
337Particle Swarm Optimization of... 2017 61 4

Particle Swarm Optimization of Non
Uniform Rational B-Splines for Robot
Manipulators Path Planning

Nadjib Zerrouki1*, Noureddine Goléa2, Nabil Benoudjit1

Received 15 October 2015; accepted after revision 26 September 2017

Abstract
The path-planning problem is commonly formulated to han-
dle the obstacle avoidance constraints. This problem becomes
more complicated when further restrictions are added. It often
requires efficient algorithms to be solved. In this paper, a new
approach is proposed where the path is described by means
of Non Uniform Rational B-Splines (NURBS for short) with
more additional constraints. An evolutionary technique called
Particle Swarm Optimization (PSO) with three options of par-
ticles velocity updating offering three alternatives namely the
PSO with inertia weight (PSO-W), the constriction factor PSO
(PSO-C) and the combination of the two(PSO-WC); are used to
optimize the weights of the control points that serve as param-
eters of the algorithm describing the path. Simulation results
show how the mixture of the first two options produces a power-
ful algorithm, specifically (PSO-WC), in producing a compro-
mise between fast convergence and large number of potential
solution. In addition, the whole approach seems to be flexible,
powerful and useful for the generation of successful smooth
trajectories for robot manipulator which are independent from
environment conditions.

Keywords
robot manipulators, path planning, B-splines, particle swarm
optimization

1 Introduction
In recent years as the technology advanced the use of robots

become common and human life become easier. Months or
even years needed to cover long distances on feet or using ani-
mals have been reduced to hours using planes. Planets which
appear in nights, and seen only by eyes has been explored by
human using planetary robots. Under sea that represent puz-
zles for human-being have been excavated using under-wa-
ter robots. Complex hard works that need many workers and
long period to be accomplished have become short time tasks
through exploiting industrial robots. Chirurgical operations
that need the presence of doctors and nurses are simplified by
taking advantage of service robots.

All kinds of robots whether they are mobile or manipula-
tors operate in unknown environments or in environments that
changed continuously. Therefore, they require an important step
to accomplish their tasks even though simple or complex. This
step consists of generating a path that allows the robots to nav-
igate through, without colliding with any of the surrounding
obstacles. Besides, the path should start form an initial position
and reach the final one. The main aim behind path planning for
mobile robots is to make them capable of reacting to any new
situation they face, thus increase their autonomies, whereas for
manipulators path planning is necessary for high speed, high pre-
cision and consequently for increasing productivity and safeness.

Generally, existing approaches for solving this problem of
path planning can be classified into two classes: conventional
and meta-heuristic. On the one hand, the conventional class
includes bug algorithms, potential field [1], road map [2, 3], cell
decomposition and sampling based algorithms [4]. It depends
on complex mathematical model, and suffers from common
drawbacks such as the limitation to simple two-dimension
space, local minima, incompleteness and high computational
time, produces long and rough paths resulting from a compila-
tion of straight line which cannot be executed by the robot. On
the other hand, the meta-heuristic class that group neural net-
work [5, 6], fuzzy logic [7], evolutionary algorithms [8] (i.e.,
genetic algorithm, genetic programming, evolutionary pro-
gramming and evolution strategy), ant colony [9] and particle

1 Department of Electronics, Faculty of Technology, Batna-2 University,
05000 Batna, Algeria
2 LGEA Laboratory, Department of Electrical Engineering, Faculty of Sciences
and Applied Sciences, Oum El Bouaghi University, 04000 Oum El Bouaghi,
Algeria
* Corresponding author, e-mail: zerrouki.nadjib@yahoo.com

61(4), pp. 337-349, 2017
https://doi.org/10.3311/PPee.8682

Creative Commons Attribution b

research article

PPPeriodica Polytechnica
Electrical Engineering
and Computer Science

mailto:zerrouki.nadjib@yahoo.com
https://doi.org/10.3311/PPee.8682

338 Period. Polytech. Elec. Eng. Comp. Sci. N. Zerrouki, N. Goléa, N. Benoudjit

swarm [10-14] emerge to overcome the shortcomings of the
conventional class. These algorithms are generally population
based that make a multi exploring search; deals with the prob-
lem of local minima and the high class of configuration space;
do not call for gradient, high order derivatives or initial estima-
tion of solution. However, they generate smooth paths that are
more suitable for a robot to execute. An overview of all these
approaches can be found in [15, 16].

In this paper, we propose an alternative approach to deal
with the path-planning problem in the existence of obsta-
cles. We start by defining the control point that must be fit-
ted by the end effector of the robot. Then the NURBS curve
is employed to describe the desired path as weight of rational
blending functions and directions constraints are assigned at
each of the controlling point to solve the problem of obstacle
avoidance. Eventually, the weights of these functions are con-
sidered as parameters of the objective function to be optimized.
Our approach suggests the use of Particle Swarm Optimization
(PSO), with three options of updating the particles velocity, to
solve the path planning problem with obstacle avoidance by
minimizing the objective function while respecting the addi-
tional directions constraints.

The remainder of this paper is organized as follows. Section 2
presents preliminaries to the proposed techniques. Section 3
shows the NURB–Splines-PSO Based approach and the
execution steps. Simulation results and discussions are given
in Section 4. Finally, Section 5 outlines the main conclusions.

2 Preliminaries
2.1 Path planning problem

The dynamic model of any manipulator robot with n link,
which shows the relationship between the torques, the joint
position, joint velocities and accelerations, is expressed by the
following equation:

 Γ = ()f q q q fe, , , . 

Its direct kinematic model that expresses the velocities of
the operational coordinates X in terms of the joint velocities
q is given by:



X Jq= .

where J is the jacobian matrix.
The inverse kinematic model that determines the joint veloc-

ities q in terms of the operational coordinates X is expressed
by the relation:



q J X= −1
.

where J −1 is the inverse jacobian matrix
The path planning is; therefore, defined as finding the points

that connect the initial point with the final point and taking into
consideration avoiding any obstacle presented in the workspace.
In other words, the goal is to find joint positions, velocities,

accelerations and torques that allow the robot to move in col-
lision-free path from the starting point until reaching the end.

2.2 NURB-Splines
NURBS are Non-Uniform, Rational, B-splines [17]. They

are piecewise polynomial functions used to define curves of
a wide variety such as circles, parabolas, ellipses, lines, and
hyperbolas. Unlike other curve’s representation, NURBS,
which are generalizations of non-rational B-splines, features
local control, and their expression is given by

N u

p w B u

w B u
u u uj

p
j j j

p

j

m

j j
p

j

m()

()

()

, min max= ≤ ≤=

=

∑

∑
0

0

where pj , j = 0, …, m are the control points, forming the so-
called control polygon, wj are proper weights, B uj

p
() are the

B-spline basis functions of degree p defined, in a recursive
manner, as

B u
u u u

j
j j0 11

0
() =

≤ ≤




+,

,

if

otherwise

B u
u u
u u

B u

u u
u u

B u p

j
p j

j p j
j
p

j p

j p j
j
p

() =
−

−
()

+
−

−
()

+

−

+ +

+ + +
+
−

1

1

1 1

1

1
, >> 0.

where u is the non-uniform knot vector defined as

u u u u u u u
p

p n pknot
=

+

+ − −[,..., , ,..., , ,...,min min max max

1

1 1� �� ��
pp+1

� ��� ���]

2.3 Particle Swarm Optimization (PSO)
2.3.1 Standard PSO

Based on the simulation of the social behavior of birds,
bees, fishes and other flocks Eberhart and Kennedy in 1995
introduced a new stochastic optimization technique [18] called
Particle swarm optimization (PSO). It shares similarities with
other evolutionary algorithms (EAs) like the use of a popula-
tion (called swarm) of solutions from the search space that are
initially generated randomly; and the interaction of the solu-
tions (called particles) of the same generation ones with the
others during search.

Initial phase consists of randomly generating the particles
according to a uniform distribution in the search space where
each particle having a velocity which also deriving at random
according to a uniform distribution. During each iteration t ,
the information available for each particle i is the current posi-
tion of a particle in search space given by a vector xi(t) , Its
current velocity vi(t) , the best visited position for the particle

(1)

(2)

(3)

(4)

(6)

(5)

(7)

339Particle Swarm Optimization of... 2017 61 4

given by a vector pi(t) , and the best position found by infor-
mants of the particle represented by a vector gi(t) . Therefore,
the position of the particle and its velocity is being updated
using following equations:

v t v t c p x

c g x

x t x t v t

i i i i

i i

i i i

() = −() + −()
+ −()

() = −() + ()

1

1

1 1

2 2

ϕ

ϕ .

.









where c1 and c2 are positive constants, φ1 and φ2 are two
random variables with uniform distribution between 0 and 1.

During the evolution of the swarm, if a coordinate xi(t) cal-
culated according to equations of motion (8) is less than xmin
or greater than xmax , the corresponding value is replaced by
xmin or xmax , respectively, and the proper velocity vi(t) of the
particle xi(t) is remise to 0, the complete mechanism used to
prevent a particle leaving the search space is then described by
the following operations:

x x x
v

x x x x
x x x x

i

i

i i

i i

∉[]⇒
=

< ⇒ =
> ⇒ =









min max min min

max max

,

0

2.3.2 PSO with inertia weight (PSO-W)
In an attempt to increase the performance of standard PSO,

Eberhart and Shi [19] introduced the inertia weight concept.
With this concept, the new velocity of each particle is not cal-
culated using the same equation as in the standard PSO, but it
is rather obtained by weighting its previous velocity. Therefore,
the equation of velocity in (8) is modified to become:

v t w v t c p x

c g x
i i i i

i i

() = −() + −()
+ −()

.

.

1 1 1

2 2

ϕ

ϕ

where w is the inertia weight that shows the effect of previous
velocity vector on the new vector.

In their work Eberhart and Shi [19] investigate the impact
of the inertia weight on the performance of the PSO algorithm.
They vary the inertia weight in a range [0.9,1.4], and they con-
cluded that the range [0.9,1.2]

yield better performance. In

another work, Eberhart and Shi [20] realized that decrease the
value of the inertia weight linearly form 0.9 to 0.4 is a better
way to improve the performance of the PSO.

2.3.3 PSO with constriction factor (PSO-C)
In 2002, Clerc and Kennedy explained the concept of the

constriction factor [21]. They aimed in controlling what they
call the “explosion” of the swarm that leads to the divergence
of the PSO. Clerc and Kennedy’s concept led to update the
equation of velocity in (8) to become as follows:

v t v t c p x

c g x
i i i i

i i

() = −() + −()(
+ −())
χ ϕ

ϕ

.

.

1 1 1

2 2

The constriction factor χ is defined by

χ
ϕ ϕ ϕ

=
− − −()

2

2 4

.

where φ = c1 + c2 , φ > 4 .
In their work, the value of c1 and c2 were set to 2.05 which

produce a constriction factor with a value of 0.729.

2.3.4 PSO-W and PSO-C combination (PSO-WC)
In order to improve the performance of the standard PSO

proposed by Eberhart and Kennedy [18] a variety of modi-
fication were proposed such as the use of inertia weight and
the constriction factor. Therefore, new options for particles
updating velocity like inertia weight PSO (PSO-W) and the
constriction factor PSO (PSO-C) were emerged. However, it
was observed that the former option has the advantage of sta-
bility in later iterations when the optimum is found, whereas,
the latter option is characterized by high convergence in early
stages. Accordingly, a combination of the two previous options
is used in this work.

When the PSO-C starts first, the particles velocities in the
new algorithm (PSO-WC) is updated by equation (11). Then
when a given value of the fitness function is violated, the updat-
ing rule shifts to equation (10) allowing the PSO-W to proceed.
However, the constant parameters c1 and c2 are held invariant
during the running process. Their values are equal to those of
the PSO-C starting algorithm.

3 NURB–Splines-PSO Based approach
The technique employed in [17] to generate high degree of

continuity paths using B-spline functions is extended to the use
of the NURBS to ensure more smoothness, give more flexibil-
ity to the path (i.e., changing the form of the path from con-
vex to concave and vice versa) and avoid the obstacle by opti-
mizing its weights. Therefore the points that control the curve
to fit the via points must be altered to guarantee the obstacle
avoidance by respecting the additional assigned directions con-
straint. Thus, the problem is defined as follows:

q N u N u N u

p

p

p

k
T p

k
p

k m
p

k

T

T

m
T

= () () ()

























0 1

0

1, , , ,…
�

kk n= 0, , .…

where qk are the via point. pj the new computed control point
which guarantees that qk must fitted.

The additional constraint to assign the direction at each via
point is given as

(8)

(9)

(10)

(11)

(12)

(13)

340 Period. Polytech. Elec. Eng. Comp. Sci. N. Zerrouki, N. Goléa, N. Benoudjit

t N u N u N u

p

p

p

k
T p

k
p

k m
p

k

T

T

m
T

= () () ()














0

1

1

1 1

0

1() () ()
, , ,…

�












=

,

, , .k n0…

where tk are the assigned directions at each via point.
Additionally, the use of a NURBS of degree four with its spec-

ified knot implies the insertion of two more constraint to obtain
a square system and therefore a unique solution [17]. Thus, the
curvature at the start and the end points is chosen to be add as

n N u N u N u

p

p

p

k
T p

k
p

k m
p

k

T

T

m
T

= () () ()














0

2

1

2 2

0

1() () ()
, , ,…

�












=

,

, .k n0

where nk are the curvatures at each of the end points.
The resulting system is defined as

N P R= .

where: P p p p pm m= −[, ,..., ,]0 1 1

N

N u N u N u

N u N u N u

N

p p
m
p

p p
m
p

p

=

() () ()
() () ()

0 0 1 0 0

0 0 1 0 0

0

1 1 1

…

…
() () ()

(() () ()

()

2 2 2

1

0 1 0 0

0 1 1 1 1

0

u N u N u

N u N u N u

N u

p
m
p

p p
m
p

p

() () ()
() () ()

�

�

11 1 1 1

0 2 1 2 2

0 1

1 1

() () ()
() () ()

(−

N u N u

N u N u N u

N u

p
m
p

p p
m
p

p
n

() ()

�

�
� � �

))
()

()
()

()
()−

−

−

−

−N u

N u

N u

N u

N up
n

p
n

p
n

m
p

n

m
p

n0 1

1 1

1 1

1

1

1 1 1() () ()

�
�

NN u N u N u

N u N u N

p
n

p
n m

p
n

p
n

p
n m

p
0 1

0 1

2 2 2

1 1 1

() () ()

() () (

() () ()
() ()

�

�
))

u

N u N u N u
n

p
n

p
n m

p
n

()
() () ()





































0 1
�


















=,

-

-

R

q

t

n

q

t

q

q

t

n

t

q

T

T

T

T

T

T

n
T

n
T

n
T

n
T

n
T

0

0

0

1

1

2

1

1

�



















































3.1 The fitness function
The purpose is to solve the problem stated by Eq. (16), while

minimizing the objective function defined as

f f f f f ft q dis obs s= + + + + .

where ft the traveling time, in second, between initial and final
position defined as

f tt = 1.

fq represents the total joint traveling distance, in radian, of the
manipulator described as

f q qq i j i j
j

m

i

n

= − −
==
∑∑ , , .1

21

fdis represents the total joint traveling distance, in meter, of the
manipulator as functional

f x y zdis i i i
i

n

= + +
=
∑ 2 2 2

1

fob It represents the penalty function, with no unit, that guaran-
tee a collision- free motion stated as

f N u R R Rob ob t ob= ()∉ ∧ ∉()0 if

where N(u) is the trajectory generated using NURBS and Rob
is the space occupied by the obstacle defined as a cylinder with
the diameter:

r x x y yob = −() + −()0

2

0

2

Rt the space occupied by the robot during its motion and fs
represents the function that ensures the singularity avoidance.

Since the main aim is to produce a collision-free motion with
no singularities , the traveling time ft , the total joint traveling
distance fq and the total joint traveling distance fdis were not
weighted; whereas, the singularity avoidance function fs and
the obstacle avoidance function fob were weighted as described
the section below.

Finally, the minimization problem stated by Eq. (17) was
transformed to a maximization one stated as

fitness
f

=
+
1

1

3.2 Singularity and obstacle avoidance
On the one hand, the method of pseudo inverse Jacobian is

used to determine the inverse kinematic of each position. If the
method converges to a non-singular position in a given number
of iterations, the singularity avoidance function fs is equal to 0.
However, if the maximum number of iterations is exceeded and
the method did not converge, the position is considered as sin-
gular; therefore, the singularity avoidance function fs is equal
to its maximum value defined as 10*n*max_iterations, where n
is the number of all end effector position in the generated path.
The procedure can be given as follows:

Initialization of max_iterations, initial joint position, first
iteration.

While (the joint variation is not too small)
1. Compute the inverse kinematic.

a. Compute the joint variation using the pseudo inverse
Jacobian.

b. Check if the joint variation is too small.
c. Update the joint position by adding the joint variation.
d. Singularity avoidance function fs = 0.
e. Increase the number of iterations

End

(14)

(15)

(16)

(17)

(18)

(19)

(20)

(21)

(22)

(23)

341Particle Swarm Optimization of... 2017 61 4

On the other hand, the collision of the robot with the obstacle
is checked. The collision-free movement yields a null obstacle
avoidance function ( fob = 0); whereas if there is any collision,
the number of point k enter in collision for all the n position
of the generated path is calculated and weighed. Therefore, the
obstacle avoidance function is given a value fob = 103*k*n.

3.3 Choice of the parameters
It has been reported that the performance of PSO depend on

the choice of the parameters. The more adequate the parame-
ters we choose the better performance we get. Thus, the value
of the constant parameters c1 and c2 , the inertia weight w ,
the constriction factor χ and the maximum velocity vmax were
cautiously determined in advance. First, the constant parame-
ters c1 and c2 for the PSO-W was fixed after performing a
pretest of the algorithm. Their values were increase by a 0.1
step in a range [0.1, 3.0] and the fitness value was calculated.
Consequently, a conclusion was made and the values 0.9 and
3.0 were found to be the best ones. In addition, the typical
method suggested by Eberhart and Shi [20] for the inertia
weight w parameter was used. This method is based on reduc-
ing the inertia weight w linearly from 0.9 to 0.4 throughout
the execution. The aim was to explore the research space in the
early stages and then exploit the optimum solution at the later
ones. Second, the PSO-C constriction factor χ was set to its
usual value that is 0.729, which is produced by equal constant
parameters c1 and c2 with a value 2.05. Third, as PSO-C
algorithm started first, the constant parameters c1 and c2 for
PSO-WC were equal to 2.05 yielding a constriction factor with
a value 0.729, then when the fitness function reached the value
0.1 the PSO-W take the turn of the PSO-C. At this stage the
parameters c1 and c2 were kept fixed as in the beginning,
while the constriction factor is replaced by the inertia weight
with the strategy of reducing its value from 0.9 to 0.4, but this
time according to the iteration reached. This later strategy led
to reduce the inertia weight from a value less than 0.9, but
reach the value 0.4 at the end. Finally, for the three algorithms
stated before the value of vmax was set to the maximum space
search range xmax .

3.4 Execution steps
The proposed NURBS-PSO path planning approach can be

summarized in the following procedure with the four steps as
stated below:

1. Generate the initial particles and their velocities randomly.
Repeat
2. Compute the fitness function.

a. Generate the NURBS path.
b. Check possible singularities.
c. Check possible interferences with the obstacle.
d. Compute trajectory length.

3. Select best particles.

4. Update position and velocity of each particle using the
appropriate option.

Until the maximum number of generation.

This procedure is transformed into flowchart shown in Fig. 1.
The two blocs clarify the implementation of the NURPS-PSO
Algorithm to generate an optimum path.

Updating of the
velocities and

particles

Randomly generation
of the initial particles

and their velocities

Computation of the
objective function

Selection of the best
particles

 Maximum
number of
generation

Solutions

Generation of
the NURBS of
each particle

Checking for
possible

singularities

Checking for possible
colliding with the

obstacle

Computing the
trajectory

 length

Return the value
of the objective

function

Yes

No

Fig. 1 Flowchart of the NURBS-PSO approach.

4 Simulation Results and Discussions
The Kuka KR15 (Fig. 2) robot with a six degrees of freedom

and nominal payload of 15 kg is our test bed for the path planning.
The parameters of the six-axis Kuka KR15 using the

Denavit-Hartenberg representation are given in Table 1 [22].

Table 1 Denavit-Hartenberg parameters of Kuka KR15

j αi−1[rad] αi−1[m] θi[rad] di[m]

1 π 0 0 0

2 π ⁄ 2 0, 3 0 0

3 0 0.65 0 0

4 π ⁄ 2 0.155 0 −0.6

5 −π ⁄ 2 0 0 0

6 π ⁄ 2 0 0 0

Finally, Table 2 provides dynamic parameters of the Kuka
KR15 robot. By using these parameters, we calculate the
dynamic model of the Kuka KR15 robot through an iterative
Newton-Euler algorithm.

In order to evaluate the performance of the proposed algo-
rithm we consider the 6 DOF Kuka KR15 robot shown in
Fig. 2 with the mathematical model shown in Table 1 and 2,
where the NURB-Spline is selected to describe the path in the

342 Period. Polytech. Elec. Eng. Comp. Sci. N. Zerrouki, N. Goléa, N. Benoudjit

three-dimensional space that allow the end effector of robot
manipulator move through. We start by defining a set of control
points which delineate the outline of the NURB-Spline curve,
where each control point is three-dimensional, and is assigned
three indexes i, j and k . In addition, the obstacle is considered as
three-dimensional object with width and height, which defined
in order to cut the spline segments connecting the control points.

Path planning consists of determining a NURB-Spline curve
in the workspace, which interpolates the given control points
and avoid the obstacle while respecting the assigned velocities at
each via point by optimizing its weights. The first step consists in
expressing the resulting trajectory in the operational space. Then,
applying the inverse kinematics model to obtain the joint posi-
tions in terms of the position and orientation of the end-effector

The goal consists on moving the end effector of the robot
manipulator from initial situation to the final situation that can
be expressed in many different representations. To avoid the
problem of the singularities in the representation of the orienta-
tion, we use the quaternion representation [23, 24]. Therefore,
the vector of operational coordinates X is composed of seven
components, three components of the position vector and four
components of the quaternion:

X
P
Q

x
y
z
n
i
j
k

=







 =





























.

In simulation, we plan a multipoint trajectory for position
and orientation based on quaternion representation and using
a Non Uniform Rational B-Spline (NURBS) curve of degree
four with seven control points given as

q
q
q

0

1

2

0 2 0 0 0 0

3 3 12 0 0 0

3 4

= []

= []

=

 -

 - -

 -

π

π π π

π π

/ ;

/ / / ;

/ / ππ

π π π

π π π

/ ;

/ / / ;

/ / /

6 0 0 0

5 36 4 18 0 0 0

5 36 4 1

3

4

 -

 -

[]

= []

= −

q
q 88 0 0 0

3 4 6 0 0 0

3 3 12 0 0

5

6

 -

 - -

[]

= −[]

= −

;

/ / / ;

/ / /

q
q

π π π

π π π 0[];

Two situations for solving the path-planning problem were
studied. First, the free-environment was considered. Then a one
obstacle-environment was adopted. For each situation, the pro-
posed PSO algorithms with three option of updating the par-
ticles velocities (PSO-W, PSO-C and PSO-WC) were tested.
They were coded in MATLAB 7.14.0.739 and implemented on
Intel Core™ i5-4200U CPU with 2.30 GHz and 6 GB of RAM
under Windows 8. The four-degree NURBS curve with twen-
ty-one knot was chosen to build up a system of sixteen equa-
tions with sixteen unknown control points to be optimized. It
assured crossing via points in the free-space and collision-free
in the obstacle environment by forcing the curve to respect the
given direction while traversing the intermediate points.

We have run the proposed PSO algorithms several times. For
each one, the swarm includes twenty particles and has a forty
iterations maximum. We set the lower bound for the weights of

Fig. 2 6 DoF industrial robot Kuka KR15

Table 2 Dynamic parameters of the Kuka KR15 robot

Link 1 Link 2 Link3

m[kg] - 33 32

cx[m] - 0.245 0.155

cy[m] - 0 -0.026

cz[m] - 0 0

Ixx[kgm2] - 0.09 0.6

Iyy[kgm2] - 1.98 0.31

Izz[kgm2] 4.4 2.00 0.68

Ixy[kgm2] - 0 0

Ixz[kgm2] - 0 0

Iyz[kgm2] - 0 0

Link 4 Link 5 Link 6

m[kg] 19 9 15

cx[m] 0 0 -0.12

cy[m] 0 0.024 0

cz[m] 0.15 0 -0.29

Ixx[kgm2] 0.5 0.05 0.225

Iyy[kgm2] 0.46 0.02 0.225

Izz[kgm2] 0.12 0.04 0.225

Ixy[kgm2] 0 0 0

Ixz[kgm2] 0 0 0

Iyz[kgm2] 0 0 0

(24)

343Particle Swarm Optimization of... 2017 61 4

the NURBS to 1 and upper bound to 10. The PSO algorithms
were evaluated in terms of convergence speed, convergence of
the overall population as shown in Fig. 3, 4, 17 and 18 and the
average execution time as illustrated in Table 3 and 4. Finally,
we select the weights vector that gives the more appropriate
control points for each PSO algorithm, and therefore, the more
suitable path with the minimum traveling time, as shown in Fig.
5 to 10 and 19 to 24. In addition, the resulting torques and the
quaternion Orientation are shown in Fig. 11 to 16 and 25 to 30.

4.1 Path planning in free-environment
The purpose is to move the end effector of the robot manipu-

lator from initial situation throughout the intermediate points to
the final situation as defined by the quaternion representation.

Form Table 3, it can be seen that PSO-C took more time than
the two other algorithms. This may be caused by the dynamic
nature of the algorithm which may lead to maximum iterations
in singularity testing function. On the other hand, the least time
needed by the PSO-W also may be caused by its static nature
that led to less number of iterations in singularity testing func-
tion. The combination of the two first algorithms led to moder-
ate time in the third one.

Table 3 Performance of PSOs’ in obstacle-free environment

Criterion PSO-W PSO-C PSO-WC

Average execution time (min) 31 41 37

Form Fig. 3 and 4, it can be seen that the three PSOs almost
converge to the optimum solution from the first iteration, while
the overall population converges to the optimum solution at final
iterations. This indicates that the exploring strategy, in obsta-
cle-free environment with less local optimum, leads to rapid
convergence of the PSOs in early stages. In turn, the exploiting
strategy leads the overall population converges to the optimum
solution. Consequently, this latter offers more potential solution.

Fig. 5 to 10 show the trajectory generated in obstacle-free
environment for the robot manipulator based on the NURBS
path planning method, for each PSO algorithm, in three dimen-
sion space and two-dimension space respectively. It can be
observed that all the via points, form the starting point to the
final point, are fitted.

Fig. 11 to 16 illustrate the required torques for the planned
path calculated using the iterative Newton-Euler algorithm,
and the orientation of the end-effector expressed by means of
quaternion for each PSO algorithm in free environment. It can
be noticed that there is small variations in torque for the first
and the third joint position and for the fourth and sixth for the
joint orientation, but a higher variation for the second and fifth
ones. This means that the whole load is supported by this two
joint. This makes sense since it reflects the reality.

4.2 Path planning in an obstacle-environment
The purpose is to move the end effector of the robot manip-

ulator from initial situation throughout the via points to the
final situation, defined by the quaternion representation, while
avoiding the obstacle.

Form Table 4, it can be seen that PSO-W took less time than
the two other algorithms. Again, the least time needed by the
PSO-W also may be caused by its static nature that led to less
number of iterations in singularity testing function. The two
other algorithms required less time in the obstacle environ-
ment compared to the obstacle-free environment. This may be
caused by the obstacle avoidance criteria which may led to less
iterations in singularity testing function.

Table 4 Performance of PSOs’ in an obstacle environment.

Criterion PSO-W PSO-C PSO-WC

Average execution time (min) 28 31 31

0 5 10 15 20 25 30 35 40
0

0.05

0.1

0.15

0.2

0.25

Generation

M
ax

 fi
tn

es
s

PSO-W
PSO-C
PSO-WC

Fig. 3 PSOs’ convergence of best particle in obstacle-free environment

0 5 10 15 20 25 30 35 40
0

0.05

0.1

0.15

0.2

0.25

M
ea

n
fit

ne
ss

Generation

PSO-W
PSO-C
PSO-WC

Fig. 4 PSOs’ convergence of the overall population in obstacle-free environment

344 Period. Polytech. Elec. Eng. Comp. Sci. N. Zerrouki, N. Goléa, N. Benoudjit

-1
-0.5

0
0.5

1
1.5

2

-1
-0.5

0
0.5

1
1.5

2
-1

-0.5

0

0.5

1

1.5

2

XY

Z

-1.5 -1 -0.5 0 0.5 1 1.5
-1.5

-1

-0.5

0

0.5

1

1.5

X

Y

 Fig. 5 3D PSO-W planned path in obstacle-free environment Fig. 6 2D PSO-W planned path in obstacle-free environment

-1
-0.5

0
0.5

1
1.5

2

-1
-0.5

0
0.5

1
1.5

2
-1

-0.5

0

0.5

1

1.5

2

XY

Z

-1.5 -1 -0.5 0 0.5 1 1.5
-1.5

-1

-0.5

0

0.5

1

1.5

X

Y

Fig. 7 3D PSO-C planned path in obstacle-free environment Fig. 8 2D PSO-C planned path in obstacle-free environment

-1
-0.5

0
0.5

1
1.5

2

-1
-0.5

0
0.5

1
1.5

2
-1

-0.5

0

0.5

1

1.5

2

XY

Z

-1.5 -1 -0.5 0 0.5 1 1.5
-1.5

-1

-0.5

0

0.5

1

1.5

X

Y

 Fig. 9 3D PSO-WC planned path in obstacle-free environment Fig. 10 2D PSO-WC planned path in obstacle-free environment

345Particle Swarm Optimization of... 2017 61 4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-1000

-500

0

500

1000

To
rq

ue
(N

.m
)

1 2 3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-100

-50

0

50

100

Time(s)

To
rq

ue
(N

.m
)

4 5 6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Time(s)

Q
ua

te
rn

io
n

or
ie

nt
at

io
n

n
i
j
k

Fig. 11 PSO-W resulting Torque in obstacle-free environment Fig. 12 PSO-W resulting Quaternion Orientation in obstacle-free environment

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-1000

-500

0

500

1000

To
rq

ue
(N

.m
)

1 2 3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-100

-50

0

50

100

Time(s)

To
rq

ue
(N

.m
)

4 5 6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Time(s)

Q
ua

te
rn

io
n

or
ie

nt
at

io
n

n
i
j
k

Fig. 13 PSO-C resulting Torque in obstacle-free environment Fig. 14 PSO-C resulting Quaternion Orientation in obstacle-free environment

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-1000

-500

0

500

1000

To
rq

ue
(N

.m
)

1 2 3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-100

-50

0

50

100

Time(s)

To
rq

ue
(N

.m
)

4 5 6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Time(s)

Q
ua

te
rn

io
n

or
ie

nt
at

io
n

n
i
j
k

Fig. 15 PSO-WC resulting Torque in obstacle-free environment Fig. 16 PSO-WC resulting Quaternion Orientation in obstacle-free environment

346 Period. Polytech. Elec. Eng. Comp. Sci. N. Zerrouki, N. Goléa, N. Benoudjit

Form Fig. 17 and 18, it can be observed that PSO-C con-
verges first to the optimum solution, then PSO-WC and finally
PSO-W. In contrast, the PSO-W overall population converges
to the optimum solution at final iterations, while the PSO-WC
is nearly the same, but the PSO-C overall population is some-
what far from optimum solution. This indicates that combi-
nation of the two PSO-W and PSO-C in PSO-WC leads to a
compromise between a rapid convergence of PSO-WC in early
stages and offering more potential solution when the overall
population converges.

Fig. 19 to 24 show the trajectory generated in an obstacle envi-
ronment for the robot manipulator based on the NURBS path
planning method, for each PSO algorithm, in three dimension

space and two-dimension space respectively. It can be observed
how effectively the obstacle is avoided while all the intermediate
points, form the starting point to the final point, are traversed.

Fig. 25 to 30 demonstrate the necessary torques for the
designed path computed by means of the iterative Newton-Eu-
ler algorithm, and the orientation of the end-effector displayed
using the quaternion for each PSO algorithm in an obstacle
environment. It can be observed that the torque necessary for
the joint position as well as the one needed for the joint orien-
tation rest in the same ranges as in free-obstacle environment.
This means the presence of the obstacle does not affect the
effectiveness of NURBS- PSO based approach in generating
smooth paths.

0 5 10 15 20 25 30 35 40
0

0.05

0.1

0.15

0.2

0.25

Generation

M
ax

 fi
tn

es
s

PSO-W
PSO-C
PSO-WC

0 5 10 15 20 25 30 35 40

0

0.05

0.1

0.15

0.2

0.25

M
ea

n
fit

ne
ss

Generation

PSO-W
PSO-C
PSO-WC

Fig. 17 PSOs’ convergence of best particle in an obstacle environment Fig. 18 PSOs’ convergence of the overall population in an obstacle environment

-1
-0.5

0
0.5

1
1.5

2

-1
-0.5

0
0.5

1
1.5

2
-1

-0.5

0

0.5

1

1.5

2

XY

Z

-1.5 -1 -0.5 0 0.5 1 1.5

-1.5

-1

-0.5

0

0.5

1

1.5

X

Y

 Fig. 19 3D PSO-W planned path in an obstacle environment Fig. 20 2D PSO-W planned path in an obstacle environment

347Particle Swarm Optimization of... 2017 61 4

-1
-0.5

0
0.5

1
1.5

2

-1
-0.5

0
0.5

1
1.5

2
-1

-0.5

0

0.5

1

1.5

2

XY

Z

-1.5 -1 -0.5 0 0.5 1 1.5
-1.5

-1

-0.5

0

0.5

1

1.5

X

Y

 Fig. 21 3D PSO-C planned path in an obstacle environment Fig. 22 2D PSO-C planned path in an obstacle environment

-1
-0.5

0
0.5

1
1.5

2

-1
-0.5

0
0.5

1
1.5

2
-1

-0.5

0

0.5

1

1.5

2

XY

Z

-1.5 -1 -0.5 0 0.5 1 1.5
-1.5

-1

-0.5

0

0.5

1

1.5

X

Y

Fig. 23 3D PSO-WC planned path in an obstacle environment Fig. 24 2D PSO-WC planned path in an obstacle environment

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-1000

-500

0

500

1000

To
rq

ue
(N

.m
)

1 2 3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-100

-50

0

50

100

Time(s)

To
rq

ue
(N

.m
)

4 5 6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Time(s)

Q
ua

te
rn

io
n

or
ie

nt
at

io
n

n
i
j
k

Fig. 25 PSO-W resulting Torque in an obstacle environment Fig. 26 PSO-W resulting Quaternion Orientation in an obstacle environment

348 Period. Polytech. Elec. Eng. Comp. Sci. N. Zerrouki, N. Goléa, N. Benoudjit

5 Conclusion
In this paper, a NURBS-PSO based approach that deals with

the path-planning problem as well as collision avoidance for an
industrial robot manipulator with six degrees of freedom KUKA
KR 15 is proposed. The path interpolating the given control point
with assign directions is described using the Non Uniform Ratio-
nal B-Spline (NURBS) curve of degree four, while its weights
are considered as parameters optimized by the PSOs algorithm.
Obstacle avoidance is achieved by satisfying the path constraints.
The fitness function is adopted to find a trade-off between oppo-
site goals, the total joint traveling distance, the total Cartesian
path and time execution in one hand and satisfying the path con-
straints in other hand. Three alternatives of PSO, specifically
PSO-W, PSO-C and PSO-WC, yielded from three option for
particles velocity updating, were compared. Interestingly, the
combination of the first two options (PSO-WC) showed better
features in terms of offering a compromise between rapid con-
vergence and large number of potential solutions.

Simulation results show how the NURBS curve can describe
the path with more accuracy, smoothness, flexibility, and useful-
ness. In addition, the Particle Swarm Optimization (PSO) tech-
nique proved its power in dealing with this class of problem.

References
[1] Huang, Q., Sugano, S., Kato, I. "Stability Control for a Mobile Manip-

ulator Using a Potential Method." In: IEEE International Conference on
Intelligent Robots and Systems, Munich, Germany. pp. 839-846. 1994.

 https://doi.org/10.1109/IROS.1994.407542
[2] Rueb, K. D., Wong, A. K. C. "Structuring Free Space as a Hypergraph

for Roving Robot Path Planning and Navigation." IEEE Transactions on
Pattern Analysis and Machine Intelligence. 9(2), pp. 263-273. 1987.

 https://doi.org/10.1109/TPAMI.1987.4767900
[3] Ladd, A. M., Kavraki, L. E. "Generalizing the Analysis of PRM." In:

IEEE International Conference on Robotic and Automation (ICRA
2001). pp. 2120-2125. 2002.

 https://doi.org/10.1109/ROBOT.2002.1014853

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-1000

-500

0

500

1000
To

rq
ue

(N
.m

)

1 2 3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-100

-50

0

50

100

Time(s)

To
rq

ue
(N

.m
)

4 5 6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Time(s)

Q
ua

te
rn

io
n

or
ie

nt
at

io
n

n
i
j
k

 Fig. 27 PSO-C resulting Torque in an obstacle environment Fig. 28 PSO-C resulting Quaternion Orientation in an obstacle environment

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-1000

-500

0

500

1000

To
rq

ue
(N

.m
)

1 2 3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-100

-50

0

50

100

Time(s)

To
rq

ue
(N

.m
)

4 5 6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Time(s)

Q
ua

te
rn

io
n

or
ie

nt
at

io
n

n
i
j
k

Fig. 29 PSO-WC resulting Torque in an obstacle environment Fig. 30 PSO-WC resulting Quaternion Orientation in an obstacle environment

https://doi.org/10.1109/IROS.1994.407542
https://doi.org/10.1109/TPAMI.1987.4767900
https://doi.org/10.1109/ROBOT.2002.1014853

349Particle Swarm Optimization of... 2017 61 4

[4] Bhatia, A., Kavarki, L. E., Vardi, M. Y. "Sampling-based motion plan-
ning with temporal goals." In: IEEE International Conference on Robotic
and Automation (ICRA 2010). pp. 2689-2696. 2010.

 https://doi.org/10.1109/ROBOT.2010.5509503
[5] Yang, S. X., Meng, M. "Neural network approaches to dynamic colli-

sion-free trajectory generation." IEEE Transactions on Systems, Man,
and Cybernetics, Part B. 30(3), pp. 302-318. 2001.

 https://doi.org/10.1109/3477.931512
[6] Ahmed, S. U., Kunwar, F., Iqbal, M. "Guided Autowave Pulse Coupled

Neural Network (GAPCNN) based real time path planning and an ob-
stacle avoidance scheme for mobile robots." Robotics and Autonomous
Systems. 62(4), pp. 474-486. 2014.

 https://doi.org/10.1016/j.robot.2013.12.004
[7] Zavlangas, P. G., Tzafestas S. G. "Industrial Robot Navigation and Ob-

stacle Avoidance Employing Fuzzy Logic." Journal of Intelligent and
Robotic Systems. 27, pp. 85-97. 2000.

 https://doi.org/10.1023/A:1008150113712
[8] Abu-Dakka, F. J., Rubio, F., Valero, F., Mata, V. "Evolutionary Indirect

Approach to Solving Trajectory Planning Problem for Industrial Robots
Operating in Workspaces with Obstacles." European Journal of Mechan-
ics - A/Solids. 42, pp. 210-218. 2013.

 https://doi.org/10.1016/j.euromechsol.2013.05.007
[9] Ming, L., Shaogang, Z. "Path Planning of Inspection Robot Based on Ant

Colony Optimization Algorithm." In: 2010 International Conference on
Electrical and Control Engineering. pp. 1474–1477, Jun. 2010.

 https://doi.org/10.1109/iCECE.2010.1438
[10] Salehi, M. E., Najafipour, M. R., Shakiba, R. "An improved PSO-based

path planning algorithm for humanoid soccer playing robots." In: 3rd
Joint Conference of AI & Robotics and 5th RoboCup Iran Open Interna-
tional Symposium (RIOS). 2013.

 https://doi.org/10.1109/RIOS.2013.6595312
[11] Chyan, G. S., Ponnambalam, S.G. "Obstacle avoidance control of redun-

dant robots using variants of particle swarm optimization." Robotics and
Computer-Integrated Manufacturing. 28, pp. 147-153. 2012.

 https://doi.org/10.1016/j.rcim.2011.08.001
[12] Li, C. Z., Yang, M. "Path Planing and Tracking for Multi-robot System

Based on Improved PSO Algorithm." In: International Conference on
Mechatronic Science, Electric Engineering and Computer, Jilin, China.
pp. 1667-1670. 2011.

 https://doi.org/10.1109/MEC.2011.6025799
[13] Qizhi, Z., Yali, Z., Xinsheng, G. "A PSO algorithm for biped gait plan-

ning using Spline Approximation." In: IEEE Conference on Robotics,
Automation and Mechatronics, Singapore. pp. 563-568,. 2010.

 https://doi.org/10.1109/RAMECH.2010.5513133

[14] Foo, J. L., Knutzon, J., Kalivarapu, V., Oliver, J., Winer, E. "Path Plan-
ning of Unmanned Aerial Vehicles using B-Splines and Particle Swarm
Optimization." Journal of Aerospace Computing, Information, and Com-
munication. 6(4), pp. 271-290. 2009.

 https://doi.org/10.2514/1.36917
[15] Mohanty P. K., Parhi, D. R. "Controlling the Motion of an Autonomous

Mobile Robot Using Various Techniques: a Review." Journal of Advance
Mechanical Engineering. 1, pp. 24-39. 2013.

 https://doi.org/10.7726/jame.2013.1003
[16] Tang, S. H., Khaksar, W., Ismail, N. B., Ariffin, M. K. A. "A Review on

Robot Motion Planning Approaches." Pertanika Journal of Science &
Technology. 20(1), pp. 15-29. 2012.

[17] Biagiotti, L., Melchiorri, C. "Trajectory Planning for Automatic Ma-
chines and Robots." Springer-Verlag Berlin Heidelberg. 2008.

 https://doi.org/10.1007/978-3-540-85629-0
[18] Kennedy, J., Eberhart, R. C. "Particle Swarm Optimization." In: IEEE In-

ternational Conference on Neural Networks, Perth, Australia. pp. 1942-
1948. 1995.

 https://doi.org/10.1109/ICNN.1995.488968
[19] Eberhart, R. C., Shi, Y. "A modified Swarm Optimizer". IEEE Interna-

tional Conference on Evolutionary Computation, Anchorage, Alaska. pp.
69-73. 1998.

 https://doi.org/10.1109/ICEC.1998.699146
[20] Eberhart, R. C., Shi, Y. "Comparing Inertia Weights and Constriction

Factors in Particle Swarm Optimization." In: Congress of Evolutionary
Computation, San Diego, CA. pp. 84-88. 2000.

 https://doi.org/10.1109/CEC.2000.870279
[21] Kennedy, J., Clerc, M. "The Particle Swarm-Explosion, Stability, and

Convergence in a Multidimensional Complex Space." IEEE Transac-
tions on Evolutionary Computation. 6(1), pp. 58-73. 2002.

 https://doi.org/10.1109/4235.985692
[22] Verdonck, W. "Experimental robot and payload identification with appli-

cation to dynamic trajectory compensation." PhD Thesis, Department of
Mechanical Engineering, KU Leuven, Belgium, 2004.

[23] Itzhack, B., Itzhack, Y. "New Method for Extracting the Quaternion from
a Rotation Matrix." AIAA Journal of Guidance, Control, and Dynamics.
23(6), pp. 1085-1087. 2000.

 https://doi.org/10.2514/2.4654
[24] Funda, J., Taylor, R. H., Paul, R. P. "On homogeneous transforms, qua-

ternions and computational efficiency." IEEE Transactions on Robotics
and Automation. 6, pp. 382–388. 1990.

 https://doi.org/10.1109/70.56658

https://doi.org/10.1109/ROBOT.2010.5509503
https://doi.org/10.1109/3477.931512
https://doi.org/10.1016/j.robot.2013.12.004
https://doi.org/10.1023/A:1008150113712
https://doi.org/10.1016/j.euromechsol.2013.05.007
https://doi.org/10.1109/iCECE.2010.1438
https://doi.org/10.1109/RIOS.2013.6595312
https://doi.org/10.1016/j.rcim.2011.08.001
https://doi.org/10.1109/MEC.2011.6025799
https://doi.org/10.1109/RAMECH.2010.5513133
https://doi.org/10.2514/1.36917
https://doi.org/10.7726/jame.2013.1003
https://doi.org/10.1007/978-3-540-85629-0
https://doi.org/10.1109/ICNN.1995.488968
https://doi.org/10.1109/ICEC.1998.699146
https://doi.org/10.1109/CEC.2000.870279
https://doi.org/10.1109/4235.985692
https://doi.org/10.2514/2.4654
https://doi.org/10.1109/70.56658

	1 Introduction
	2 Preliminaries
	2.1 Path planning problem
	2.2 NURB-Splines
	2.3 Particle Swarm Optimization (PSO)
	2.3.1 Standard PSO
	2.3.2 PSO with inertia weight (PSO-W)
	2.3.3 PSO with constriction factor (PSO-C)
	2.3.4 PSO-W and PSO-C combination (PSO-WC)

	3 NURB-Splines-PSO Based approach
	3.1 The fitness function
	3.2 Singularity and obstacle avoidance
	3.3 Choice of the parameters
	3.4 Execution steps

	4 Simulation Results & Discussions
	4.1 Path planning in free-environment
	4.2 Path planning in an obstacle-environment

	5 Conclusion
	References

