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Abstract
The path-planning problem is commonly formulated to han-
dle the obstacle avoidance constraints. This problem becomes 
more complicated when further restrictions are added. It often 
requires efficient algorithms to be solved. In this paper, a new 
approach is proposed where the path is described by means 
of Non Uniform Rational B-Splines (NURBS for short) with 
more additional constraints. An evolutionary technique called 
Particle Swarm Optimization (PSO) with three options of par-
ticles velocity updating offering three alternatives namely the 
PSO with inertia weight (PSO-W), the constriction factor PSO 
(PSO-C) and the combination of the two(PSO-WC); are used to 
optimize the weights of the control points that serve as param-
eters of the algorithm describing the path. Simulation results 
show how the mixture of the first two options produces a power-
ful algorithm, specifically (PSO-WC), in producing a compro-
mise between fast convergence and large number of potential 
solution. In addition, the whole approach seems to be flexible, 
powerful and useful for the generation of successful smooth 
trajectories for robot manipulator which are independent from 
environment conditions.

Keywords
robot manipulators, path planning, B-splines, particle swarm 
optimization

1 Introduction
In recent years as the technology advanced the use of robots 

become common and human life become easier. Months or 
even years needed to cover long distances on feet or using ani-
mals have been reduced to hours using planes. Planets which 
appear in nights, and seen only by eyes has been explored by 
human using planetary robots. Under sea that represent puz-
zles for human-being have been excavated using under-wa-
ter robots. Complex hard works that need many workers and 
long period to be accomplished have become short time tasks 
through exploiting industrial robots. Chirurgical operations 
that need the presence of doctors and nurses are simplified by 
taking advantage of service robots.

All kinds of robots whether they are mobile or manipula-
tors operate in unknown environments or in environments that 
changed continuously. Therefore, they require an important step 
to accomplish their tasks even though simple or complex. This 
step consists of generating a path that allows the robots to nav-
igate through, without colliding with any of the surrounding 
obstacles. Besides, the path should start form an initial position 
and reach the final one. The main aim behind path planning for 
mobile robots is to make them capable of reacting to any new 
situation they face, thus increase their autonomies, whereas for 
manipulators path planning is necessary for high speed, high pre-
cision and consequently for increasing productivity and safeness.

Generally, existing approaches for solving this problem of 
path planning can be classified into two classes: conventional 
and meta-heuristic. On the one hand, the conventional class 
includes bug algorithms, potential field [1], road map [2, 3], cell 
decomposition and sampling based algorithms [4]. It depends 
on complex mathematical model, and suffers from common 
drawbacks such as the limitation to simple two-dimension 
space, local minima, incompleteness and high computational 
time, produces long and rough paths resulting from a compila-
tion of straight line which cannot be executed by the robot. On 
the other hand, the meta-heuristic class that group neural net-
work [5, 6], fuzzy logic [7], evolutionary algorithms [8] (i.e., 
genetic algorithm, genetic programming, evolutionary pro-
gramming and evolution strategy), ant colony [9] and particle 
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swarm [10-14] emerge to overcome the shortcomings of the 
conventional class. These algorithms are generally population 
based that make a multi exploring search; deals with the prob-
lem of local minima and the high class of configuration space; 
do not call for gradient, high order derivatives or initial estima-
tion of solution. However, they generate smooth paths that are 
more suitable for a robot to execute. An overview of all these 
approaches can be found in [15, 16].

In this paper, we propose an alternative approach to deal 
with the path-planning problem in the existence of obsta-
cles. We start by defining the control point that must be fit-
ted by the end effector of the robot. Then the NURBS curve 
is employed to describe the desired path as weight of rational 
blending functions and directions constraints are assigned at 
each of the controlling point to solve the problem of obstacle 
avoidance. Eventually, the weights of these functions are con-
sidered as parameters of the objective function to be optimized. 
Our approach suggests the use of Particle Swarm Optimization 
(PSO), with three options of updating the particles velocity, to 
solve the path planning problem with obstacle avoidance by 
minimizing the objective function while respecting the addi-
tional directions constraints.

The remainder of this paper is organized as follows. Section 2 
presents preliminaries to the proposed techniques. Section 3 
shows the NURB–Splines-PSO Based approach and the 
execution steps. Simulation results and discussions are given 
in Section 4. Finally, Section 5 outlines the main conclusions.

2 Preliminaries 
2.1 Path planning problem 

The dynamic model of any manipulator robot with n link, 
which shows the relationship between the torques, the joint 
position, joint velocities and accelerations, is expressed by the 
following equation:

  Γ = ( )f q q q fe, , , . 

Its direct kinematic model that expresses the velocities of 
the operational coordinates X  in terms of the joint velocities  
q  is given by:



X Jq= .

where  J  is the jacobian matrix.
The inverse kinematic model that determines the joint veloc-

ities q  in terms of the operational coordinates X  is expressed 
by the relation: 



q J X= −1
.

where  J −1  is the inverse jacobian matrix
The path planning is; therefore, defined as finding the points 

that connect the initial point with the final point and taking into 
consideration avoiding any obstacle presented in the workspace. 
In other words, the goal is to find joint positions, velocities, 

accelerations and torques that allow the robot to move in col-
lision-free path from the starting point until reaching the end.

2.2 NURB-Splines
NURBS are Non-Uniform, Rational, B-splines [17]. They 

are piecewise polynomial functions used to define curves of 
a wide variety such as circles, parabolas, ellipses, lines, and 
hyperbolas. Unlike other curve’s representation, NURBS, 
which are generalizations of non-rational B-splines, features 
local control, and their expression is given by
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2.3 Particle Swarm Optimization (PSO)
2.3.1 Standard PSO

Based on the simulation of the social behavior of birds, 
bees, fishes and other flocks Eberhart and Kennedy in 1995 
introduced a new stochastic optimization technique [18] called 
Particle swarm optimization (PSO). It shares similarities with 
other evolutionary algorithms (EAs) like the use of a popula-
tion (called swarm) of solutions from the search space that are 
initially generated randomly; and the interaction of the solu-
tions (called particles) of the same generation ones with the 
others during search.

Initial phase consists of randomly generating the particles 
according to a uniform distribution in the search space where 
each particle having a velocity which also deriving at random 
according to a uniform distribution. During each iteration t , 
the information available for each particle i is the current posi-
tion of a particle in search space given by a vector  xi(t) , Its 
current velocity  vi(t) , the best visited position for the particle 
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given by a vector  pi(t) , and the best position found by infor-
mants of the particle represented by a vector  gi(t) . Therefore, 
the position of the particle and its velocity is being updated 
using following equations:

v t v t c p x

c g x

x t x t v t

i i i i

i i

i i i

( ) = −( ) + −( )
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( ) = −( ) + ( )
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where  c1  and  c2  are positive constants,  φ1  and  φ2  are two 
random variables with uniform distribution between 0 and 1.

During the evolution of the swarm, if a coordinate  xi(t)  cal-
culated according to equations of motion (8) is less than  xmin  
or greater than  xmax , the corresponding value is replaced by  
xmin  or  xmax , respectively, and the proper velocity  vi(t)  of the 
particle  xi(t)  is remise to 0, the complete mechanism used to 
prevent a particle leaving the search space is then described by 
the following operations:
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2.3.2 PSO with inertia weight (PSO-W)
In an attempt to increase the performance of standard PSO, 

Eberhart and Shi [19] introduced the inertia weight concept. 
With this concept, the new velocity of each particle is not cal-
culated using the same equation as in the standard PSO, but it 
is rather obtained by weighting its previous velocity. Therefore, 
the equation of velocity in (8) is modified to become:

v t w v t c p x

c g x
i i i i

i i

( ) = −( ) + −( )
+ −( )

.

.

1 1 1

2 2

ϕ

ϕ

where  w  is the inertia weight that shows the effect of previous 
velocity vector on the new vector. 

In their work Eberhart and Shi [19] investigate the impact 
of the inertia weight on the performance of the PSO algorithm. 
They vary the inertia weight in a range [0.9,1.4], and they con-
cluded that the range [0.9,1.2]

 
yield better performance. In 

another work, Eberhart and Shi [20] realized that decrease the 
value of the inertia weight linearly form 0.9 to 0.4 is a better 
way to improve the performance of the PSO.

2.3.3 PSO with constriction factor (PSO-C)
In 2002, Clerc and Kennedy explained the concept of the 

constriction factor [21]. They aimed in controlling what they 
call the “explosion” of the swarm that leads to the divergence 
of the PSO. Clerc and Kennedy’s concept led to update the 
equation of velocity in (8) to become as follows:

v t v t c p x

c g x
i i i i

i i

( ) = −( ) + −( )(
+ −( ))
χ ϕ

ϕ

.

.

1 1 1

2 2

The constriction factor  χ  is defined by

χ
ϕ ϕ ϕ

=
− − −( )

2

2 4

.

where   φ = c1 + c2 , φ > 4 .
In their work, the value of  c1  and  c2  were set to 2.05 which 

produce a constriction factor with a value of 0.729.

2.3.4 PSO-W and PSO-C combination (PSO-WC)
In order to improve the performance of the standard PSO 

proposed by Eberhart and Kennedy [18] a variety of modi-
fication were proposed such as the use of inertia weight and 
the constriction factor. Therefore, new options for particles 
updating velocity like inertia weight PSO (PSO-W) and the 
constriction factor PSO (PSO-C) were emerged. However, it 
was observed that the former option has the advantage of sta-
bility in later iterations when the optimum is found, whereas, 
the latter option is characterized by high convergence in early 
stages. Accordingly, a combination of the two previous options 
is used in this work.

When the PSO-C starts first, the particles velocities in the 
new algorithm (PSO-WC) is updated by equation (11). Then 
when a given value of the fitness function is violated, the updat-
ing rule shifts to equation (10) allowing the PSO-W to proceed. 
However, the constant parameters  c1  and  c2  are held invariant 
during the running process. Their values are equal to those of 
the PSO-C starting algorithm.

3 NURB–Splines-PSO Based approach
The technique employed in [17] to generate high degree of 

continuity paths using B-spline functions is extended to the use 
of the NURBS to ensure more smoothness, give more flexibil-
ity to the path (i.e., changing the form of the path from con-
vex to concave and vice versa) and avoid the obstacle by opti-
mizing its weights. Therefore the points that control the curve 
to fit the via points must be altered to guarantee the obstacle 
avoidance by respecting the additional assigned directions con-
straint. Thus, the problem is defined as follows: 
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where  qk  are the via point.  pj  the new computed control point 
which guarantees that  qk  must fitted.

The additional constraint to assign the direction at each via 
point is given as

(8)
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where  tk  are the assigned directions at each via point.
Additionally, the use of a NURBS of degree four with its spec-

ified knot implies the insertion of two more constraint to obtain 
a square system and therefore a unique solution [17]. Thus, the 
curvature at the start and the end points is chosen to be add as
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where  nk  are the curvatures at each of the end points.
The resulting system is defined as
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3.1 The fitness function
The purpose is to solve the problem stated by Eq. (16), while 

minimizing the objective function defined as

f f f f f ft q dis obs s= + + + + .

where  ft  the traveling time, in second, between initial and final 
position defined as

f tt = 1.

fq  represents the total joint traveling distance, in radian, of the 
manipulator described as

f q qq i j i j
j

m

i

n

= − −
==
∑∑ , , .1

21

fdis  represents the total joint traveling distance, in meter, of the 
manipulator as functional

f x y zdis i i i
i

n

= + +
=
∑ 2 2 2

1

fob  It represents the penalty function, with no unit, that guaran-
tee a collision- free motion stated as 

f N u R R Rob ob t ob= ( )∉ ∧ ∉( )0 if

where  N(u)  is the trajectory generated using NURBS and  Rob  
is the space occupied by the obstacle defined as a cylinder with 
the diameter:

r x x y yob = −( ) + −( )0

2

0

2

Rt  the space occupied by the robot during its motion and  fs  
represents the function that ensures the singularity avoidance.

Since the main aim is to produce a collision-free motion with 
no singularities , the traveling time  ft , the total joint traveling 
distance  fq  and the total joint traveling distance  fdis  were not 
weighted; whereas, the singularity avoidance function  fs  and 
the obstacle avoidance function  fob  were weighted as described 
the section below.

Finally, the minimization problem stated by Eq. (17) was 
transformed to a maximization one stated as 

fitness
f

=
+
1

1

3.2 Singularity and obstacle avoidance
On the one hand, the method of pseudo inverse Jacobian is 

used to determine the inverse kinematic of each position. If the 
method converges to a non-singular position in a given number 
of iterations, the singularity avoidance function  fs  is equal to 0. 
However, if the maximum number of iterations is exceeded and 
the method did not converge, the position is considered as sin-
gular; therefore, the singularity avoidance function  fs  is equal 
to its maximum value defined as 10*n*max_iterations, where n 
is the number of all end effector position in the generated path. 
The procedure can be given as follows:

Initialization of max_iterations, initial joint position, first 
iteration.

While (the joint variation is not too small) 
1. Compute the inverse kinematic.

a. Compute the joint variation using the pseudo inverse 
Jacobian.

b. Check if the joint variation is too small.
c. Update the joint position by adding the joint variation.
d. Singularity avoidance function  fs = 0.
e. Increase the number of iterations

End

(14)
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On the other hand, the collision of the robot with the obstacle 
is checked. The collision-free movement yields a null obstacle 
avoidance function ( fob = 0); whereas if there is any collision, 
the number of point k  enter in collision for all the  n  position 
of the generated path is calculated and weighed. Therefore, the 
obstacle avoidance function is given a value  fob = 103*k*n.

3.3 Choice of the parameters
It has been reported that the performance of PSO depend on 

the choice of the parameters. The more adequate the parame-
ters we choose the better performance we get. Thus, the value 
of the constant parameters  c1  and  c2 , the inertia weight w , 
the constriction factor  χ  and the maximum velocity  vmax  were 
cautiously determined in advance. First, the constant parame-
ters  c1  and  c2  for the PSO-W was fixed after performing a 
pretest of the algorithm. Their values were increase by a 0.1 
step in a range [0.1, 3.0] and the fitness value was calculated. 
Consequently, a conclusion was made and the values 0.9 and 
3.0 were found to be the best ones. In addition, the typical 
method suggested by Eberhart and Shi [20] for the inertia 
weight w  parameter was used. This method is based on reduc-
ing the inertia weight w  linearly from 0.9 to 0.4 throughout 
the execution. The aim was to explore the research space in the 
early stages and then exploit the optimum solution at the later 
ones. Second, the PSO-C constriction factor  χ  was set to its 
usual value that is 0.729, which is produced by equal constant 
parameters  c1  and  c2  with a value 2.05. Third, as PSO-C 
algorithm started first, the constant parameters  c1  and  c2  for 
PSO-WC were equal to 2.05 yielding a constriction factor with 
a value 0.729, then when the fitness function reached the value 
0.1 the PSO-W take the turn of the PSO-C. At this stage the 
parameters  c1  and  c2  were kept fixed as in the beginning, 
while the constriction factor is replaced by the inertia weight 
with the strategy of reducing its value from 0.9 to 0.4, but this 
time according to the iteration reached. This later strategy led 
to reduce the inertia weight from a value less than 0.9, but 
reach the value 0.4 at the end. Finally, for the three algorithms 
stated before the value of  vmax  was set to the maximum space 
search range  xmax .

3.4 Execution steps 
The proposed NURBS-PSO path planning approach can be 

summarized in the following procedure with the four steps as 
stated below:

1. Generate the initial particles and their velocities randomly.
Repeat
2. Compute the fitness function.

a. Generate the NURBS path.
b. Check possible singularities.
c. Check possible interferences with the obstacle.
d. Compute trajectory length.

3. Select best particles.

4. Update position and velocity of each particle using the 
appropriate option.

Until the maximum number of generation.

This procedure is transformed into flowchart shown in Fig. 1. 
The two blocs clarify the implementation of the NURPS-PSO 
Algorithm to generate an optimum path.
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Fig. 1 Flowchart of the NURBS-PSO approach.

4 Simulation Results and Discussions
The Kuka KR15 (Fig. 2) robot with a six degrees of freedom 

and nominal payload of 15 kg is our test bed for the path planning.
The parameters of the six-axis Kuka KR15 using the 

Denavit-Hartenberg representation are given in Table 1 [22].

Table 1 Denavit-Hartenberg parameters of Kuka KR15

j αi−1[rad] αi−1[m] θi[rad] di[m]

1 π 0 0 0

2 π ⁄ 2 0, 3 0 0

3 0 0.65 0 0

4 π ⁄ 2 0.155 0 −0.6

5 −π ⁄ 2 0 0 0

6 π ⁄ 2 0 0 0

Finally, Table 2 provides dynamic parameters of the Kuka 
KR15 robot. By using these parameters, we calculate the 
dynamic model of the Kuka KR15 robot through an iterative 
Newton-Euler algorithm.

In order to evaluate the performance of the proposed algo-
rithm we consider the 6 DOF Kuka KR15 robot shown in 
Fig. 2 with the mathematical model shown in Table 1 and 2, 
where the NURB-Spline is selected to describe the path in the 
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three-dimensional space that allow the end effector of robot 
manipulator move through. We start by defining a set of control 
points which delineate the outline of the NURB-Spline curve, 
where each control point is three-dimensional, and is assigned 
three indexes i, j and k . In addition, the obstacle is considered as 
three-dimensional object with width and height, which defined 
in order to cut the spline segments connecting the control points. 

Path planning consists of determining a NURB-Spline curve 
in the workspace, which interpolates the given control points 
and avoid the obstacle while respecting the assigned velocities at 
each via point by optimizing its weights. The first step consists in 
expressing the resulting trajectory in the operational space. Then, 
applying the inverse kinematics model to obtain the joint posi-
tions in terms of the position and orientation of the end-effector

The goal consists on moving the end effector of the robot 
manipulator from initial situation to the final situation that can 
be expressed in many different representations. To avoid the 
problem of the singularities in the representation of the orienta-
tion, we use the quaternion representation [23, 24]. Therefore, 
the vector of operational coordinates X is composed of seven 
components, three components of the position vector and four 
components of the quaternion: 

X
P
Q

x
y
z
n
i
j
k

=



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 =
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



.

In simulation, we plan a multipoint trajectory for position 
and orientation based on quaternion representation and using 
a Non Uniform Rational B-Spline (NURBS) curve of degree 
four with seven control points given as

q
q
q

0

1

2

0 2 0 0 0 0

3 3 12 0 0 0

3 4

= [ ]

= [ ]

=

 -     

 -  -    

 -  

π

π π π

π π

/ ;

/ / / ;

/ / ππ

π π π

π π π

/ ;

/ / / ;

/ / /

6 0 0 0

5 36 4 18 0 0 0

5 36 4 1

3

4

   

 -     

 -  

[ ]

= [ ]

= −

q
q 88 0 0 0

3 4 6 0 0 0

3 3 12 0 0

5

6

   

 -     

 -  -   

[ ]

= −[ ]

= −

;

/ / / ;
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Two situations for solving the path-planning problem were 
studied. First, the free-environment was considered. Then a one 
obstacle-environment was adopted. For each situation, the pro-
posed PSO algorithms with three option of updating the par-
ticles velocities (PSO-W, PSO-C and PSO-WC) were tested. 
They were coded in MATLAB 7.14.0.739 and implemented on 
Intel Core™ i5-4200U CPU with 2.30 GHz and 6 GB of RAM 
under Windows 8. The four-degree NURBS curve with twen-
ty-one knot was chosen to build up a system of sixteen equa-
tions with sixteen unknown control points to be optimized. It 
assured crossing via points in the free-space and collision-free 
in the obstacle environment by forcing the curve to respect the 
given direction while traversing the intermediate points.

We have run the proposed PSO algorithms several times. For 
each one, the swarm includes twenty particles and has a forty 
iterations maximum. We set the lower bound for the weights of 

 

 

Fig. 2 6 DoF industrial robot Kuka KR15

Table 2 Dynamic parameters of the Kuka KR15 robot

Link 1 Link 2 Link3

m[kg] - 33 32

cx[m] - 0.245 0.155

cy[m] - 0 -0.026

cz[m] - 0 0

Ixx[kgm2] - 0.09 0.6

Iyy[kgm2] - 1.98 0.31

Izz[kgm2] 4.4 2.00 0.68

Ixy[kgm2] - 0 0

Ixz[kgm2] - 0 0

Iyz[kgm2] - 0 0

Link 4 Link 5 Link 6

m[kg] 19 9 15

cx[m] 0 0 -0.12

cy[m] 0 0.024 0

cz[m] 0.15 0 -0.29

Ixx[kgm2] 0.5 0.05 0.225

Iyy[kgm2] 0.46 0.02 0.225

Izz[kgm2] 0.12 0.04 0.225

Ixy[kgm2] 0 0 0

Ixz[kgm2] 0 0 0

Iyz[kgm2] 0 0 0

(24)
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the NURBS to 1 and upper bound to 10. The PSO algorithms 
were evaluated in terms of convergence speed, convergence of 
the overall population as shown in Fig. 3, 4, 17 and 18 and the 
average execution time as illustrated in Table 3 and 4. Finally, 
we select the weights vector that gives the more appropriate 
control points for each PSO algorithm, and therefore, the more 
suitable path with the minimum traveling time, as shown in Fig. 
5 to 10 and 19 to 24. In addition, the resulting torques and the 
quaternion Orientation are shown in Fig. 11 to 16 and 25 to 30.

4.1 Path planning in free-environment
The purpose is to move the end effector of the robot manipu-

lator from initial situation throughout the intermediate points to 
the final situation as defined by the quaternion representation. 

Form Table 3, it can be seen that PSO-C took more time than 
the two other algorithms. This may be caused by the dynamic 
nature of the algorithm which may lead to maximum iterations 
in singularity testing function. On the other hand, the least time 
needed by the PSO-W also may be caused by its static nature 
that led to less number of iterations in singularity testing func-
tion. The combination of the two first algorithms led to moder-
ate time in the third one.

Table 3 Performance of PSOs’ in obstacle-free environment 

Criterion PSO-W PSO-C PSO-WC

Average execution time (min) 31 41 37

Form Fig. 3 and 4, it can be seen that the three PSOs almost 
converge to the optimum solution from the first iteration, while 
the overall population converges to the optimum solution at final 
iterations. This indicates that the exploring strategy, in obsta-
cle-free environment with less local optimum, leads to rapid 
convergence of the PSOs in early stages. In turn, the exploiting 
strategy leads the overall population converges to the optimum 
solution. Consequently, this latter offers more potential solution.

Fig. 5 to 10 show the trajectory generated in obstacle-free 
environment for the robot manipulator based on the NURBS 
path planning method, for each PSO algorithm, in three dimen-
sion space and two-dimension space respectively. It can be 
observed that all the via points, form the starting point to the 
final point, are fitted.

Fig. 11 to 16 illustrate the required torques for the planned 
path calculated using the iterative Newton-Euler algorithm, 
and the orientation of the end-effector expressed by means of 
quaternion for each PSO algorithm in free environment. It can 
be noticed that there is small variations in torque for the first 
and the third joint position and for the fourth and sixth for the 
joint orientation, but a higher variation for the second and fifth 
ones. This means that the whole load is supported by this two 
joint. This makes sense since it reflects the reality.

4.2 Path planning in an obstacle-environment
The purpose is to move the end effector of the robot manip-

ulator from initial situation throughout the via points to the 
final situation, defined by the quaternion representation, while 
avoiding the obstacle.

Form Table 4, it can be seen that PSO-W took less time than 
the two other algorithms. Again, the least time needed by the 
PSO-W also may be caused by its static nature that led to less 
number of iterations in singularity testing function. The two 
other algorithms required less time in the obstacle environ-
ment compared to the obstacle-free environment. This may be 
caused by the obstacle avoidance criteria which may led to less 
iterations in singularity testing function.

Table 4 Performance of PSOs’ in an obstacle environment.

Criterion PSO-W PSO-C PSO-WC

Average execution time (min) 28 31 31
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Fig. 3 PSOs’ convergence of best particle in obstacle-free environment
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Fig. 4 PSOs’ convergence of the overall population in obstacle-free environment
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 Fig. 5 3D PSO-W planned path in obstacle-free environment Fig. 6 2D PSO-W planned path in obstacle-free environment
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Fig. 7 3D PSO-C planned path in obstacle-free environment Fig. 8 2D PSO-C planned path in obstacle-free environment
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 Fig. 9 3D PSO-WC planned path in obstacle-free environment Fig. 10 2D PSO-WC planned path in obstacle-free environment 
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Fig. 11 PSO-W resulting Torque in obstacle-free environment Fig. 12 PSO-W resulting Quaternion Orientation in obstacle-free environment
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Fig. 13 PSO-C resulting Torque in obstacle-free environment Fig. 14 PSO-C resulting Quaternion Orientation in obstacle-free environment

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-1000

-500

0

500

1000

To
rq

ue
(N

.m
)

 

 

1 2 3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-100

-50

0

50

100

Time(s)

To
rq

ue
(N

.m
)

 

 

4 5 6

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Time(s)

Q
ua

te
rn

io
n 

or
ie

nt
at

io
n

 

 

n
i
j
k

 
Fig. 15 PSO-WC resulting Torque in obstacle-free environment Fig. 16 PSO-WC resulting Quaternion Orientation in obstacle-free environment
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Form Fig. 17 and 18, it can be observed that PSO-C con-
verges first to the optimum solution, then PSO-WC and finally 
PSO-W. In contrast, the PSO-W overall population converges 
to the optimum solution at final iterations, while the PSO-WC 
is nearly the same, but the PSO-C overall population is some-
what far from optimum solution. This indicates that combi-
nation of the two PSO-W and PSO-C in PSO-WC leads to a 
compromise between a rapid convergence of PSO-WC in early 
stages and offering more potential solution when the overall 
population converges.

Fig. 19 to 24 show the trajectory generated in an obstacle envi-
ronment for the robot manipulator based on the NURBS path 
planning method, for each PSO algorithm, in three dimension 

space and two-dimension space respectively. It can be observed 
how effectively the obstacle is avoided while all the intermediate 
points, form the starting point to the final point, are traversed.

Fig. 25 to 30 demonstrate the necessary torques for the 
designed path computed by means of the iterative Newton-Eu-
ler algorithm, and the orientation of the end-effector displayed 
using the quaternion for each PSO algorithm in an obstacle 
environment. It can be observed that the torque necessary for 
the joint position as well as the one needed for the joint orien-
tation rest in the same ranges as in free-obstacle environment. 
This means the presence of the obstacle does not affect the 
effectiveness of NURBS- PSO based approach in generating 
smooth paths.
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Fig. 17 PSOs’ convergence of best particle in an obstacle environment Fig. 18 PSOs’ convergence of the overall population in an obstacle environment
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 Fig. 19 3D PSO-W planned path in an obstacle environment Fig. 20 2D PSO-W planned path in an obstacle environment 
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 Fig. 21 3D PSO-C planned path in an obstacle environment Fig. 22 2D PSO-C planned path in an obstacle environment  
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Fig. 23 3D PSO-WC planned path in an obstacle environment Fig. 24 2D PSO-WC planned path in an obstacle environment
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Fig. 25 PSO-W resulting Torque in an obstacle environment Fig. 26 PSO-W resulting Quaternion Orientation in an obstacle environment
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5 Conclusion
In this paper, a NURBS-PSO based approach that deals with 

the path-planning problem as well as collision avoidance for an 
industrial robot manipulator with six degrees of freedom KUKA 
KR 15 is proposed. The path interpolating the given control point 
with assign directions is described using the Non Uniform Ratio-
nal B-Spline (NURBS) curve of degree four, while its weights 
are considered as parameters optimized by the PSOs algorithm. 
Obstacle avoidance is achieved by satisfying the path constraints. 
The fitness function is adopted to find a trade-off between oppo-
site goals, the total joint traveling distance, the total Cartesian 
path and time execution in one hand and satisfying the path con-
straints in other hand. Three alternatives of PSO, specifically 
PSO-W, PSO-C and PSO-WC, yielded from three option for 
particles velocity updating, were compared. Interestingly, the 
combination of the first two options (PSO-WC) showed better 
features in terms of offering a compromise between rapid con-
vergence and large number of potential solutions.

Simulation results show how the NURBS curve can describe 
the path with more accuracy, smoothness, flexibility, and useful-
ness. In addition, the Particle Swarm Optimization (PSO) tech-
nique proved its power in dealing with this class of problem.
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