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Abstract
In this paper, the inverse problem of extracting critical dimen-
sions of the grating is defined, using data obtained by ellip-
sometric spectrometry. We give an overview of theoretical 
models describing diffraction gratings and their interactions 
with incident light, with a special emphasis on the coupled-
wave method. A method for mapping the output space (points 
on Poincaré’s sphere defined by the ellipsometric angles for 
each wavelength) to the input space (grating dimensions) is 
presented, where samples of the output space are picked equi-
distantly. Using this method, distribution of the measurement 
precision for a given type of experimental setup is established, 
and tested on examples from a set of permalloy gratings.
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1 Introduction
Diffraction gratings have been used in spectroscopy and 

other studies of electromagnetic phenomena for nearly two 
centuries [1, 2]. Josef Fraunhofer (1798-1826), the discoverer 
of the dark lines in the solar spectrum, built the first gratings 
in 1819 by winding fine wires around two parallel screws [3]. 
Simply said, a diffraction grating is an optical component with 
a periodic structure used to split and diffract light into beams 
traveling in different directions. Since these directions depend 
on the frequency of the incident electromagnetic wave, it can 
be used as a dispersive element. Because of this, gratings are 
often used in monochromators and spectrometers. 

Modern gratings may have up to thousands of lines per mil-
limeter with near-perfect periodicity [4]. The groove shapes 
can be controlled to be sinusoidal, rectangular and so forth; 
these gratings can be made on various metal, plastic and glass 
substrates and coated with thin-film metal or dielectric stacks. 
The primary applications of diffraction gratings are in spectros-
copy [1, 2], (where they are used for analyzing the frequency 
content of electromagnetic radiation), but they are also used as 
wavelength selectors in tunable lasers [5], beam sampling mir-
rors in high-power lasers, band-pass filters, pulse compressors 
and polarization-sensitive optics, among other applications [6]. 

Diffraction gratings can be studied by a number of experi-
mental methods, like Atomic Force Microscopy (AFM), Scan-
ning Tunneling Microscopy (STM), Spectroscopic Ellipsometry 
(SE) [7] or the case of magnetic materials, the Magnetooptical 
Spectroscopic Scatterometry (MOSS) [8, 9] measurements.

The former two methods are are able to study a surface 
directily, but have their limitations: the usage of STM requires 
samples to have conductive surface or be further coated by an 
ultrathin metallic layer, which is a destructive operation disa-
bling the sample’s later application, while possible altering the 
fine structure of the grating patterns. While AFM can be used to 
investigate any solid material, its accuracy is limited by the tip-
sample scanning [10]. The latter two are non destructive, do not 
require direct physical contact with the examined surface, but 
require more complicated numerical processing; the problem is 
similar to the inverse problem of atomic level investigation of 
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solid surfaces and states. Therein, the goal of the investigation 
is also to get detailed information about the solid surface and 
state, but specifically at the atomic scale using for example ion 
scattering, X-ray scattering, low energy electron scattering or 
thermal energy atomic scattering [11]. 

Only during the past four decades or so that a thorough under-
standing of diffraction gratings has been achieved through the 
consistent application of Maxwell’s equations with the help of 
advanced analytical and numerical techniques [12].

2 The inverse problem
2.1 Definition of the inverse problem

In general, when we have an operator  f  mapping one space 
() to another (): 

f x y( ) = ,

we call the task of finding  x  for a given  y  an inverse problem: 

y y xp= , = ?.

The coupled wave method (see Section 3.1) is able to, for 
known grating parameters, characterize the reflected light 
(angle, intensity, polarization of the Fourier-modes). In this 
work, we use it to calculate the ellipsometric angles of the 
reflected light from material and geometrical parameters; this 
is our  f  forward operator. Specifically,  x  is the input space 
consisting of critical dimensions of the grating and  y  is the 
output space consisting of the measured ellipsometric angles. 

It seems plausible to use the formalism to calculate the grat-
ing’s parameters from observing the reflected light using the 
aforementioned methods (MOSS, ES); in this case, the inverse 
problem has to be solved. This has been done for both material 
and geometric parameters [7, 13]. 

When working with the inverse problem, we assume that 
the material parameters (they can be measured easily with 
a reference flat sample) and grating period (Λ = (Λx , Λy , 
Λz )) are known (since it is relatively easy to control during 

manufacturing), and that the sum  d1 + d2  is fixed (see Fig. 1 
for details) [14]. This leaves  d1  and  b  as independent input 
variables. 
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where  nλ  is the number of wavelengths at which the experi-
ment is performed, and  Ψi  and  Δi  are the ellipsometric angles 
corresponding to the i-th wavelength examined. 

The situation shows some similarities with the problem 
of Eddy Current Testing (ECT). In that nondestructive test-
ing method (see, e.g., in [15]), the inner structure of conduct-
ing materials is examined by applying an incident time-varying 
magnetic field to generate eddy-currents within the specimen. 
The reaction field (due to the eddy-currents) is measured by a 
probe. The measured data are then used to reconstruct the con-
ductivity distribution inside the specimen, which bears informa-
tion on a possible structural degradation (crack, void, etc.). In 
our work, the method developed for ECT inverse problems in 
[16] is used. This algorithm consists in the adaptive generation of 
a database of corresponding input parameter - output data pairs:

= ,( ), , ,( ){ },x y x y1 1  s s

with  s  being the total sample number and the pairs are related 
via the simulation  f (∙)  at hand, i.e. 

y f i si i= = , , , .( ),x 1 2

This database  D  is called optimal in the sense that the out-
put samples  yi  are uniformly spread out over the output space, 
i.e., over the domain spanned by all conceivable outputs of the 
simulation. This uniform output distribution is achieved by 
means of a sequential adaptive sampling that is not discussed 
herein. The distribution of the input samples corresponding to 
such uniform output distribution bears valuable information on 
the conditioning of the inverse problem, as pointed out in [16, 
17]. A central contribution of the present paper is to apply this 

Fig. 1 The geometrical situation of the permalloy grating
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adaptive sampling to diffraction gratings and to analyze the 
available information of the related inverse problem. 

The error between a measurement and a calculated value can 
be characterized by angular distance between the measured and 
simulated points plotted on Poincaré’s sphere [7]. This distance is 
specified by the azimuthal angle  2Ψ  and the polar angle  ∆, i.e.,

cosγ = ⋅ .S Sexp sim

Here the experimental data is: 
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and the simulated data is: 
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Using synthetic data corrupted by a Gaussian noise (this 
is reasonable to assume, given that the measurement setup is 
a null-zone ellipsometer [14, 18], which measures the angles 
themselves [19]), fits were done for several virtual measure-
ments. The aim was to generate output data with noise and 
try to find the original input by minimizing the sum of errors 
squared (so the Euclidean norm) over a certain number of 
measurements on different wavelengths, then to find the rela-
tionship between the error of the fit and the density of states on 
the output map. 

x y x
xfit = , ,argmin ( ( ))� � �γ f 2

here  γ  is a vector containing angles  γ  as defined by Eq. (6), 
and  f  is the forward operator. 

The optimization problem is solved by different numeri-
cal techniques: a simplex-method (implemented in the Matlab 
fmincon-routine, [20]) and a nearest neighbor interpolation 
over the optimal database are used, as detailed in the numerical 
examples in Section 3.

2.2 Characterization of the conditioning of the 
inverse problem

Inverse problems can often be ill-posed or ill-conditioned. 
The latter results in difficulties when solving the optimization 
problem defined in Eq. (9). In this section, we introduce a cer-
tain measure of the ill-conditioning of the inverse problem, 
namely, the misfit of the found and „true” solution. 

One can calculate the deviation between the input data and 
the results of the fit:
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It can be expected that the accuracy of the fitting is better in 
places where the density of states is larger, and conversely, in 
places of smaller density, the accuracy is worse. This is proven 
to be true in later parts of this work.

3 Grating theories
To be able to work on the inverse problem, an adequate 

method is required to arrive to the forward function  f . There 
are several theoretical approaches dealing with the EM theory 
of gratings. The simplest theory of gratings treats them as cor-
rugated structures that modulate the amplitude and/or phase 
of the incident beam. The modulated reflected (or transmit-
ted) wavefront is then decomposed into its Fourier spectrum to 
yield the various diffracted orders. 

From a mathematical point of view, Maxwell’s equations can 
be expressed as partial differential equations. In the grating case, 
they have constant coefficients - they can be solved by integrat-
ing numerically in two dimensions. Because of numerical insta-
bilities, this method only works for shallow gratings [21].

The integral method is based on the idea that the solution of 
electromagnetic scattering problems can be found by simple 
integration, provided that the field and its normal derivative on 
the surface of the scattering object (and at infinity) are known. 

Finite element schemes can also be used. The advantage of 
them is the availability in commercial software, however, the 
computational cost involved is usually high. 

Modal methods, like the one we’re describing in this work, 
work for lamellar profiles. They are based on the decomposi-
tion of EM field in a combination of modes, which are some 
base vectors chosen according to the situation. 

For more details about the methods used to describe diffrac-
tion gratings, see [21].

3.1 The coupled-wave method for a grating with a 
single anisotropic inhomogeneous region between 
two isotropic homogeneous regions

The analytical formalism of Rokushima and Yamakita treat-
ing the Fraunhofer diffraction in planar multilayer periodic 
structures is a powerful method of describing diffraction grat-
ings [22]. Using parameters of the grating (material parameters, 
geometry) and assuming that the characteristics of the incident 
light are known, we are able to calculate the intensity, polari-
zation, angles of the refracted and transmitted light in specific 
diffraction orders. To characterize the grating’s geometry, we 
use that the permittivity tensor inside the grating is periodic (an 
illustration of the geometric situation can be seen in Fig. 2): 
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while also assuming that the the permeability of the grating is 
equal to that of vacuum.
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Fig. 2 Geometry and definitions shown on a general diffraction grating. 
Regions (1) and (3) are homogeneous and isotropic, while (2) can be 

inhomogeneous anisotropic with a periodic tensor of permittivity. 

In the general case, we can characterize the periodicity of 
the grating region with the so-called grating vector Γ, which 
can be understood as a reciprocal lattice to the lattice defined 
by vector Λ. 

Γ Γ Γ Γ= + + ,x y zx y zˆ ˆ ˆ
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  is periodic, it is possible to expand it into a 
Fourier series: 

ε εkl kl m
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or rewriting it with normalized components. 
According to the Floquet theorem, the electric and magnetic 

fields of electromagnetic waves can be expressed as a Fourier 
series:
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and  nm  is a vector dependent on the angle of incidence in ad-
dition to the aforementioned grating parameters. 

After some mathematical operations and physical considera-
tions detailed in [23], we get the following equations: 

d
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and  C  is a square matrix with a size of 4Mx4M (where M is the 
order of the Fourier series) dependent on the angle of incidence, 
material and geometric parameters. The solution to Eqs. (20), 
(21) reduces to a problem of finding the eigensystem of matrix  C.

Ultimately, all the information about the grating can be 
expressed using the transfer matrix (superscripts indicate the 
region or boundary which the matrices characterize): 

W B U B= ( ) .( ) ( ) ( )12 2

2

23d

Where  B(12)  and  B(23)  characterize effects on the respective 
layers’ boundaries, while  U(2)  characterizes propagation inside 
region (2).

3.2 Rectangular permalloy grating on a semi-infinite 
layer of silicon

A certain diffraction grating has been studied extensively 
using SE and MOSS at the Division of Magnetooptics, Charles 
University in Prague [14, 18]. The geometrical situation can be 
seen in Fig. 1, while the results of the conducted AFM meas-
urement in Fig. 3.

Fig. 3 The AFM measurements
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In contrast to a three-region model detailed in Subsec-
tion 3.1, we have four regions where two of them are of finite 
thickness in between semi-infinite regions of air (1) and silicon 
(4). Using the fact that there is no periodicity in the z direction, 
we get matrix  W  in the following form: 

W B U B U B= ( ) ( ) .( ) ( ) ( ) ( ) ( )12 2

2

23 3

3

34d d

Here we can see, that of the two finite thickness layers, the 
first (2) requires the permittivity tensor (basically a Heaviside 
Π function) to be expanded into a Fourier series - this can eas-
ily be done analytically. The second (3) layer is homogeneous, 
and in the case of a scalar permittivity, also isotropic. In this 
case no Fourier expansion has to be done, or, equivalently, we 
calculate the Fourier series of a constant function 



ε ε3 3r( ) = . 
A standard null-zone ellipsometer measures two angles,  Ψ  

and  Δ . They can be connected to our model as follows: 

ρ = = ( ) ∆( ),
r
r
pp

ss

tan expΨ 

where  rss  is the amplitude reflection coefficient connecting the 
incident  TE  and reflected  TE  waves, and  rpp  is amplitude 
reflection coefficient connecting the incident  TM  and reflected  
TM  waves [22]. 

We can find  ρ  for each Fourier-mode of the reflected light: 

ρi
pp i

ss i

r
r

= ,

,

Where  i = −M , … , M  is the inspected Fourier-mode and  M  
is the order of the Fourier expansion.

4 Numerical examples
To illustrate the results of the theory outlined herein, a cou-

ple of numerical studies are presented in this section. 
First, the convergence of the simulation with respect to the 

degree of the Fourier expansion is qualitatively studied in Fig. 4. 
We can see that the number of Fourier coefficients considered 
does not significantly alter the distribution of values in the input 
space  (d1 ,b); the simulator converges with increasing  M . Fur-
ther calculations are performed by setting order as  M = 25.

Second, the sample pattern of some optimal databases  D  are 
presented for different configurations in Fig. 5. Since the data-
bases are equidistant in the output space, the larger the density 
of points in a region of the input space, the larger the precision 
of the inversion. This can be understood the following way: 
if we consider two neighboring points barely distinguishable 
during a measurement in the output space, then the same can 
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Fig. 4 Mapping for b = 330 nm, d1 = 22 nm, α = 60, for a different number of Fourier coefficients.
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be said after inversion about the corresponding points in the 
input space. For a region  R1  with a small density of states, two 
neighbors are far apart, and the expected accuracy of the solu-
tion to the inverse problem is smaller. On the other hand, in a 
region  R2  with a larger density of states, the distance between 
neighbors in the input space is smaller, so we can solve the 
inverse problem with a larger accuracy. It is said that the prob-
lem is well conditioned in  R2  and ill conditioned in  R1 . 

One could try to explain the zeroth order distributions as fol-
lows. Let us consider a grating with  d1 = 0 . Since the periodicity 

of such a grating can be considered infinite, only the zeroth dif-
fraction order can be observed. Let us assume that  d2  is suffi-
ciently large so that all incident light is absorbed before reaching 
the boundary of the silicon and permalloy regions. In this case, a 
small change in  d2  will not result in any change of the reflected 
light. On the contrary, if  d2  is sufficiently small, even a small 
change in it will have an effect on the reflected light due to second-
ary reflection from the permalloy-silicon boundary (see Fig. 6).

In our case, where  d1 ≠ 0 , there are obviously other effects 
at play, but the general character of the distribution is not 
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Fig. 5 Distribution of states for the first, zeroth and minus first diffraction orders, at  α = 70 °, and α = 80 °, degrees of incidence. 
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Table 1 Fits performed for the virtual experiments.

b = 330 nm, d1 = 22 nm, α = 60 ° 0th o.o.d -1st o.o.d. 1st o.o.d. 

b [nm] 337.93 330.15 329.35 

δb [nm] 16.19 0.92 1.93 

d1 [nm] 22.13 22.01 21.94 

δd1
 [nm] 0.27 0.07 0.18 

α = 60 °, 0th o.o.d. b = 100 nm,  d1 = 26 nm b = 250 nm,  d1 = 5 nm

b [nm] 103.91 229.15 

δb [nm] 6.52 53.83 

d1 [nm] 26.05 5.43 

δd1
 [nm] 0.14 0.75 

α = 70 °, 1th o.o.d. b = 200 nm,  d1 = 5 nm b = 250 nm,  d1 = 27 nm

b [nm] 199.77 250.16 

δb [nm] 0.51 3.30 

d1 [nm] 4.99 27.01 

δd1
 [nm] 0.04 0.15 

α = 70 °, −1st o.o.d. b = 200 nm,  d1 = 5 nm b = 250 nm,  d1 = 27 nm

b [nm] 199.91 250.26 

δb [nm] 6.42 0.52 

d1 [nm] 5.11 26.99 

δd1
 [nm] 0.39 0.03 

b = 330 nm,  d1 = 22 nm,  0th o.o.d. α = 70 ° α = 80 °

b [nm] 330.70 328.98 

δb [nm] 7.53 6.34 

d1 [nm] 22.06 22.03 

δd1
 [nm] 0.18 0.17 

inconsistent with the explanation presented above – where 
thickness of the surface layer increases, the density of states in 
the zeroth diffraction order decreases.

Fig. 6 Explaining the zeroth order distributions.

Thirdly, some quantitative analysis is presented in Table 1. 
The true (to be found) input parameters are chosen such that 
they represent locations in the input space with high and low 
sample density, i.e., well-conditioned and ill-conditioned 
regions in the sense of the inverse problem, while the first one 
is chosen to model the geometry described in [18]. In this com-
parison, the simplex method is used to solve the optimization 
problem (1). The noise function has a parameter of 2.0 degrees, 
the fit was performed for 20 virtual experiments in all cases. 

Points  (5 nm, 200 nm)  and  (27 nm, 250 nm)  for  α = 70 ° 
demonstrate this quite well. While the first diffraction order is 
better conditioned for the former and a worse for the latter, in the 
case of the minus first order the opposite is true. A similar com-
parison can be seen in the case of zeroth order (26 nm, 100 nm)  
and (5 nm, 200 nm) at 60 degrees of incidence. Fits were performed 
for the dimensions of the grating studied in [14, 18] as well.

Finally, some results of inversion by means of nearest neigh-
bor interpolation are shown in Fig. 7. Herein a fine grid defines 
a database and repeated simulations are done, each using noise-
corrupted data of a given probability distribution. Let us note that 
the same noise level causes significantly different uncertainty of 
the solution for different gratings. This is consistent with the 
conclusion drawn from the sample density of optimal databases.

5 Conclusion
In this work, it was proven that the method used in Eddy-

Current nondestructive Testing can also successfully character-
ize the inverse problem in diffraction gratings’ critical dimen-
sion measurement, thus give an insight to the precision of the 
measurements depending on the grating parameters’ location 
in the input field of grating dimensions. This is numerically 
demonstrated in Table 1 and graphically in Fig. 7. 
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Fig. 7 Results of Nearest Neighbor interpolation on a regular grid at different levels of measuerement noise (σ n
14 : standard deviation of Gaussian white noise). 

●: true parameter, ▲: reconstructed parameter using the noise-corrupted data (test of 500 runs). 
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It can also be seen that fits in the minus first and first dif-
fraction orders tend to have a smaller deviation value than the 
zeroth order. To what extent this is true, and to precisely describe 
this phenomenon, more information is needed about the meas-
urement’s details; this may be an interesting topic for further 
research. A change in the angle of incidence did not cause quali-
tative differences in the distribution of states, although there are 
certain cases where the choice of angle might be significant [24].

With further work, it seems possible that a method could be 
devised to choose an appropriate measurement setting (diffrac-
tion order, angle of incidence), based on the material param-
eters and the approximate location of the grating’s critical 
dimensions in the input field.
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