarly to AMDL, ADLs also provide target architecture
models which their specific synthesis tools are based on. In
case of AMDL the target architecture model is more widely
applicable since there are no significant limitations regarding
the microarchitecture. This advantage of AMDL over ADLs
becomes a disadvantage when the specification requirements
fit well with the target architecture model of a certain ADL.
The more specific architecture model may result in a more opti-
mized output model, unless the hand-written HDL inclusion of
AMDL is exploited but in this case the increased development
time has to be taken into consideration as well.

AMDL provides a solution for the best known disadvantage
of C-based HLS procedures, namely that the microarchitectural
details are hidden from the designer. In the AMDL-based design
the resource-allocation, scheduling, and binding tasks are pur-
posely given to the designer for hand-optimization, while in
case of HLS tools these tasks are automatized. That means
that the aforementioned design time improvement ensured by
AMDL is absent in case of the main target applications of HLS
(DSP algorithms with regular computation models). However,
the hand-crafted, detailed access to scheduling properties of the
AMDL-based design may lead to a better result in case of CPS
applications’ hardware accelerators which have to ensure pre-
dictable response times and latencies.

Table 6 shows a summary of the advantages and disadvan-
tages of the design methods, which may be used for IP delivery
of SoCs.

121RTL Design Methods for SoCs Used in CPS Applications� 2016 60 2

8 Conclusions
The SoCs supporting CPS applications are facing a demand

for constantly growing computational capacities while the sig-
nificance of the development time is also increasing because
of the rigorous time-to-market requirements. RTL design is
a crucial step in the design flow from the viewpoint of both
of these perspectives. This paper gives an overview of design
techniques used to improve the efficiency of RTL design of
complex SoCs’ macrocells. To cope with the known problems
of these techniques, a novel modeling language (called AMDL)
and RTL model generation method has been developed. Con-
trary to the previous publications related to the proposed solu-
tion this article details on the formal definitions of the syntactic
and semantic elements of the language. Based on the design
efficiency investigations it may be concluded that the proposed
modeling means is a promising candidate for fulfilling the gap
between high level synthesis tools optimized for development
effort and hand-optimized RTL used for comprehensive archi-
tectural optimization. However, further research in the direc-
tion of highly parallelized constructs and dynamically sched-
uled pipelined architectures should be performed to extend the
presented method’s scope, improving its applicability hereby.

Acknowledgement
The work was supported by the EuroCPS (No. 644090)

Horizon 2020 Project of the EU.

References
[1]	 Ahmed, S. H., Gwanghyeon, K., Dongkyun, K. "Cyber Physical System:

Architecture, applications and research challenges." In: Wireless Days
(WD), Valencia, Spain, Nov. 13-15, 2013. pp. 1-5.

	 DOI: 10.1109/wd.2013.6686528

[2]	 Taherkordi, A., Eliassen, F. "Towards Independent In-Cloud Evolution of
	 Cyber-Physical Systems." In: IEEE International Conference on Cyber-

Physical Systems, Networks, and Applications (CPSNA), Hong Kong,
China, Aug. 25-26, 2014. pp. 19-24. DOI: 10.1109/cpsna.2014.12

[3]	 Wolf, M., Feron, E. "What don’t we know about CPS architectures?" In:
Design Automation Conference (DAC), San Francisco, CA, USA, June
8-12, 2015. pp. 1-4. DOI: 10.1145/2744769.2747950

[4]	 Sarma, S., Dutt, N., Gupta, P., Venkatasubramanian, N., Nicolau, A. "Cy-
berPhysical-System-On-Chip (CPSoC): A self-aware MPSoC paradigm
with cross-layer virtual sensing and actuation." In: Design, Automation
& Test in Europe Conference and Exhibition (DATE), Grenoble, France,
March 9-13, 2015. pp. 625-628. DOI: 10.7873/date.2015.0349

[5]	 Sarma, S., Dutt, N. "FPGA emulation and prototyping of a cyberphys-
ical-system-on-chip (CPSoC)." In: 25th International Symposium on
Rapid System Prototyping (RSP), New Delhi, India, Oct. 16-17, 2014.
pp. 121-127. DOI: 10.1109/rsp.2014.6966902

[6]	 Hamalainen, T. D., Salminen, E. "Gamification of System-on-Chip de-
sign." In: International Symposium on System-on-Chip (SoC), Tampere,
Finland, Oct. 28-29, 2014. pp. 1-8. DOI: 10.1109/issoc.2014.6972441

[7]	 Lichen, Z. "An integration approach to specify and model automotive
cyber physical systems." In: International Conference on Connected Ve-
hicles and Ecpo (ICCVE), Las Vegas, NY, USA, Dec. 2-6, 2013. pp.
568-573. DOI: 10.1109/iccve.2013.6799856

[8]	 Chengyuan, Y., Song, J., Xuan, L. "An Architecture of Cyber Physical
System Based on Service." In: International Conference on Computer
Science & Service System (CSSS), Nanjing, China, Aug. 11-13, 2012.
pp. 1409-1412. DOI: 10.1109/csss.2012.355

[9]	 Lichen, Z. "Modeling large scale complex cyber physical control systems
based on system of systems engineering approach." In: 20th International
Conference on Automation and Computing (ICAC), Cranfield, England,
Sept. 12-13, 2014. pp. 55-60. DOI: 10.1109/iconac.2014.6935460

[10]	 Berger, R., Chadwick, S., Chan, E., Ferguson, R., Fleming, P., Gilliam, J.,
Graziano, M., Hanley, M., Kelly, A., Lassa, M., Bin, L., Lapihuska, R.,
Marshall, J., Miller, H., Moser, D., Pirkl, D., Rickard, D., Ross, J., Saari, B.,
Stanley, D., Stevenson, J. "Quad-core radiation-hardened system-on-chip
power architecture processor." In: IEEE Aerospace Conference, Big Sky,
MT, USA, March 7-14, 2015. pp. 1-12. DOI: 10.1109/aero.2015.7119114

Table 6 Advantages and drawbacks of the discussed modeling methods.

Method Advantages Drawbacks

hand-written
RTL

•	no architectural limitations
•	high-quality hardware model

•	 time-consuming
•	error-prone

BSV
•	high-quality hardware model
•	efficient means for modeling flexible pipelines

•	algorithmic content is difficult to express
•	 limited design space exploration capabilities

ADLs
•	 rapid prototyping
•	detailed microarchitectural model

•	 restricted applicability of the generated RTL
model (post-processing needed)

•	 limited target architecture model

HLS
•	rapid prototyping
•	algorithmic design style
•	high-quality hardware model

•	 limited application domain
•	 syntactic variance
•	 limited RTL optimization capabilities

AMDL

•	accessibility of microarchitectural details
•	high-quality hardware model
•	flexible target architecture model
•	decreased design time compared to more

general design methods

•	 lack of means for modeling flexible pipelines
•	 increased design time compared to more

specific methods

http://dx.doi.org/10.1109/wd.2013.6686528
http://dx.doi.org/10.1109/cpsna.2014.12
http://dx.doi.org/10.1145/2744769.2747950
http://dx.doi.org/10.7873/date.2015.0349
http://dx.doi.org/10.1109/rsp.2014.6966902
http://dx.doi.org/10.1109/issoc.2014.6972441
http://dx.doi.org/10.1109/iccve.2013.6799856
http://dx.doi.org/10.1109/csss.2012.355
http://dx.doi.org/10.1109/iconac.2014.6935460
http://dx.doi.org/10.1109/aero.2015.7119114

122 Period. Polytech. Elec. Eng. Comp. Sci.� P. Horváth, G. Hosszú, F. Kovács

[11]	 Bogdap, P. "A cyber-physical systems approach to personalized medi-
cine: Challenges and opportunities for NoC-based multicore platforms."
In: Design, Automation & Test in Europe (DATE), Grenoble, France,
March 9-13, 2015. pp. 253-258. DOI: 10.7873/date.2015.1127

[12]	 Wei, W., Aziz, M. K., Hantao, H., Hao, Y., Hoay, B. G. "A real-time
cyber-physical energy management system for smart houses." In: IEEE
PES Innovative Smart Grid Technologies Asia (ISGT), Perth, WA, West-
ern Australia, Nov. 13-16, 2011. pp. 1-8.

	 DOI: 10.1109/isgt-asia.2011.6167084
[13]	 Shoukry, Y., El-Kharashi, M. W., Hammad, S. "MPC-On-Chip: An Em-

bedded GPC Coprocessor for Automotive Active Suspension Systems."
IEEE Embedded System Letters. 2(2), pp. 31-34. 2010.

	 DOI: 10.1109/les.2010.2051794
[14]	 Brackenbury, L. E. M., Plana, L. A., Pepper, J. "System-on-Chip Design

and Implementation." IEEE Transaction on Education. 53(2), pp. 272-
281. 2010. DOI: 10.1109/te.2009.2014858

[15]	 Qiang, Z., Oishi, R., Hasegawa, T., Nakata, T. "Integrating UML into
SoC design process." In: Proceeding of Design, Automation and Test in
Europe (DATE), Munich, Germany, March 7-11, 2005. Vol. 2. pp. 836-
837. DOI: 10.1109/date.2005.186

[16]	 Schattkowsky, T. "UML 2.0 – overview and perspectives in SoC design."
In: Proceeding of Design, Automation and Test in Europe (DATE), Mu-
nich, Germany, March 7-11, 2005. Vol. 2. pp. 832-833.

	 DOI: 10.1109/date.2005.320
[17]	 Nikhil, R. "Bluespec System Verilog: efficient, correct RTL from high

level specifications." In: IEEE International Conference on Formal Meth-
ods and Models for Co-Design (MEMOCODE), San Diego, CA, USA,
June 22-25, 2004. pp. 69-70. DOI: 10.1109/memcod.2004.1459818

[18]	 Chung, E. S., Hoe, J. C. "High-Level Design and Validation of the BlueS-
PARC Multithreaded Processor." IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems. 29(10), pp. 1459-1470. 2010.
DOI: 10.1109/tcad.2010.2057870

[19]	 Nikolov, H., Rao, A., Deprettere, E. F., Nandy, S. K., Narayan, R. "A
H.264 decoder: A design style comparison case study." In: Conference
Record of the 43rd Asilomar Conference on Signals, Systems and Com-
puters (ACSSC), Pacific Grove, CA, USA, Nov. 1-4, 2009. pp. 236-242.
DOI: 10.1109/acssc.2009.5470115

[20]	 Tradowsky, C., Harbaum, T., Deyerle, S., Becker, J. "LImbiC: An adapt-
able architecture description language model for developing an appli-
cation-specific image processor." In: IEEE Computer Society Annual
Symposium on VLSI (ISVLSI), Natal, South Africa, Aug. 5-7, 2013. pp.
34-39. DOI: 10.1109/isvlsi.2013.6654619

[21]	 Schliebusch, O., Chattopadhyay, A., Witte, E. M., Kammler, D., Ascheid,
G., Leupers, R., Meyr, H. "Optimization techniques for ADL-driven RTL
processor synthesis." In: 16th International Workshop on Rapid System
Prototyping (RSP), Montreal, Canada, June 8-10, 2005. pp. 165-171.
DOI: 10.1109/rsp.2005.36

[22]	 Schliebusch, O., Chattopadhyay, A., Leupers, R., Ascheid, G., Meyr, H.,
Steinert, M., Braun, G., Nohl, A. "RTL processor synthesis for architec-
ture exploration and implementation." In: Proceedings of Design, Auto-
mation & Test in Europe Conference and Exhibition, Paris, France, Feb.
16-20, 2004. Vol. 3. pp. 156-160. DOI: 10.1109/date.2004.1269223

[23]	 Taghavi, T., Pimentel, A. D., Thompson, M. "System-level MP-SoC de-
sign space exploration using tree visualization." In: 7th Workshop on
Embedded Systems for Real-Time Multimedia (ESTIMedia), Grenoble,
France, Oct. 15-16, 2009. pp. 80-88.

	 DOI: 10.1109/estmed.2009.5336816
[24]	 Coussy, P., Gajski, D. D., Meredith, M., Takach, A. "An Introduction to

High-Level Synthesis." IEEE Design & Test of Computers. 26(4), pp.
8-17. 2009. DOI: 10.1109/mdt.2009.69

[25]	 Martin, G., Smith, G. "High-Level Synthesis: Past, Present, and Future."
IEEE Design & Test of Computers. 26(4), pp. 18-25. 2009.

	 DOI: 10.1109/mdt.2009.83
[26]	 Arvind, Nikhil, R. S., Rosenband, D. L., Dave, N. "High-level synthesis:

an essential ingredient for designing complex ASICs." In: International
Conference on Computer Aided Design (ICCAD), San Jose, CA, USA,
Nov. 7-11, 2004. pp. 775-782. DOI: 10.1109/iccad.2004.1382681

[27]	 "Achieving Timing Closure with Bluespec SystemVerilog." White Paper,
Bluespec, Inc., 2004. URL: http://www.bluespec.com/forum/download.
php?id=22

[28]	 Nikhil, R., Czeck, K. "BSV by Example." Chapter 1.3, Bluespec Inc.,
2010.

[29]	 Horváth, P., Hosszú, G., Kovács, F. "A Proposed Synthesis Method for
Application-Specific Instruction Set Processors" Microelectronics Jour-
nal. 46(3), pp. 237-247. 2015. DOI: 10.1016/j.mejo.2015.01.001

[30]	 Horváth, P., Hosszú, G. "ARTL-Based Hardware Synthesis to Non-Het-
erogeneous Standard Cell ASIC Technologies." Journal of Low Power
Electronics. 11(3), pp. 278.289. 2015.

[31]	 Rigo, S., Araujo, G., Bartholomeu, M., Azavedo, R. "ArchC: A systemC-
based architecture description language." In: 16th Symposium on Com-
puter Architecture and High Performance Computing (SBAC-PAD), Foz
do Iguacu, Brazil, Oct. 27-29, 2004. pp. 66-73.

	 DOI: 10.1109/sbac-pad.2004.8
[32]	 Unified Modeling Language™ (UML®) Resource Page. [Online] Avail-

able from: www.uml.org [Accessed: 22th August 2015]

Annex A – The EBNF description of AMDL
system_model ::= (machine_definition | pipeline_

definition | isa_definition)+

machine_definition ::= ‘machine’ id ‘is’ declaration*

‘begin’ functional_statement* ‘end’ ‘machine’ ‘;’

pipeline_definition ::= ‘pipeline’ id ‘of’ ‘machine’

id ‘is’ ((declaration* ‘begin’ functional_

statement* ‘end’ ‘pipeline’ ‘;’) | (‘like’ id ‘of’

‘machine’ id ‘;’))

isa_definition ::= ‘isa’ ‘of’ ((‘machine’ id) |

(‘pipeline’ id ‘.’ id)) ‘is’ isa_address_length_

definition isa_word_length_definition isa_opcode_

length_definition ‘begin’ instruction_definition*

‘end’ ‘isa’ ‘;’

id ::= letter (letter | decimal_number)*

declaration ::= resource_declaration | constant_

declaration

functional_statement ::= label? (assignment |

conditional_statement | loop | block | control_

statement) ‘;’

isa_address_length_definition ::= ‘address’ ‘length’

‘:’ decimal_number+ ‘;’

http://dx.doi.org/10.7873/date.2015.1127
http://dx.doi.org/10.1109/isgt-asia.2011.6167084
http://dx.doi.org/10.1109/les.2010.2051794
http://dx.doi.org/10.1109/te.2009.2014858
http://dx.doi.org/10.1109/date.2005.186
http://dx.doi.org/10.1109/date.2005.320
http://dx.doi.org/10.1109/memcod.2004.1459818
http://dx.doi.org/10.1109/tcad.2010.2057870
http://dx.doi.org/10.1109/acssc.2009.5470115
http://dx.doi.org/10.1109/isvlsi.2013.6654619
http://dx.doi.org/10.1109/rsp.2005.36
http://dx.doi.org/10.1109/date.2004.1269223
http://dx.doi.org/10.1109/estmed.2009.5336816
http://dx.doi.org/10.1109/mdt.2009.69
http://dx.doi.org/10.1109/mdt.2009.83
http://dx.doi.org/10.1109/iccad.2004.1382681
http://www.bluespec.com/forum/download.php?id=22
http://www.bluespec.com/forum/download.php?id=22
http://dx.doi.org/10.1016/j.mejo.2015.01.001
http://dx.doi.org/10.1109/sbac-pad.2004.8
www.uml.org

123RTL Design Methods for SoCs Used in CPS Applications� 2016 60 2

isa_word_length_definition ::= ‘word’ ‘length’ ‘:’

decimal_number+ ‘;’

isa_opcode_length_definition ::= ‘opcode’ ‘length’

‘:’ decimal_number+ ‘;’

instruction_definition ::= id ‘:’ constant_literal

instruction_parameter_list ‘;’

letter ::= ‘a’ | ‘b’ | ‘c’ | ‘d’ | ‘e’ | ‘f’ | ‘g’ |

‘h’ | ‘i’ | ‘j’ | ‘k’ | ‘l’ | ‘m’ | ‘n’ | ‘o’ | ‘p’

| ‘q’ | ‘r’ | ‘s’ | ‘t’ | ‘u’ | ‘v’ | ‘w’ | ‘x’ |

‘y’ | ‘z’ | ‘A’ | ‘B’ | ‘C’ | ‘D’ | ‘E’ | ‘F’ | ‘G’

| ‘H’ | ‘I’ | ‘J’ | ‘K’ | ‘L’ | ‘M’ | ‘N’ | ‘O’ |

‘P’ | ‘Q’ | ‘R’ | ‘S’ | ‘T’ | ‘U’ | ‘V’ | ‘W’ | ‘X’

| ‘Y’ | ‘Z’ | ‘_’

decimal_number ::= ‘1’ | ‘2’ | ‘3’ | ‘4’ | ‘5’ | ‘6’

| ‘7’ | ‘8’ | ‘9’ | ‘0’

resource_declaration ::= controlport_declaration |

dataport_declaration | reg_declaration | regfile_

declaration | operator_declaration

constant_declaration ::= ‘constant’ id ‘:’ constant_

literal ‘;’

label ::= ‘controlpoint’ id ‘:’

assignment ::= left_expression ‘<=’ right_expression

conditional_statement ::= ‘if’ condition ‘then’

functional_statement* elsif_statement* (‘else’

functional_statement*)? ‘end’ ‘if’

loop ::= ‘loop’ functional_statement* ‘end’ ‘loop’

block ::= concurrent_block | structure_block |

stage_block | bypass_block | observer_block

control_statement ::= ‘break’ | ‘continue’ | ‘stop’

| (‘wait’ ‘(‘ (decimal_number)+ ‘) ‘) | (‘redirect

to’ id) | (id ‘.’ ‘start’) | (id ‘.’ ‘stop’) |

‘return’ | (‘bypass’ ‘(‘ id ‘)’)

constant_literal ::= (decimal_number+ (‘B’ | ‘b’ |

‘H’ | ‘h’ | ‘U’ | ‘u’ | ‘S’ | ‘s’))? ‘”’ “-”? hexa_

number+ ‘”’

instruction_parameter_list ::= instruction_word_

fields (‘+’ instruction_word_fields)*

controlport_declaration ::= ‘controlport’ id ‘:’ (

‘input’ | ‘output’) width_definition ‘;’

dataport_declaration ::= ‘dataport’ id ‘:’ (‘input’

| ‘output’) width_definition ‘;’

reg_declaration ::= ‘storage’ id ‘:’ ‘reg’ width_

definition (“:=” constant_literal)? ‘;’

regfile_declaration ::= ‘storage’ id ‘:’ ‘regfile’

width_definition width_definition width_definition

width_definition ‘;’

operator_declaration ::= ‘operator’ id ‘:’ (‘async’

| ‘sync’ | ‘multicycle’) operator_port_list ‘;’

left_expression ::= ‘-’ | operator_expression |

regfile_expression | simple_reference_expression

right_expression ::= ‘-’ | operator_expression |

regfile_expression | simple_reference_expression |

constant_literal

condition ::= (‘(‘ id ‘.’ ‘stopped’ ‘)’) | (

‘(‘ (arithmetic_relation_expression | condition)

(logic_relation (arithmetic_relation_expression |

condition))* ‘)’)

elsif_statement ::= ‘elsif’ condition ‘then’

functional_statement*

concurrent_block ::= ‘concurrent’ (id ‘:’)?

functional_statement* ‘end’ ‘concurrent’

structure_block ::= ‘structure’ (id ‘:’)?

functional_statement* ‘end’ ‘structure’

stage_block ::= ‘stage’ (id ‘:’)? functional_

statement* ‘end’ ‘stage’

bypass_block ::= ‘bypass’ id ‘:’ functional_

statement* ‘end’ ‘bypass’

observer_block ::= ‘observer’ (id ‘:’)?

functional_statement* ‘end’ ‘observer’

hexa_number ::= ‘1’ | ‘2’ | ‘3’ | ‘4’ | ‘5’ | ‘6’ |

‘7’ | ‘8’ | ‘9’ | ‘0’ | ‘a’ | ‘b’ | ‘c’ | ‘d’ | ‘e’

| ‘f’ | ‘A’ | ‘B’ | ‘C’ | ‘D’ | ‘E’ | ‘F’

simple_reference_expression ::= id bit_index?

124 Period. Polytech. Elec. Eng. Comp. Sci.� P. Horváth, G. Hosszú, F. Kovács

instruction_word_fields ::= ‘(‘ (instruction_field_

definition (‘,’ instruction_field_definition)*)? ‘)’

width_definition ::= ‘[‘ decimal_number+ ‘]’

operator_port_list ::= ‘(‘ id width_definition? (‘,’

id width_definition?)* ‘)’ ‘(‘ id width_definition?

(“:=” constant_literal)? (‘,’ id width_definition?

(“:=” constant_literal)?)* ‘)’

regfile_expression ::= id ‘.’ regfile_port_id ‘[‘

(right_expression | decimal_number+)? ‘]’ bit_index?

operator_expression ::= id ‘.’ id bit_index? ‘(‘

(((id ‘=>’)? right_expression) (‘,’ ((id ‘=>’)?

right_expression))*)? ‘)’

arithmetic_relation_expression ::= right_expression

arithmetic_relation right_expression

logic_relation ::= ‘and’ | ‘or’

instruction_field_definition ::= decimal_number+ ‘:’

decimal_number+

bit_index ::= ‘[‘ decimal_number+ (‘:’ decimal_

number+)? ‘]’

regfile_port_id ::= ‘a’ | ‘b’ | ‘c’ | ‘d’ | ‘e’ | ‘f’

| ‘g’ | ‘h’ | ‘i’ | ‘j’ | ‘k’ | ‘l’ | ‘m’ | ‘n’ |

‘o’ | ‘p’ | ‘q’ | ‘r’ | ‘s’ | ‘t’ | ‘u’ | ‘v’ | ‘w’

| ‘x’ | ‘y’ | ‘z’ | ‘A’ | ‘B’ | ‘C’ | ‘D’ | ‘E’ |

‘F’ | ‘G’ | ‘H’ | ‘I’ | ‘J’ | ‘K’ | ‘L’ | ‘M’ | ‘N’

| ‘O’ | ‘P’ | ‘Q’ | ‘R’ | ‘S’ | ‘T’ | ‘U’ | ‘V’ |

‘W’ | ‘X’ | ‘Y’ | ‘Z’

	1 Introduction
	2 Related work
	2.1 The traditional SoC design flow
	2.2 Model-based approaches
	2.3 Methods for optimized architectural design
	.4 Earlier work

	3 The concept of Algorithmic RTL abstraction
	4 Algorithmic Microarchitecture Description Language (AMDL)
	4.1 Target architecture models
	4.2 Language overview
	4.2.1 Resources
	4.2.2 Semantics of expressions and basic assignments
	4.2.3 Control structures

	4.3 Synthesis process
	4.3.1 Implementation scheme-based model transformation
	4.3.2 VHDL implementation schemes

	5 A recommended AMDL-based design flow
	6 Experimental results
	7 A qualitative comparison of IP delivery methods
	8 Conclusions
	Acknowledgement
	References
	Annex A - The EBNF description of AMDL

