
175Filtering and Gradient Estimation for Distance Fields by Quadratic Regression 2015 59 4

Filtering and Gradient Estimation
for Distance Fields by Quadratic
Regression

László Szirmay-Kalos1*

Received 28 August 2015; accepted 18 November 2015

Abstract
Distance fields show up in many problems of 3D vision and
rendering, for example, a volumetric fusion of depth images
results in such a field. Distance fields obtained from measured
values are inherently noisy, so its filtering is needed before
isoparametric surfaces are extracted from them, and robust
normal vector estimation also requires a local smoothing since
differentiation is especially sensitive to noise. In this paper, we
use regression to find a quadratic function that approximates
the zero level surface of the distance field, and apply this both
for filtering and normal vector estimation. We also present
a computationally efficient method that exploits the regular
structure of samples, the symmetry and separability of the
weighting functions, and thus avoids the solution of larger
linear equations, which otherwise would become necessary
when regression is generally attacked. The algorithm is a part
of a real-time volumetric fusion application running on the
Graphics Processing Units (GPU).

Keywords
distance fields, volumetric models, filtering, regression, 3d
reconstruction

1 Introduction
Distance fields are volumetric models or 3D scalar fields

where each point is associated with a scalar value of its
distance from a given surface. A 2D distance field is shown
by Fig. 1 [6] where gray levels encode distance values from a
mouse figure and curves depict manifolds of constant distance.
In 3D, distance fields are usually represented by a voxel array,
which samples the distance values on a 3D Cartesian lattice
a.k.a. regular grid.

Fig. 1 2D distance map of a mouse figure: Distances are depicted
by gray levels and isoparametric curves are also drawn.

Distance fields are closely related to implicit surfaces
[3,8] defined by implicit equation f(x,y,z) = 0, which defines
a surface by stating that the surface is a collection of those
points whose distance from the surface is zero. One difference
between implicit surfaces and distance fields is that we do not
require implicit function f to give an Euclidean distance from
the surface, but it is enough that, for example, it is positive if
the point is outside of the object, negative if it is inside, and
continuous, so the zero level set is just the surface. Another
related paradigm is the functional representation [11], which is
an intuitive mechanism to create implicit functions representing
surfaces or solids. In geometric modeling the objective is to
find a function for a given object, and rendering generates an
image of that object. In reverse engineering, however, we have
images and wish to find the function from these [13].

2 Previous work
Distance fields have been extensively used in computer

graphics as a sampled representation of complex geometry

1 Department of Control Engineering and Information Technology,
Faculty of Electrical Engineering and Informatics,
Budapest University of Technology and Economics,
H-1521 Budapest, P.O.B. 91, Hungary
* Corresponding author, e-mail: szirmay@iit.bme.hu

59(4), pp. 175-180, 2015
DOI: 10.3311/PPee.8529

Creative Commons Attribution b

research article

PPPeriodica Polytechnica
Electrical Engineering
and Computer Science

http://dx.doi.org/10.3311/PPee.8529

176 Period. Polytech. Elec. Eng. Comp. Sci. L. Szirmay-Kalos

[10,3,12,8]. Efficient algorithms also exist for their generation
and rendering (Fig. 2).

Fig. 2 Distance field rendering with ray marching: Along the rays
emanated from the eye through the pixels, the algorithm makes small steps
and reads the distance value at the visited point. When the distance value
changes its sign, the zero level surface is crossed. The intersection of the
surface and the ray can be further refined by local tri-linear interpolation.
The pixel color is obtained by evaluating an illumination formula at the
identified point, which also needs the normal vector of the intersected

surface, which is computed as the gradient of the distance field.

In volumetric rendering, the normal vector of the surface is
usually obtained as the approximated gradient of the 3D scalar
field. As differentiation amplifies noise and numeric evaluation
of the derivatives makes the underlying grid structure more
visible, robust and artifact free normal vector estimation has
been in the focus of research for many years. A particularly
elegant technique attacks the problem as a 4D linear regression
and finds a plane that approximates the isoparametric
surface locally. The gradient is then the normal vector of this
approximating plane [9]. Exploiting the fact that samples are
in a regular structure, the regression problem can be solved
as a convolution. The idea of finding normal vectors with
regression has been generalized to quadratic approximation
surfaces in [5], but that paper has not presented an efficient
solution method. Instead, it requires the solution of a system of
linear equations with ten unknowns in each grid point, which is
unacceptable in a real-time application.

In this current paper we follow the direction proposed in [9],
but use quadratic approximation and also exploit the fact that
the scalar field is a distance field. The main contributions of this
paper are as follows:

• We extend the idea of linear regression to quadratic
regression and show that the quadratic regression
problem can also be solved with similar efficiency as
linear regression.

• We apply the proposed method not only for normal vector
estimation but also for filtering distance values.

• An efficient and GPU-friendly computation scheme is
presented, which allows the real-time filtering of distance
fields emerged in volumetric fusion applications.

The organization of the remaining part of this paper is as
follows. In Section 3, we present the proposed quadratic
regression for 3D distance fields and discuss how it can be
efficiently computed if the weighting scheme is symmetric.
We also provide the formulae for filtering and normal vector
estimation. Section 3.1 discusses further speed ups obtained
when the weighting scheme is a separable function. Section 4
briefly summarizes our volumetric fusion application for 3D
reconstruction from noisy depth images, which is the main
application of the proposed regression scheme. Finally, Section 5
presents results from the volumetric fusion application.

3 Quadratic regression
Suppose that we have a 3D distance field F defined on a 3D

grid. This 3D distance field is approximated in the neighborhood
of a grid point (U, V, W) by a quadratic function using those
neighboring grid points that are in an Axis Aligned Bounding
Box (AABB) centered at the given grid point. For the sake of
notational simplicity, we set up another coordinate system x,

y, z with an origin at the given grid point, so these coordinates
express the distances between the given grid point and a point
in the neighborhood along the coordinate axes.

The approximating quadratic function is

f x y z p x p y p z
p xy p xz p yz p x p

, ,() = + +

+ + + + +
200

2

020

2

002

2

110 101 011 100 0010 001 000
y p z p+ + .

Unknown parameters p200,…, p000 are determined by
minimizing the square error

E p p w f x y z fi i i i i
i

200 000

2

, ,() = , ,() −()∑

computed between unknown function f and the original values
fi representing distance field F at relative grid point (xi , yi ,
zi). In this equation wi is the weight of sample i, which may
depend only on relative coordinates (xi , yi , zi).

To get the optimal coefficients, we should make the partial
derivatives equal to zero with respect to each of them. For
example, the partial derivative of the error term with respect
to p200 is

∂
∂

=

= 







 + 







 +∑ ∑

E
p

w x p w x y p w x zi i
i

i i i
i

i i i
i

200

4

200

2 2

020

2 2

0

∑∑

∑ ∑











+ 







 + 







 +

p

w x y p w x z p w xi i i
i

i i i
i

i i

002

3

110

3

101

2 yy z p

w x p w x y p w

i i
i

i i
i

i i i
i

i

∑

∑ ∑











+ 







 + 







 +

011

3

100

2

010
xx z p

w x p w x f

i i
i

i i
i

i i i
i

2

001

2

000

2

∑

∑ ∑











+ 







 − 







.

(1)

177Filtering and Gradient Estimation for Distance Fields by Quadratic Regression 2015 59 4

If we assume that the domain of sample points is symmetric
onto the coordinate planes and weighting scheme wi depends
just on the distance from the coordinate planes, all those terms

n m k
i i i ii

w x y z∑ are zero where at least one from n, m, k is an odd
number. To prove this, let us consider the symmetric pair of a
grid point, that is in the mirror position of the coordinate plane
where the exponent is an odd number. All factors are the same
for the original and symmetric pair except for the factor having
odd exponent, which is just the negative version of the original
term, thus the mirror pair cancels out the term of the original
point. Thus, only those terms remain where n, m, k are all even
numbers, and Eq. (1) can be written as:

i
i i

i
i i i

i
i i iw x p w x y p w x z∑ ∑ ∑



































+ +4

200

2 2

020

2 2















































+ = .∑ ∑

p

w x p w x f
i

i i
i

i i i

002

2

000

2

To further exploit the symmetry, let us express Cartesian grid
point coordinates x, y, z as products of integer grid point
coordinates X, Y, Z and the distances of the grid points along
the three axes, Δx, Δy, Δz:

x X x y X y z Z zi i i i i i= ∆ , = ∆ , = ∆ .

Note that we do not require the same spacing along the different
coordinate axes.

Exploiting the symmetry of the three coordinate axes, we get

i
i i

i
i i

i
i i

i
i i i

i
i i i

i
i i i

w X wY w Z A

w X Y w X Z wY Z

∑ ∑ ∑

∑ ∑ ∑

= = = ,

= =

4 4 4

2 2 2 2 2 2 == ,

= = = ,

= ,

∑ ∑ ∑

∑

B

w X wY w Z C

w X f f

i
i i

i
i i

i
i i

i
i i i

2 2 2

2

200

with which we can further simplify Eq. (1) to

Ap x Bp y Bp z Cp f
200

2

020

2

002

2

000 200
∆() + ∆() + ∆() + = .

The symmetry and uniformity of the grid structure can
be exploited also for the other partial derivatives as well.
Computing the partial derivatives also with respect to p020.,
p002 and p000, we obtain the following system of equations:

Bp x Ap y Bp z Cp f

Bp x Bp

200

2

020

2

002

2

000 020

200

2

0

∆() + ∆() + ∆() + = ,

∆() +
220

2

002

2

000 002

200

2

020

2

002

∆() + ∆() + = ,

∆() + ∆() +

y Ap z Cp f

Cp x Cp y Cp ∆∆() + = .z Dp f2

000 000

with the following new shorthand notations

i
i i i

i
i i i

i
i i

i
i

wY f f w Z f f w f f

w D

∑ ∑ ∑

∑

= , = , = ,

= .

2

020

2

002 000

This system of equations can be solved in closed form:

p
A B f C f f f

A B D C000

000 200 020 002

2

2

2 3
=

+() − + +()
+() −

.

If the distance field were exact, then the distance between
the current grid point and the zero level surface would be p000.
Thus, the proposed filtering operation replaces the distance
value at the center grid point by p000.

If we wish to approximate the normal vector, i.e. the gradient
of the distance field as well, then other polynomial coefficients
are also needed, so we take the remaining unknown parameters
and make the partial derivatives with respect to them equal to
zero. The solution is

p
f f C BD C p

A B x

p
f f C BD

200

200 000 000

2

020

020 000

=
− − − /()

−() ∆()
,

=
− − − /CC p

A B y

p
f f C BD C p

A B z

p

()
−() ∆()

,

=
− − − /()

−() ∆()
,

000

2

002

002 000 000

2

1110

110

011

011

101

101

100

100

=
∆ ∆

, =
∆ ∆

, =
∆ ∆

,

=
∆

,

f
B x y

p f
B y z

p f
B x z

p f
C x

pp f
C y

p f
C z010

010

001

001=
∆

, =
∆
,

where

f w X Y f f wY Z f f w X Z f

f w X

i
i i i i

i
i i i i

i
i i i i

i
i

110 011 101

100

= , = , = ,

=

∑ ∑ ∑

∑ ii i
i

i i i
i

i i if f wY f f w Z f, = , = .∑ ∑010 001

The gradient of the distance field is then

∇() = + + + ,

∇() = + + +

f p x p y p z p

f p x p x p z p

x

y

2

2

200 110 101 100

020 110 011 0100

002 101 011 001
2

,

∇() = + + + .f p x p x p y pz

Note that the gradient can be evaluated not only in grid points
but everywhere, and the gradient estimation changes linearly
between the grid points, which leads to smooth surface rendering.

3.1 Performance issues
The proposed method calculates independent parameters A,

B, C, D and dependent parameters f000,…, f200 and substitutes
them into Eqs. (2) and (3). Note that parameters A, B, C, D

(2)

(3)

178 Period. Polytech. Elec. Eng. Comp. Sci. L. Szirmay-Kalos

are independent of the actual distance field and can be obtained
knowing only the weighting function and the size of the
neighborhood. So these parameters are pre-computed and
stored as constants.

The computation of dependent parameters f000,…, f200
is equivalent to the execution of discrete convolutions of
distance field F(U, V, W). If we are calculating, for example,
f200 for grid point U, V, W and the domain of sample points
is a cube, then index i corresponds to that grid point where
the differences between the grid coordinates and U, V, W are
equal to X, Y, Z, respectively:

f U V W w X f

W X Y Z F U X V Y W Z W F
i

i i i

X Y Z

200

2, ,() =

= , ,() − , − , −() = ∗

∑

∑∑∑

where W(X, Y, Z) = w(X, Y, Z) ∙ X. If the cubic domain covers
N voxels along all three dimensions, then it contains N 3
voxels, so the algorithm has cubic complexity with respect to
the filter size.

The O(N 3) complexity can be reduced to linear, O(N),
complexity in case of separable filters where the filter kernel
can be expressed as a product of three factors depending just
on a single coordinate, i.e.

W X Y Z W X W Y W ZX Y Z, ,() = () () (),

by executing three consecutive filtering steps along the three axes:

F U V W W Z F U V W Z

F U V W W Y F U V Y W

Z
Z

Z

YZ
Y

Y Z

() () ()

() () ()

, , = , , − ,

, , = , − , ,

∑

∑

ff U V W W X F U X V W
X

X YZ200
() () (), , = − , , .∑

Note that kernels W of all equations needed to compute
the dependent parameters are products of weights w and
coordinates X, Y, Z. So if w is a separable function, all
kernels W will also be separable functions. Of course, the
filter kernels will be different in different dimensions because
they are occasionally similar to the weight and to the product
of the weight and the coordinate in other cases. For example,
if w is a box or a Gaussian filter, then it is separable, which
also makes W separable, allowing the processing of larger
neighborhoods in real-time.

4 Application in volumetric fusion
Depth cameras like Kinect obtain the distance of points

visible in different pixels, i.e. geometric information about
the scene. Moving the camera around the object, geometric
information of different images can be fused together into a
valid 3D model. Additionally, the temporary result of the fused
data can be used to find where the camera is moved, executing

simultaneous localization and mapping (SLAM). A famous
approach to depth image fusion is the Curless-Levoy algorithm
[2] that results in a 3D distance field of the reconstructed
surface. Scene objects can then be extracted as finding the zero
level surface of this distance field. The output can be a point
cloud generated by the intersection of the zero level surface and
the lattice edges of the grid, or a valid triangle mesh generated
with the marching cubes algorithm [7].

If the camera does not move, the Curless-Levoy algorithm
estimates the signed distance between the surface and the grid
point along the ray defined by the current pixel. The estimate
is simply the arithmetic mean of the distances obtained from
different measurements. To avoid the interference of surfaces
on opposite sides, this signed distance function is truncated. If
the camera moves, then the same arithmetic mean is used to
update distance values. As it is shown in [2], this corresponds
to the reconstruction of the isosurface with minimal squared
error where the weighting depends on how long the surface is
seen recently from different angles.

We have one remaining problem, to determine how the
camera moves. The method is incremental, if the camera
parameters are known in the previous frame, just the rotation
and translation between the current and previous frames should
be computed, and this new transformation is concatenated to
the camera transformation of the previous frame. If we could
identify a set of corresponding point pairs on two images, then
we could find that rotation and translation which would align
the two point clouds making the distance of the new point cloud
and the transformation of the previous point cloud close to zero.
This is an optimization problem, which can be solved iteratively.

To find possibly corresponding pairs, we exploit the fact
that just a little time has elapsed between two frames, so a
point remains in the same pixel with high probability [4]. This
is not always true, so outliers must be detected and rejected.
So we take the distance field and generate a point cloud from
the camera of the previous frame. Then we take the current
depth map and back project it to obtain a point cloud in the new
camera coordinate system. The camera transformation between
the current and previous frames is expected to align the two
point clouds. Alignment is detected when back projected points
are on the zero level surface of the distance field and also that
the normal vectors of the back projected mesh at these points
are similar to the normal vectors of the zero level surface.
If either the distance or the normal vector difference is very
large, then probably two non-corresponding points are taken,
so they are rejected as outliers. Otherwise, we consider this
pair as corresponding and use them while minimizing the total
distance of the two point clouds.

The discussed camera tracking algorithm assumes a
reasonably accurate distance field and normal vectors. This
requirement makes our quadratic filtering scheme a good
candidate to improve the SLAM approach.

179Filtering and Gradient Estimation for Distance Fields by Quadratic Regression 2015 59 4

Fig. 3 Modified ICP algorithm applied in volumetric fusion

5 Results
We have added the proposed method to our volumetric fusion

application that is similar to KinectFusion [4,1]. This system is
implemented in CUDA and runs on NVIDIA 690 GT GPUs at
30 FPS when fusing 640 × 480 resolution depth images into
1283 or even higher resolution hierarchical voxel arrays.

In the implementation of the quadratic regression, we use
Gaussian weighting and execute three filters along the three

axes applying the concept of separable filtering. In each of the
filtering steps, a computational thread is assigned to the output
voxel addressed by U, V, W. When the third linear filtering is
done, all parameters are available, thus the distance value can
be modified according to Eq. (2).

Figure 4 shows the reconstruction from a depth image
sequence that is generated in OpenGL with controllable noise.
Note that we added significant amount of noise of amplitude
equal to the 3 percent of the total depth range of the camera.
The figure shows two frames, one is at the beginning of the
fusion, so here the distance field is rather noisy since there were
not enough depth images to construct a noise-free 3D distance
field. In the second frame, the fusion also reduces noise at those
surfaces that have been visible for a longer period of time. In
both cases, the proposed filtering scheme can greatly reduce the
noise, which is crucial in camera tracking as well.

Figure 5 shows the reconstruction from a depth image
sequence provided by a Kinect2 depth camera in our laboratory.
Compared to Kinect1, the noise level of this new camera is
much lower, but newly seen surfaces and large camera motions
are still helped by our proposed method.

Frame 2

Frame 9

not filtered filter size = 2 filter size = 3 filter size = 4

Fig. 4 Teapot with torus and cubes in a room. The upper row shows the second frame, the lower row the
ninth frame of the video captured during the reconstruction and camera localization.

Frame 2

Frame 9

not filtered filter size = 2 filter size = 3 filter size = 4

Fig. 5 IB312C scene with hard working researchers. The upper row shows the second frame, the lower row
the ninth frame of the video captured during the reconstruction and camera localization.

180 Period. Polytech. Elec. Eng. Comp. Sci. L. Szirmay-Kalos

6 Conclusions
In this paper we proposed a filtering and gradient estimation

scheme for 3D distance fields. The basic idea is to compute a
three-variate quadratic regression for the noisy data, then the
samples are replaced by the values of the quadratic function.
This can be used as filtering and also to robustly estimate the
gradient, i.e. the normal vector of the isosurfaces. To reduce the
computational complexity, we generalized a technique that has
been invented for linear regression, and exploited the regular
distribution of the sample values.

The method runs on the GPU and is a part of a real-time
camera tracking and scene reconstruction application.

Acknowledgement
This work has been supported by OTKA K–104476 and by

VKSZ 14-1-2015-0072 SCOPIA.

References
[1] Chen, J., Bautembach, D., Izadi, S. "Scalable real-time volumetric sur-

face reconstruction." ACM Transactions on Graphics (TOG). 32 (4). pp.
113:1-113:16, 2013. DOI: 10.1145/2461912.2461940

[2] Curless, B., Levoy, M. "A volumetric method for building complex mod-
els from range images." In: Proceedings of the 23rd Annual Conference on
Computer Graphics and Interactive Techniques, (SIGGRAPH ’96). New
York, NY, USA, pp. 303-312. 1996. ACM. DOI: 10.1145/237170.237269

[3] Hart, J. C. "Sphere tracing: Simple robust antialiased rendering of dis-
tance-based implicit surfaces." In: SIGGRAPH 93 Course Notes: Mode-
ling, Visualizing, and Animating Implicit Surfaces. pp 14:1-14:11. 1993.

[4] Izadi, S., Kim, D., Hilliges, O., Molyneaux, D., Newcombe, R., Kohli,
 P., Shotton, J., Hodges, S., Freeman, D., Davison, A., Fitzgibbon, A. "Ki-

nectfusion: Real-time 3d reconstruction and interaction using a moving
depth camera." In: Proceedings of the 24th Annual ACM Symposium on
User Interface Software and Technology, (UIST ’11). New York, NY,
USA, pp. 559-568. 2011. ACM. DOI: 10.1145/2047196.2047270

[5] Jirka, T., Skala, V. "Gradient vector estimation and vertex normal com-
putation." In: Szczyrk International Workshop. pp. 27-32. 2003.

[6] Kimmel, R., Kiryati, N., Bruckstein, A. M. "Sub-pixel distance maps and
weighted distance transforms." Journal of Mathematical Imaging and
Vision. 6 (2-3). pp. 223-233. 1996. DOI: 10.1007/BF00119840

[7] Levoy, M. "Display of surfaces from volume data." IEEE Computer
Graphics and Application. 8 (3). pp. 29-37. 1988. DOI: 10.1109/38.511

[8] Liktor, G. "Ray tracing implicit surfaces on the GPU." In: Central Euro-
pean Seminar on Computer Graphics, CESCG ‘08, 2008.

[9] Neumann, L., Csébfalvi, B., König, A., Gröller, E. "Gradient estimation
in volume data using 4D linear regression." In: Computer Graphics Fo-
rum, 19(3). pp. 351-358, 2000.

[10] Paglieroni, D. W., Petersen, S. M. "Height distributional distance trans-
form methods for height field ray tracing." Transactions on Graphics. 13
(4). pp. 376-399. 1994. DOI: 10.1145/195826.197312

[11] Pasko, A., Adzhiev, V., Sourin, A., Savchenko, V. "Function representation
in geometric modeling: concepts, implementation and applications." The
Visual Computer. 11(8). pp. 429-446. 1995. DOI: 10.1007/BF02464333

[12] Szirmay-Kalos, L., Aszódi, B., Lazányi, I., Premecz, M. "Approximate
ray-tracing on the GPU with distance impostors." Computer Graphics
Forum (Eurographics ‘05), 24 (3). pp. 695-704, 2005.

[13] Várady, T., Martin, R. R., Cox, J. "Reverse engineering of geometric
models - An introduction." Computer-Aided Design. 29(4). pp. 255-268.
1997. DOI: 10.1016/S0010-4485(96)00054-1

http://dx.doi.org/10.1145/2461912.2461940
http://dx.doi.org/10.1145/237170.237269
http://dx.doi.org/10.1145/2047196.2047270
http://dx.doi.org/10.1007/BF00119840
http://dx.doi.org/10.1109/38.511
http://dx.doi.org/10.1145/195826.197312
http://dx.doi.org/10.1007/BF02464333
http://dx.doi.org/10.1016/S0010-4485(96)00054-1

	1 Introduction
	2 Previous work
	3 Quadratic regression
	3.1 Performance issues

	4 Application in volumetric fusion
	5 Results
	6 Conclusions
	Acknowledgement
	References

