
88 Period. Polytech. Elec. Eng. Comp. Sci. T. Orosz, G. Kleizer, T. Iváncsy, Z. Á. Tamus

Comparison of Methods for 
Calculation of Core-Form Power 
Transformer’s Core Temperature Rise

Tamás Orosz1*, Gábor Kleizer1, Tamás Iváncsy1, Zoltán Ádám Tamus1

Received 09 December 2015; accepted after revision 11 January 2016

Abstract
The temperature rise calculation of core-type power trans-
formers is an essential question in the design process however 
this is neglected during the preliminary optimization process. 
The methods of the calcula- tion methods are classified and 
introduced shortly and they applicability is examined for the 
preliminary design process. For comparison of the methods 
performance, two core arrangements were examined, the 
Roth’s transformer and a 50 MVA three-phase transformers’ 
core. The result shows that the FEM method provides the 
most accurate solution however according to its simplicity, 
the Ryder’s method has better performance in the preliminary 
design stage.
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1 Introduction
The first step in a transformer design process (Fig. 1 illus-

trates this process [1, 2]) is to obtain the main dimensions of 
the most economic transformer design. It is widely accepted 
that the core geometry, and the flux density in the columns 
determine these main parameters [3, 4]. Therefore a fast and 
accurate calculation method of the core parameters is neces-
sary, to achieve these optimal design variables from thousands 
of possible solutions.

The modern core design process is based not only on the ful-
fillment of the electrical requirements, but also necessary to limit 
the core temperature to prevent the components and the oil from 
damage itself. For larger cores with a diameter of approx. 0.6 m 
or more [5], cooling ducts in different arrangements (Fig. 2) 
are necessary to be applied to limit the surface and the maxi-
mum core temperature. Generally, the accepted value of this 
temperature difference between the core interior (maximum) 
and the surface is about 15 to 20 °C [4, 6–9]. This requires an 
accurate method to determine the temperature profile in these 
complex shaped core layout.This problem can be solved pre-
cisely by using three-dimensional finite element method with 
the anisotropic thermal material properties taken into account. 
These algorithms have a crucial role in the final design valida-
tion (Fig. 1), but the usage of these methods in the early design 
stage when not every key parameter is known, is very laborious 
and inaccurate [7, 8]. Due to the importance of the core heating 
problem many researchers proposed various methods from the 
beginning of the last century. However, most of these previous 
techniques do not consider the exact core geometry, the aniso-
tropies or the differences in the boundary layer as well as the 
FEM based calculations. But some of them are very simple and 
fast which allows to use them in the optimization stage (Fig. 1) 
to obtain the most economical design parameters.

Several publications have appeared in recent years docu-
menting a bibliographic analysis in the field of transformer 
design [10–13]. However, most of the previous studies do not 
take into account the core heat generation problem in the pre-
liminary stage of the transformer design. This paper reviews the 
earlier work concerned the calculation and modeling of heat 
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flow in anisotropic solids and compares they performance on 
two examples with a measurement and a FEM based calculation.

2 Methods
2.1 Thermal Resistances

This is one of the oldest and the latest approach for the core 
temperature calculation, founded in the literature. This method 
firstly proposed by Gotter [14] and lastly mentioned by Ryder 
who demonstrated that this method with some modifications 
can be used accurately in the optimization process [4, 5, 8, 15]. 
Using the electrical analogy, the losses distributed through the 
core may be replaced by a point source laying at the center of 
the considered part. The core material and the cooling liquid 
boundary can be represented as separate thermal resistances 
(illustrated in Fig. 3). Because of the anisotropy of the heat 
conductivity in the laminated core material, the maximum core 
temperature is calculated by the resultant resistance of the two 

parallel connected branches. The method replaces the examined 
part of the core geometry by an equivalent rectangle (illustrated 
on Fig. 4) where the direction of the heat-flow is possible in 
the longitudinal or in the transversal directions only (in Fig. 3).

This means that a 2 x 1 dimension approximation of the two-
dimensional Poisson-equation of the steady-state heat flow can 
be used due to an arbitrary core layout with 10 % precision 
due to the effective rectangle normalization [4, 5, 15]. We can 
derive the thermal resistance in the core from Fourier’s law to 
find the temperature distribution within this block. From this, 
the following equation describes the thermal resistance (illus-
trated on Fig. 4) in the core is:
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Fig. 1 Position of the optimization method in a design process [2]

Fig. 2 Typical cooling duct arrangements.
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where  kL  and  kT  means the heat conductivity in the co-lam-
inar and the trans-laminar dimensions in [W/m °C],  a and  b 
are the width and height dimensions of the equivalent rectan-
gle (Fig. 4) [8, 15].

Fig. 4 The effective rectangle for an arbitrary core part geometry for anisotropic 
thermal calculations. The core parts bounded by cooling ducts or oil.

The thermal resistance at the oil boundary layer depends on 
the heat transfer rate, oil temperature, the type of the oil and 
the duct size. Experimental evidence of the temperature-dis-
sipation relationship for surfaces immersed in transformer oil 
has been given e.g. by Taylor [16]. Ryder derived an expres-
sion from the oil properties to calculate the oil boundary layer 

thermal resistance. In the case of natural oil flow, he found the 
following simple expression [8]:
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where  β  is the cubic expansivity of the oil [1/K],  ρL  is the 
density of the cooling liquid [kg/m3],  Θ  is the temperature 
gradient in the oil boundary layer in [K],  cP  is the specific heat 
capacity of constant pressure [J/kg/K],  g  is the acceleration 
due to gravity in [m/s2] and  kL  the thermal conductivity of 
the cooling liquid [W/m/K]. The surface heat conductivity can 
be derived from here by the Fourier’s law. Another approach 
derives the surface heat conductivity  (h)  in a much more com-
plicated way from the Grasshof and Prandtl numbers [4, 17].

So the formula that describes the thermal resistance on Fig. 3 
in the oil boundary layer is as follows:
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where  hL  and  hT  describes the core surface thermal conductiv-
ity in [W/m2/K]. The maximum temperature rise in the center 
of the core, on the plate edges and surfaces can be calculated 
according Ohm’s and Kirchoff ’s laws [4, 5, 15]. Because of 
the step-lap, additional losses are generated in the transformer 
joints [15, 18]. As Ryder showed, the performance of this 
method can be significantly improved if the temperature rises 
are calculated to the L- and T-joints separately.

Fig. 3 Shows the electrical analogy and Gotter’s thermal resistance model [14]
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2.2 Analytical solution of the Poisson-equation
Weh and Delvecchio [17, 19] mentioned an analytical solu-

tion for the two-dimensional problem of the temperature distri-
bution in circular cores without ducts. The solution is derived 
for the case of uniform heat generation and oil temperature, and 
uniform thermal resistance around the core circumference. This 
method is an approximative solution of the steady-state heat 
conduction, Poisson equation [17]:

∆T q
k
v= −  ,

where  T  in [K] is the temperature,  qv  is the loss per unit 
volume in [W/m3], and  



k   is the heat conductivity vector in 
[W/m/K]. Because the core is made of thin insulated electrical 
steel sheets, it has an anisotropy in the thermal conductivity. 
For the simplicity  qv  is a constant in this calculation. So in 
rectangular coordinates the Eq. (6) is in this situation:
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where the thermal conductivities are different in the two direc-
tions. The solution can be written in the next form:

T A B x C x D y E y= + ⋅ + ⋅ + ⋅ + ⋅2 2
,

which satisfies the next boundary conditions:
• ∂
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at the center of the rectangle, this is required by the 
symmetry.

• 
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at  x = 0,  y = b. These equations mean that the convective 
boundary conditions are satisfied exactly at the surface 
points of the axes. This means that the calculated area 
is not exactly a rectangle. A circle shape or an arbitrary 
shape, e.g. a stepped core also can be used. (Fig. 4).
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2.3 Boundary valued problems - Higgins’ Method
This method [20] is a boundary-value problem in the math-

ematical theory of the heat. Similar formulas derived by [21] 
which was the first exact solution of the two dimensional heat 
conduction problem. This formula used for laminated, rectan-
gle shaped cores (like Fig. 5). The basis of the solution is a 
method of separation of variables. This method works with 
non-linear boundary conditions, too. Buchholz and Roth 
[22, 23] made some improvements and further restrictions on 
boundary conditions. The Higgins’ formula is more general 
than these predecessors, it can encompass such practically 
cases when a cooling duct is applied inside the core. It cov-
ers non-uniform heat-generation with different thermal resist-
ances an all sides for the restricted case of uniform oil temper-
atures for a two dimensional problem. Higgins’ formula [20] 
to calculate the maximum of the two dimensional core heat 
problem is the following:
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where  Tmax  is the maximum temperature drop in [K],  k  is 
the ratio of the thermal conductivities  k = ky / kx ,  C" = qv /k,mi

and  ni  is calculated from the roots of the next two equations 
(Fig. 6):

tan m a
K mi
i i

( ) = 1

n m ki i= 0 5.

This formula is applicable to determine the temperature dis-
tribution in windings, bus bars of rectangular cross sections, too.

Fig. 5 Rectangular core geometry for anisotropic thermal calculations.

2.4 Finite Difference and Finite Element Method
Using the advanced 3D simulation techniques is essential 

for the verification of some critical aspects of design and per-
formance parameters of large power transformers. After some 
simplification they can be used effectively in the everyday 
transformer design. Hence there are a lot of FEM and FD based 
solution found in the literature for core loss calculation. But few 
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of them pay attention to the thermal aspects in the core tem-
perature rise [13, 18, 24–28]. This heat transfer problem can be 
solved by using three-dimensional finite element or finite differ-
ence thermal formulations with the anisotropic thermal mate-
rial properties taken into account [7, 28–31]. This FEM based 
methods has shown very good accuracy in the range of 2 °C 
for most of the cases with a greater accuracy than the origi-
nal empirical methods [29]. These simplified, 2D methods are 
appropriate for an everyday transformer design practice, but 
they can be inaccurate when this check should be made in the 
preliminary design process (Fig. 1). However, this study [29] 
does not take into account pre-existing, new empirical solutions 
such as Ryder’s model [8], which gives similar accuracy with 
much more simple method.

Fig. 6 The first two roots of the Eq. (16).

In this paper we examined two-dimensional FEM and FD 
methods to calculate the arbitrary shaped temperature distribu-
tion. An Ansys model (as seen on Fig. 7 or Fig. 8) was created 
with third type boundary conditions to model the heat convec-
tion [32]. A FD method with equidistant grid is also imple-
mented [33] and compared to the previously showed methods 
and a measurement.

2.5 Method of Functional Approximation
This method solved accurately the temperature in an arbi-

trary shaped geometry, this method assumes that the boundary 
condition is linear and the physical properties of the core are 
independent from the temperature. The basis of this method is 
a transformation of the Poisson-equation of the heat conduction 
into Laplace’s equation. The coefficients of these functions are 
evaluated iteratively by using the boundary condition at several 
points on the boundary [5].

2.6 Electrical Analog Methods
Kayan [34] used a metalized conducting paper to determine 

of two-dimensional equipotential patterns of Poissonian fields. 
These fields created by uniformly or non-uniformly distrib-
uted sources for steady state or transient heat-flow conditions. 
Simmons [35] extended this method by feeding in currents at 
multiple points on the surface. The physical properties and the 
surface heat transfer coefficient cannot be a function of time or 
temperature within the limits of the problem. Time dependent 
source functions of the exponential type may be simulated by 
this method. Potential measurements are converted to tempera-
tures by use of a standard resistance.

Fig. 7 2D finite element model from Roth’s transformer.
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Birke and Palmer described a method, which uses modified 
electrical conducting paper [5, 36], the paper could be made 
orthotropic with the electrical conductivity ratio made equal 
to the ratio of the principal thermal conductivities of the lami-
nated iron core. The heat transfer from iron surfaces to oil at the 
boundaries could clearly be simulated by Kayan’s technique of 
using extension strips of length. Besides being laborious, this 
procedure made it difficult to maintain the ratio constant within 
reasonable limits.

3 Comparison of the Selected Methods
To compare the performance of solution techniques, which 

are discussed in the previous section, five different methods from 
each group were selected and analysed on two different core 
temperature calculation problems. The first one is a temperature 
rise in a single phase transformer tested and measured by Roth 
[22]. The second comparison was executed on a leg (Fig. 8) of a 
modern three phase, 50 MVA power transformer’s core (Fig. 9).

Fig. 9 Schematic view of the dimensions of the 
examined 3 phase 3 legged transformer core.

3.1 Roth’s transformer
Roth measured a single-phase transformer with rectangular 

cross section [22, 37], the width of the rectangle is 2a = 8 cm, 
and the height of the rectangle is  2b = 13.5 cm, the laminations 
are parallel to edges 2a. The measured maximum temperature 

is  Tmax = 85 °C above temperature of ambient medium, which 
is air. The core loss is  q = 0.0678 W/cm3. It is to be expected 
that in this instance no appreciable error is introduced by the 
neglect of non-uniformity of core loss due to temperature dis-
tribution. Small error is introduced because the non-uniformity 
of the magnetic field and eddy current losses in the transformer 
core are neglected. The heat conductivity in the x direction is 
(parallel to a)  kx = 0.32 W/cm/K; similarly for direction  y  
ky = 0.005 W/cm/K.

The results calculated with the five different and described 
methods can be seen in Table 1 for comparison. The result cal-
culated with the Ansys model is shown on Fig. 7.

Table 1 Comparison of the calculation results on Roth’s transformer core 
(degrees in Kelvin). The measured temperature gradient was 85 K.

∆Tmax [K] δ [%] ∆T (a, 0)[K] ∆T (0, b)[K]

Del Vecchios et al. 88.2 +3.8 86.8 32.3

Gotter 78.8 -7.3 77.4 34.3

Higgins 85.26 0.3 - -

FD 82.9 -2.47 81.44 45

FEM 85.2 0.23 83.6 46.2

Surprisingly, the results show the simplest method, namely 
the Gotter’s one, provides accurate solution within 10 %, how-
ever this method does not require computers, it can be solved by 
traditional ’paper and pencil’ method. The most obvious find-
ing is the result of FEM method is most accurate, this is within 
the measurement error. The accuracy of Higgins’ method was 
unexpected because its result was closer to the measured value 
than the FD method’s one.

3.2 A 50 MVA transformer’s core
The selected methods are compared on a three phase three-

legged 50 MVA transformers’ core (Fig. 9). This core is 
built-up of M1 grade electrical steel sheets. The turn voltage 

Fig. 8 Quarter of the of the examined transformers’ core cross section.
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is UT = 96 V, the peak value of the flux density in the core 
is B0 = 1.63 T. The no-load loss of the employed material is 
p0 = 0.739 W/kg. Step-lap joints is used in this design, it con-
sists of 6 group of lamination, the stacking factor is about 
sf = 0.96. Rounded type yokes employed to the upper and the 
lower yokes. The shape and the cross section of the yoke and 
the columns are the same (Fig. 8). The cross section area is 
A = 2662 mm2. The generated heat density is assumed homoge-
neous in this calculation.

The results calculated with the five different and described 
method can be seen in Table 2 for comparison. The result cal-
culated with the Ansys model is shown on Fig. 10.

Table 2 Comparison of the calculation results using each method 
(degrees in kelvin) in a normed replacement rectangle cross section.

∆Tmax ∆T (a, 0) ∆T (0, b)

Del Vecchios et al. 14.4 10.1 6

Gotter 13.87 10.0 5.9

Higgins 16.22 - -

FD 15.6 11.13 6.8

FEM 16.1 11.45 7.1

The results of the calculations of Roth’s transformer shows 
the FEM methods practically same result as the measurement. 
This corresponds to [29]. Therefore the FEM method’s result 
will be the base of the comparison for this complex arrangement 
(Fig. 8). Compared the results of two simple (Del Vecchios’ 
and Gotter’s) methods to FEM methods’ one it can be stated the 
accuracy these methods are similar to the previous arrangement 
and the result of the Gotter’s method provides lower values. In 
this three phase arrangement, the result of Higgins’ method is 
also closest to the FEM method’s one, however this is almost 
as complicated as the FEM.

4 Conclusion
The paper presents an overview of the temperature rise cal-

culation methods in the case of core-form power transformers. 
In this general overview, the methods from the first exact ana-
lytical solutions to the state of the art FEM are described. In 
addition, four widely used calculation methods are compared 
by two practical examples.

The first example is a rectangle shaped transformer core. 
The results show the difference between the measured and the 
FEM calculated values is less than the uncertainty of the tem-
perature measurement. Higgins’ method is also very precise, 
but it requires as complex computation as the FEM or FD solu-
tions. However, it can be derived only for rectangular shapes. 
Gotter’s thermal resistance solution is very simple and fast. 
The precision of this method is about 10 %, and it can be easily 
improved by Ryder’s method.

The second example is an arbitrary shaped core where the 
FEM was the basis of the comparison. The results indicate 
that the simple methods provide decent result with much less 
computation time. Therefore in a final design process a FEM 
method based calculation gives the best accuracy, but in the 
preliminary design stage, the Gotter’s thermal resistive method 
can be the most efficient.
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