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Abstract
The system operators rely on forecasting tools to promote secu-
rity of supply in the case of contingent renewable generation 
upheaval, thus decreasing the chance of counter trading in the 
intraday markets. This work introduces a self-adaptive ensem-
ble based method providing optimal point predictions under the 
square loss function constrained over the probability simplex. 
The output is used to centre a new nonparametric probabilistic 
power forecast that leverages linear interpolation of the order 
statistics, thus providing forecast uncertainty estimations. The 
proposed methodology shows competitive reliability, with cov-
erage and sharpness characteristics that compare favourably 
with reference methods, thus enabling the perusal of forecast 
uncertainty in operations planning.
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1 Introduction
The supply of electricity generated from renewable energy 

sources plays a crucial role in the implementation of the strategic 
European energy targets for decreasing carbon dependency. To 
the political incentive adds the fact that, in general, power pro-
duction from renewable energy sources has lower marginal cost 
than carbon based technologies, which is an economic reason 
for the penetration of renewables in the European power system.

The technology of converting the wind kinetic energy into 
electricity is one of the most mature forms of power production 
from renewable sources. It thus has the potential to provide an 
important contribution for achieving the target of 20% share of 
renewable energy sources in the overall European Community 
energy consumption by 2020.

However, the dispatch of wind energy is challenging due to 
the volatile nature of the wind speed at short-term timescales. 
Therefore, the system operators use forecasting tools to improve 
the security of electricity supply, thus promoting the integration 
of wind in the mix of technologies satisfying the demand.

To promote wind energy integration in the Portuguese electric 
system, REN – the Portuguese Transmission System Operator 
(TSO) – developed a wind power forecast tool to support deci-
sion-making in its control centre. The wind power prediction tool 
is continuously improving since 2004. In 2014, there was 4536 
MW of wind power connected to the Portuguese grid and 24% 
of the electricity consumption was supplied by wind generation.

This work presents and assesses a new methodology lever-
aging a self-adaptive ensemble based method to dynamically 
combine the wind power forecasts, thus providing the optimal 
point prediction under the square loss function constrained over 
the probability simplex. The output is used to estimate the fore-
cast uncertainty in a nonparametric fashion by using order sta-
tistics. Relying on standard evaluation metrics, the results show 
improvements in the performance of both the deterministic fore-
cast and forecast uncertainty estimation over reference methods.

2 Methodology
The proposed methodology is depicted in Fig. 1. REN – the 

Portuguese TSO – uses a dedicated wind power forecast tool 
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at its control centre. The tool converts weather forecasts into 
power forecasts and combines them with independent power 
forecasts, using fixed weights for providing the final wind 
power forecasts. 

In order to provide higher weights to the most accurate 
elements of the ensemble, this work proposes leveraging the 
error measurements to dynamically update the weights of the 
ensemble predictions by using the self-adaptation procedure 
described in Section 2.2. The result is a univariate time-series 
of wind power forecasts.

Univariate time-series of point forecast are also called deter-
ministic forecasts, i.e. there is one value for each time index. 
In complement to this single value information, it is useful for 
decision-making to provide means for assessing the uncertainty 
of a given prediction. 

Forecast uncertainty estimation relies on the probabilistic 
forecast framework. It allows producing a bivariate time-series 
with the upper and lower bound of an interval containing the 
true power production with a given probability. The intervals’ 
extreme points are the probability distribution’s quantiles. A 
comprehensive review of deterministic and probabilistic wind 
power forecast systems can be found in [1, 2]. Market driven 
applications are considered in [3, 4].

2.1 Deterministic Forecast
Deterministic forecasts, or point forecasts, are provided in 

the form of univariate time-series. The power forecast is given 
by the expected value of the power production,  p, conditioned 
by the model at the time of issuing the prediction,  t, and the 
look-ahead time,  h. Denoting the forecast model at computa-
tion time by θt , the power forecast may be written as

f t h E p ht+( ) = { }θ , .

The REN wind power prediction tool uses raw forecast data 
provided by four different forecasters. Two forecasters issue 
weather forecast data (wind speed and air density) while the 
other two issue wind power forecast data. 

The weather forecast providers use only numerical weather 
prediction (NWP) models while the wind power forecast pro-
viders use statistical models together with the NWP models. 
Each one of the four forecasters issues four deterministic 
forecasts per day, with 15 minutes time resolution and 7 days 
ahead time horizon.

Every time raw data is issued, the forecast tool processes 
and validates the provider’s raw data in several ways, such as 
wind farm’s permit limitation, grid and wind farm maintenance 
database, and includes online power data (SCADA). For exam-
ple, considering the weather raw data, one of those processes is 
the conversion of wind to power by means of the corresponding 
manufacturer’s power curve. 

The final deterministic wind power forecast is obtained 
through a linear combination of the last processed power pre-
diction of each provider.

2.2 Dynamic Combination Forecast via Self-adaptation
The deterministic forecast resulting from the method 

explained in the previous section is a fixed weighted linear 
combination of the elements of the ensemble. Thus, the weight 
of each element is insensitive to the observed forecast error. 
However, there are forecasters in the ensemble better than oth-
ers and these are not the same forecasters at all times. 

To fully exploit the predictive power of the ensemble, the 
contribution of each element in the ensemble to the output 
should be updated over time according to the measured forecast 
error. This is called dynamic combination forecast. Further-
more, the system should be aware of what forecasters are better 
at a given time in order to provide the best possible forecast in 
an automatic fashion. This is self-adaptation.

The self-adaptive ensemble based method provides the 
deterministic wind power forecasts according to

f t h a t h f t hi ii

N
+( ) = +

=∑ ( , ) ( ),
1

where the weights a t hi i

N
( , ){ } =1

 are functions of the forecast 
horizon  h  and the computation time  t, such that the resulting 
deterministic forecast  f(t + h)  is the optimal point prediction 
under the square loss function constrained over the probability 
simplex.

Let   = ∈ ={ }+x xn T
:1 1  be the probability simplex (where 

1 is a vector of ones) and  a(t,h)  be a vector collecting the 
combination weights a t hi i

N
( , ){ } =1

. The optimal coefficients are 
given by

Fig. 1 Wind Power Forecast Methodology

Fig. 2 Deterministic Forecast over horizon. Nominal capacity is 3094.3 MW.

(2)(1)
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a F r aa
∗

∈=( , ) argmin ( , , , , ),t h RMSE t h

where RMSE is the root mean squared error,  F  is a matrix col-
lecting historic records of the ensemble forecasters and  r  is a 
vector with the corresponding historic records of the real wind 
power, measured at the control centre.

The model variables  (F, r)  change according to a moving 
window over time (e.g. keeping records up to 15 days pre-
vious to the target  t + h). This moving window defines the 
internal state of the forecast system. Every time a new element 
arrives at the ensemble, a deterministic wind power forecast is 
issued by updating  (F, r)  and computing the weights in (3). 
In other words, the system outputs the dynamic combination 
of the ensemble by self-tuning the weights according to the 
minimization of the RMSE error over the probability simplex, 
i.e. the forecast system internal state changes over time in an 
automatic fashion.

Figure 2 shows an example where the improved performance 
of the self-adaptive dynamic combination over the probability 
simplex presented here can be qualitatively assessed. Quantita-
tive evaluation is shown in Section 3.1. A side benefit of con-
straining over the probability simplex is to provide a straight-
forward interpretation for the combination coefficients: each  ai  
is the rate of each ensemble predictor in the final deterministic 
wind power forecast.

2.3 Probabilistic Forecast and Forecast Uncertainty
Probabilistic forecast delves with the prediction of the prob-

ability distribution of a given random variable (r.v.). As a prob-
ability distribution may be expressed by its quantiles, one may 
estimate the wind power distribution’s quantiles to issue the 
probabilistic wind power forecast [5, 6].

Let  p  be the r.v. representing the wind power produc-
tion and  q1−α  be the quantile of the wind power production 

probability distribution with nominal coverage rate  1−α , i.e.
P{p ≤ q1−α} = 1−α.  The quantile estimation retrieves the inter-
val  [0, q1−α]  of wind power with probability  1−α . However, 
this is only one of many intervals with probability  1−α ; another 
is the following central interval  I1−α = [qα/2 , q1−α/2].

Central intervals are centred on the median of the wind 
power distribution and the extreme points of the intervals cor-
respond to quantiles of the probability distribution of the power 
production.

Another kind of prediction intervals is the intervals centred 
on specific predictions and largely used when applying the Box-
Jenkins method for uncertainty estimation [7]. A prediction 
centred interval is centred on a given power point forecast and 
bounds two regions of equal probability, above and below the 
given central power prediction. Hence, the wind power forecast 
uncertainty is expressed as central, or prediction-centred, inter-
vals where the power production is expected to be found with 
a given probability. This probability is called nominal cover-
age rate. In other words, the output of the forecast uncertainty 
estimation system is a bivariate time-series of interval forecasts 
for a given nominal coverage rate rather than univariate time-
series of point forecasts.

This work uses a nonparametric approach to wind power 
probabilistic forecast. Central intervals are established by pro-
cessing the deterministic forecast ensemble using order statis-
tics. In particular, the incomplete beta function allows to deter-
mine the minimum required sample size for a given nominal 
coverage rate [8]. For example, 39 is the sample size for pre-
dicting a central interval with a given nominal coverage rate of 
95%. Quantiles are modelled as linear functions of the order 
statistics. It is shown by Hall and Rieck [9] that the coverage 
error of quantile estimation by linearly interpolating the sample 
order statistics is  O(N −2), O(N −3) and O(N −4), using, respec-
tively, two, three and five order statistics.

Fig. 3 Forecast uncertainty estimation over horizon. The intervals were computed with the probabilistic forecast approach exploiting the 
quantile linear regression over the order statistics presented in this work (LROS). The left panel shows intervals centred on the fixed weighted 

point prediction (FW+LROS), while the right panel shows intervals centred on the optimal dynamic combination over the probabilistic 
simplex point forecast (DPS+LROS). The nominal capacity is 3094.3 MW.

(3)
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Therefore, the presented approach based on linear interpola-
tion of the order statistics enables an efficient distribution-free 
probabilistic power forecast system, with sample size and cov-
erage error controlled by the required coverage rate.

The forecast uncertainty estimation is provided by predic-
tion-centred intervals. As shown in [4], prediction-centred 
intervals improve the method’s forecast ability when com-
pared to centred intervals, by improving its empirical coverage 
rate. Here, the uncertainty power intervals are centred on the 
optimal point forecast provided by the self-adaptive ensemble 
based method detailed in the previous section.

Figure 3 shows an example of the forecast uncertainty esti-
mation obtained with the nonparametric approach presented 
here. The improved performance of the intervals centred on 
the deterministic forecast provided by self-adaptive dynamic 
combination over the probability simplex can be qualitatively 
assessed. In particular, true power is always within the uncer-
tainty range and it can be found more frequently within lower 
confidence intervals when DPS+LROS is applied. Quantitative 
evaluation is shown in Section 3.2.

3 Evaluation
The evaluation relies on standard metrics and experiments 

including three months of daily data from Portugal, namely 
March, June and September of 2014. 

The forecast systems consider 3094.3 MW out of the 4536 
MW connected to the grid in 2014. The lower value is used as 
the nominal power in the results.

3.1 Evaluating the deterministic forecast
The scoring functions are the RMSE (and the MAE) relative 

to the mean wind power production in each month and aver-
aged over the three months considered on the experiments. 

Figure 4 compares the results. It can be seen that the self-
adaptive dynamic combination over the probability simplex 
(DPS) improves the forecast performance.

3.2 Evaluating the forecast uncertainty estimation
The reliability is a nonparametric metric for assessing the 

quality of probabilistic wind power forecast [10]. It measures 
how much the method’s empirical coverage rate departs from 
the nominal coverage rate. Therefore, this metric is also known 
as calibration. 

Positive values represent the method’s ability to guaran-
tee the requested nominal coverage rate, by including more 
samples within the interval than the percentage defined by the 
nominal coverage rate, while negative values represent the 
method’s inability to meet the requested nominal coverage rate.

Figure 5 compares the reliability of the forecast uncertainty 
estimation when the uncertainty intervals are centred on the 
deterministic forecast with fixed weights (FW+LROS) and 
when the uncertainty intervals are centred on the optimal point 
forecast detailed in Section 2.2 (DPS+LROS). 

It can be seen that the forecast uncertainty estimation relying 
on the self-adaptive method improves the empirical coverage 
rate. As the reliability characteristic is positive, the nominal 
coverage rate is guaranteed.

From this result, the proposed forecast uncertainty estima-
tion methodology is to use the optimal point prediction under 
the square loss function constrained over the probability sim-
plex provided by the self-adaptive ensemble based method in 
Section 2.2 to centre the uncertainty intervals provided by the 
linear regression of the order statistics in Section 2.3.

4 Related work
The work in [10] presents results from the ensemble-based 

approach (EB) [11], the quantile regression approach using 
splines (QRS) [5] and the ZEPHYR [12] using adaptive resa-
mpling, i.e. bootstrap [13] (ZAR). Regarding bootstrap based 
methods, a recent approach (BELM) [6] exploits bootstrap 
together with neural networks, trained with extreme learning 
machine algorithm, to perform quantile regression and provide 
central uncertainty intervals.

Fig. 4 Deterministic Forecast Evaluation Fig. 5 Reliability evaluation of forecast uncertainty estimation.
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Table 1 Comparison with reference methods G, EB, QR and BELM. The better empirical coverages rates and sharpness are in bold

Reference Methods
DPS+LROS

EB QR BELM

NCR [%] 50 75 50 75 90 95 50 75 90 95

Reliability [%] 13.68 4.57 5.58 9.34 2.46 0.30 12.59 7.88 1.83 0.33

Sharpness [p.u.] 0.28 N/A 0.22 N/A N/A 0.11 0.18 0.24 0.28

The ensemble-based method share some features with the 
proposed methodology. It is, therefore, instructive to salient the 
differences. The EB approach [11] exploits an ensemble of pre-
dictions to estimate the power distribution quantiles, as the pro-
posed methodology. However, the EB method provides central 
uncertainty intervals by using cubic splines and logit regres-
sion, which is a different kind of uncertainty interval and a dif-
ferent ensemble processing than the prediction-centred inter-
vals and the linear regression of ordered statistics exploited in 
this work (c.f. Section 2.3).

The proposed methodology (DPS+LROS) is compared with 
reference methods using the reliability and sharpness of the 
estimated uncertainty intervals.

As it was seen in the previous section, reliability provides a 
way of assessing the method’s ability to guarantee the requested 
nominal coverage rate, where positive reliability shows a safe 
margin of operation.

The sharpness metric provides a way to measure the trivial-
ity of the forecasted intervals. It is computed by the average 
length of the intervals: the lower it is, the less uncertain the 
method is regarding the true power production value. There-
fore, a sharp method is a method presenting interval forecasts 
with low average length.

Table 1 shows the comparison with reference methods EB, 
QRS and BELM, where NCR stands for Nominal Coverage 
Rate and N/A means Not Available in the data source. It can be 
seen that the DPS+LROS reliability is consistently competitive 
across the range of nominal coverage rates while keeping the 
forecasted intervals sharp.

Figure 6 shows comparative results with the ZAR method. 
The proposed methodology presents better empirical coverage 
characteristics while forecasting sharper intervals.

5 Conclusion
This work introduced a self-adaptive ensemble based 

method providing optimal point predictions under the quadratic 
error constrained over the probability simplex. 

The forecast uncertainty estimation is obtained by centring a 
new nonparametric probabilistic wind power forecast approach 
that leverages the linear interpolation of order statistics to com-
pute the quantiles of the predictive distribution. It is thus effi-
cient and provides sample size and coverage error control by 
the required coverage rate.

Using standard metrics and 3 months daily data from Por-
tugal, the evaluation of the proposed approach shows the com-
petitive reliability of its prediction intervals, with coverage and 
sharpness characteristics that compare favourably with the refer-
ence methods, thus enabling the perusal of forecast uncertainty 
in decision-making. Reliable and sharp prediction intervals 
reduce the uncertainty in market and system operation planning.
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Fig. 6 Comparison with reference method ZAR.
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