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Abstract
Distance fields show up in many problems of 3D vision and 
rendering, for example, a volumetric fusion of depth images 
results in such a field. Distance fields obtained from measured 
values are inherently noisy, so its filtering is needed before 
isoparametric surfaces are extracted from them, and robust 
normal vector estimation also requires a local smoothing since 
differentiation is especially sensitive to noise. In this paper, we 
use regression to find a quadratic function that approximates 
the zero level surface of the distance field, and apply this both 
for filtering and normal vector estimation. We also present 
a computationally efficient method that exploits the regular 
structure of samples, the symmetry and separability of the 
weighting functions, and thus avoids the solution of larger 
linear equations, which otherwise would become necessary 
when regression is generally attacked. The algorithm is a part 
of a real-time volumetric fusion application running on the 
Graphics Processing Units (GPU).

Keywords
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1 Introduction
Distance fields are volumetric models or 3D scalar fields 

where each point is associated with a scalar value of its 
distance from a given surface. A 2D distance field is shown 
by Fig. 1 [6] where gray levels encode distance values from a 
mouse figure and curves depict manifolds of constant distance. 
In 3D, distance fields are usually represented by a voxel array, 
which samples the distance values on a 3D Cartesian lattice 
a.k.a. regular grid.

Fig. 1 2D distance map of a mouse figure: Distances are depicted
by gray levels and isoparametric curves are also drawn.

Distance fields are closely related to implicit surfaces 
[3,8] defined by implicit equation  f(x,y,z) = 0, which defines 
a surface by stating that the surface is a collection of those 
points whose distance from the surface is zero. One difference 
between implicit surfaces and distance fields is that we do not 
require implicit function  f  to give an Euclidean distance from 
the surface, but it is enough that, for example, it is positive if 
the point is outside of the object, negative if it is inside, and 
continuous, so the zero level set is just the surface. Another 
related paradigm is the functional representation [11], which is 
an intuitive mechanism to create implicit functions representing 
surfaces or solids. In geometric modeling the objective is to 
find a function for a given object, and rendering generates an 
image of that object. In reverse engineering, however, we have 
images and wish to find the function from these [13].

2 Previous work
Distance fields have been extensively used in computer 

graphics as a sampled representation of complex geometry 
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[10,3,12,8]. Efficient algorithms also exist for their generation 
and rendering (Fig. 2).

Fig. 2 Distance field rendering with ray marching: Along the rays 
emanated from the eye through the pixels, the algorithm makes small steps 
and reads the distance value at the visited point. When the distance value 
changes its sign, the zero level surface is crossed. The intersection of the 
surface and the ray can be further refined by local tri-linear interpolation. 
The pixel color is obtained by evaluating an illumination formula at the 
identified point, which also needs the normal vector of the intersected 

surface, which is computed as the gradient of the distance field.

In volumetric rendering, the normal vector of the surface is 
usually obtained as the approximated gradient of the 3D scalar 
field. As differentiation amplifies noise and numeric evaluation 
of the derivatives makes the underlying grid structure more 
visible, robust and artifact free normal vector estimation has 
been in the focus of research for many years. A particularly 
elegant technique attacks the problem as a 4D linear regression 
and finds a plane that approximates the isoparametric 
surface locally. The gradient is then the normal vector of this 
approximating plane [9]. Exploiting the fact that samples are 
in a regular structure, the regression problem can be solved 
as a convolution. The idea of finding normal vectors with 
regression has been generalized to quadratic approximation 
surfaces in [5], but that paper has not presented an efficient 
solution method. Instead, it requires the solution of a system of 
linear equations with ten unknowns in each grid point, which is 
unacceptable in a real-time application.

In this current paper we follow the direction proposed in [9], 
but use quadratic approximation and also exploit the fact that 
the scalar field is a distance field. The main contributions of this 
paper are as follows:

• We extend the idea of linear regression to quadratic 
regression and show that the quadratic regression 
problem can also be solved with similar efficiency as 
linear regression.

• We apply the proposed method not only for normal vector 
estimation but also for filtering distance values.

• An efficient and GPU-friendly computation scheme is 
presented, which allows the real-time filtering of distance 
fields emerged in volumetric fusion applications.

The organization of the remaining part of this paper is as 
follows. In Section 3, we present the proposed quadratic 
regression for 3D distance fields and discuss how it can be 
efficiently computed if the weighting scheme is symmetric. 
We also provide the formulae for filtering and normal vector 
estimation. Section 3.1 discusses further speed ups obtained 
when the weighting scheme is a separable function. Section 4 
briefly summarizes our volumetric fusion application for 3D 
reconstruction from noisy depth images, which is the main 
application of the proposed regression scheme. Finally, Section 5 
presents results from the volumetric fusion application.

3 Quadratic regression
Suppose that we have a 3D distance field  F  defined on a 3D 

grid. This 3D distance field is approximated in the neighborhood 
of a grid point  (U, V, W)  by a quadratic function using those 
neighboring grid points that are in an Axis Aligned Bounding 
Box (AABB) centered at the given grid point. For the sake of 
notational simplicity, we set up another coordinate system  x, 

y, z  with an origin at the given grid point, so these coordinates 
express the distances between the given grid point and a point 
in the neighborhood along the coordinate axes. 

The approximating quadratic function is 
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Unknown parameters  p200,…, p000  are determined by 
minimizing the square error 
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computed between unknown function  f  and the original values  
fi  representing distance field  F  at relative grid point (xi , yi , 
zi ). In this equation  wi  is the weight of sample  i, which may 
depend only on relative coordinates  (xi , yi , zi ). 

To get the optimal coefficients, we should make the partial 
derivatives equal to zero with respect to each of them. For 
example, the partial derivative of the error term with respect 
to  p200  is 
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If we assume that the domain of sample points is symmetric 
onto the coordinate planes and weighting scheme  wi  depends 
just on the distance from the coordinate planes, all those terms 

n m k
i i i ii

w x y z∑  are zero where at least one from  n, m, k  is an odd 
number. To prove this, let us consider the symmetric pair of a 
grid point, that is in the mirror position of the coordinate plane 
where the exponent is an odd number. All factors are the same 
for the original and symmetric pair except for the factor having 
odd exponent, which is just the negative version of the original 
term, thus the mirror pair cancels out the term of the original 
point. Thus, only those terms remain where  n, m, k  are all even 
numbers, and Eq. (1) can be written as: 
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To further exploit the symmetry, let us express Cartesian grid 
point coordinates  x, y, z  as products of integer grid point 
coordinates  X, Y, Z  and the distances of the grid points along 
the three axes,  Δx, Δy, Δz:

x X x y X y z Z zi i i i i i= ∆ , = ∆ , = ∆ .

Note that we do not require the same spacing along the different 
coordinate axes. 

Exploiting the symmetry of the three coordinate axes, we get 
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with which we can further simplify Eq. (1) to 
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The symmetry and uniformity of the grid structure can 
be exploited also for the other partial derivatives as well. 
Computing the partial derivatives also with respect to  p020.,   
p002  and   p000, we obtain the following system of equations: 
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This system of equations can be solved in closed form: 
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If the distance field were exact, then the distance between 
the current grid point and the zero level surface would be  p000. 
Thus, the proposed filtering operation replaces the distance 
value at the center grid point by  p000. 

If we wish to approximate the normal vector, i.e. the gradient 
of the distance field as well, then other polynomial coefficients 
are also needed, so we take the remaining unknown parameters 
and make the partial derivatives with respect to them equal to 
zero. The solution is 
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The gradient of the distance field is then 
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Note that the gradient can be evaluated not only in grid points 
but everywhere, and the gradient estimation changes linearly 
between the grid points, which leads to smooth surface rendering.

3.1 Performance issues
The proposed method calculates independent parameters  A, 

B, C, D  and dependent parameters  f000,…, f200  and substitutes 
them into Eqs. (2) and (3). Note that parameters  A, B, C, D

(2)

(3)
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are independent of the actual distance field and can be obtained 
knowing only the weighting function and the size of the 
neighborhood. So these parameters are pre-computed and 
stored as constants.

The computation of dependent parameters  f000,…, f200  
is equivalent to the execution of discrete convolutions of 
distance field  F(U, V, W). If we are calculating, for example,  
f200  for grid point  U, V, W  and the domain of sample points 
is a cube, then index  i  corresponds to that grid point where 
the differences between the grid coordinates and  U, V, W  are 
equal to   X, Y, Z,  respectively:

f U V W w X f
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i
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where   W(X, Y, Z) = w(X, Y, Z) ∙ X. If the cubic domain covers  
N  voxels along all three dimensions, then it contains N 3  
voxels, so the algorithm has cubic complexity with respect to 
the filter size.

The  O(N 3)  complexity can be reduced to linear,  O(N), 
complexity in case of separable filters where the filter kernel 
can be expressed as a product of three factors depending just 
on a single coordinate, i.e. 
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by executing three consecutive filtering steps along the three axes:
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Note that kernels  W  of all equations needed to compute 
the dependent parameters are products of weights  w  and 
coordinates  X, Y, Z. So if  w  is a separable function, all 
kernels W  will also be separable functions. Of course, the 
filter kernels will be different in different dimensions because 
they are occasionally similar to the weight and to the product 
of the weight and the coordinate in other cases. For example, 
if  w  is a box or a Gaussian filter, then it is separable, which 
also makes  W  separable, allowing the processing of larger 
neighborhoods in real-time.

4 Application in volumetric fusion
Depth cameras like Kinect obtain the distance of points 

visible in different pixels, i.e. geometric information about 
the scene. Moving the camera around the object, geometric 
information of different images can be fused together into a 
valid 3D model. Additionally, the temporary result of the fused 
data can be used to find where the camera is moved, executing 

simultaneous localization and mapping (SLAM). A famous 
approach to depth image fusion is the Curless-Levoy algorithm 
[2] that results in a 3D distance field of the reconstructed 
surface. Scene objects can then be extracted as finding the zero 
level surface of this distance field. The output can be a point 
cloud generated by the intersection of the zero level surface and 
the lattice edges of the grid, or a valid triangle mesh generated 
with the marching cubes algorithm [7]. 

If the camera does not move, the Curless-Levoy algorithm 
estimates the signed distance between the surface and the grid 
point along the ray defined by the current pixel. The estimate 
is simply the arithmetic mean of the distances obtained from 
different measurements. To avoid the interference of surfaces 
on opposite sides, this signed distance function is truncated. If 
the camera moves, then the same arithmetic mean is used to 
update distance values. As it is shown in [2], this corresponds 
to the reconstruction of the isosurface with minimal squared 
error where the weighting depends on how long the surface is 
seen recently from different angles. 

We have one remaining problem, to determine how the 
camera moves. The method is incremental, if the camera 
parameters are known in the previous frame, just the rotation 
and translation between the current and previous frames should 
be computed, and this new transformation is concatenated to 
the camera transformation of the previous frame. If we could 
identify a set of corresponding point pairs on two images, then 
we could find that rotation and translation which would align 
the two point clouds making the distance of the new point cloud 
and the transformation of the previous point cloud close to zero. 
This is an optimization problem, which can be solved iteratively.

To find possibly corresponding pairs, we exploit the fact 
that just a little time has elapsed between two frames, so a 
point remains in the same pixel with high probability [4]. This 
is not always true, so outliers must be detected and rejected. 
So we take the distance field and generate a point cloud from 
the camera of the previous frame. Then we take the current 
depth map and back project it to obtain a point cloud in the new 
camera coordinate system. The camera transformation between 
the current and previous frames is expected to align the two 
point clouds. Alignment is detected when back projected points 
are on the zero level surface of the distance field and also that 
the normal vectors of the back projected mesh at these points 
are similar to the normal vectors of the zero level surface. 
If either the distance or the normal vector difference is very 
large, then probably two non-corresponding points are taken, 
so they are rejected as outliers. Otherwise, we consider this 
pair as corresponding and use them while minimizing the total 
distance of the two point clouds. 

The discussed camera tracking algorithm assumes a 
reasonably accurate distance field and normal vectors. This 
requirement makes our quadratic filtering scheme a good 
candidate to improve the SLAM approach.
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Fig. 3 Modified ICP algorithm applied in volumetric fusion

5 Results
We have added the proposed method to our volumetric fusion 

application that is similar to KinectFusion [4,1]. This system is 
implemented in CUDA and runs on NVIDIA 690 GT GPUs at 
30 FPS when fusing  640 × 480  resolution depth images into 
1283  or even higher resolution hierarchical voxel arrays. 

In the implementation of the quadratic regression, we use 
Gaussian weighting and execute three filters along the three 

axes applying the concept of separable filtering. In each of the 
filtering steps, a computational thread is assigned to the output 
voxel addressed by  U, V, W. When the third linear filtering is 
done, all parameters are available, thus the distance value can 
be modified according to Eq. (2). 

Figure 4 shows the reconstruction from a depth image 
sequence that is generated in OpenGL with controllable noise. 
Note that we added significant amount of noise of amplitude 
equal to the 3 percent of the total depth range of the camera. 
The figure shows two frames, one is at the beginning of the 
fusion, so here the distance field is rather noisy since there were 
not enough depth images to construct a noise-free 3D distance 
field. In the second frame, the fusion also reduces noise at those 
surfaces that have been visible for a longer period of time. In 
both cases, the proposed filtering scheme can greatly reduce the 
noise, which is crucial in camera tracking as well. 

Figure 5 shows the reconstruction from a depth image 
sequence provided by a Kinect2 depth camera in our laboratory. 
Compared to Kinect1, the noise level of this new camera is 
much lower, but newly seen surfaces and large camera motions 
are still helped by our proposed method.

Frame 2

Frame 9

not filtered filter size = 2 filter size = 3 filter size = 4

Fig. 4 Teapot with torus and cubes in a room. The upper row shows the second frame, the lower row the 
ninth frame of the video captured during the reconstruction and camera localization.

Frame 2

Frame 9

not filtered filter size = 2 filter size = 3 filter size = 4

Fig. 5 IB312C scene with hard working researchers. The upper row shows the second frame, the lower row 
the ninth frame of the video captured during the reconstruction and camera localization.
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6 Conclusions
In this paper we proposed a filtering and gradient estimation 

scheme for 3D distance fields. The basic idea is to compute a 
three-variate quadratic regression for the noisy data, then the 
samples are replaced by the values of the quadratic function. 
This can be used as filtering and also to robustly estimate the 
gradient, i.e. the normal vector of the isosurfaces. To reduce the 
computational complexity, we generalized a technique that has 
been invented for linear regression, and exploited the regular 
distribution of the sample values.

The method runs on the GPU and is a part of a real-time 
camera tracking and scene reconstruction application.
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