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Abstract

In this paper, the inverse problem of extracting critical dimensions

of the grating is de�ned, using data obtained by ellipsometric spec-

trometry. We give an overview of theoretical models describing di�rac-

tion gratings and their interactions with incident light, with a special

emphasis on the coupled-wave method. A method for mapping the

output space (points on Poincaré's sphere de�ned by the ellipsomethic

angles for each wavelength) to the input space (grating dimensions)

is presented, where samples of the output space are picked equidis-

tantly. Using this method, distribution of the measurement precision
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for a given type of experimental setup is established, and tested on

examples from a set of permalloy gratings.

Keywords: Inverse problem, di�raction grating, coupled-wave method.

1 Introduction

Di�raction gratings have been used in spectroscopy and other studies of

electromagnetic phenomena for nearly two centuries [1, 2]. Josef Fraunhofer

(1798-1826), the discoverer of the dark lines in the solar spectrum, built the

�rst gratings from 1819 by winding �ne wires around two parallel screws [3].

Simply said, a di�raction grating is an optical component with a periodic

structure used to split and di�ract light into beams traveling in di�erent

directions. Since these directions depend on the frequency of the incident

electromagnetic wave, it can be used as a dispersive element. Because of

this, gratings are often used in monochromators and spectrometers.

Modern gratings may have up to thousands of lines per millimeter with

near-perfect periodicity [4]. The groove shapes can be controlled to be si-

nusoidal, rectangular and so forth; these gratings can be made on various

metal, plastic and glass substrates and coated with thin-�lm metal or di-

electric stacks. The primary applications of di�raction gratings are in spec-

troscopy [1, 2], (where they are used for analyzing the frequency content of

electromagnetic radiation), but they are also used as wavelength selectors

in tunable lasers [5], beam sampling mirrors in high-power lasers, band-pass
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�lters, pulse compressors and polarization-sensitive optics, among other ap-

plications [6].

Di�raction gratings can be studied by a number of experimental meth-

ods, like Atomic Force Microscopy (AFM), Scanning Tunneling Microscopy

(STM), Spectroscopic Ellipsometry (SE) [7] or the case of magnetic materi-

als, the Magnetooptical Spectroscopic Scatterometry (MOSS) [8, 9] measure-

ments. The former two methods are more complicated to realize in practice,

while the latter two require more complicated numerical processing. Only

during the past fourty years or so that a thorough understanding has been

archieved through the consistent application of Maxwell's equations with the

help of advanced analytical and numerical techniques [10].

2 The inverse problem

2.1 De�nition of the inverse problem

In general, when we have an operator f mapping one space (X) to another

(Y):

f (x) = y, (2.1)

we call the task of �nding x for a given y an inverse problem:

y = yp, x =?. (2.2)
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The coupled wave method (see section 3.1) is able to, for known grating

parameters, characterize the re�ected light (angle, intensity, polarization of

the Fourier-modes). In this work, we use it to calculate the ellipsometric

angles of the re�ected light from material and geometrical parameters; this

is our f forward operator. Speci�cally, x is the input space consisting of

critical dimensions of the grating and y is the output space consisting of the

measured ellipsometric angles.

It seems plausible to use the formalism to calculate the grating's param-

eters from observing the re�ected light using the aforementioned methods

(MOSS, ES); in this case, the inverse problem has to be solved. This has

been done for both material and geometric parameters [7, 11].

When working with the inverse problem, we assume that the material

parameters (they can be measured easily with a reference �at sample) and

grating period are known (since it is easy to control during manufacturing),

and that the sum d1 +d2 is �xed (see �gure (2.1) for details) [12]. This leaves

d1 and b as independent input variables.

x = (d1, b) , y =

 Ψ1, ..., Ψnλ

∆1, ..., ∆nλ

 , (2.3)

where nλ is the number of wavelengths at which the experiment is per-

formed.
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Figure 2.1: The geometrical situation of the permalloy grating.

The situation shows some similarities with the problem of Eddy Current

Testing (ECT), where a certain mapping method has been used with success

to determine when it is possible to reconstruct a material �aw by measuring

the magnetic �eld in its vicnity. In our work, the method developed for ECT

inverse problems in [13] is used. This algorithm consists in the adaptive

generation of a database of corresponding input parameter - output data

pairs:

D = {(x1,y1), . . . , (xs,ys)} , (2.4)

with s being the total sample number and the pairs are related via the

simulation f(·) at hand, i.e.
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yi = f(xi), i = 1, 2, . . . , s. (2.5)

This database D is called optimal in the sense that the output samples

yi are uniformly spread out over the output space, i.e., over the domain

spanned by all conceivable outputs of the simulation. This uniform output

distribution is achieved by means of a sequetial adaptive sampling that is not

discussed herein. The distribution of the input samples corresponding to such

uniform output distribution bears valuable information on the conditioning

of the inverse problem, as pointed out in [13, 14]. A central contribution of

the present paper is to apply this adaptive sampling to di�raction gratings

and to analyze the available information of the realted inverse problem.

The error between a measurement and a calculated value can be char-

acterized by angular distance between the measured and simulated points

plotted on Poincaré's sphere [7]. This distance is speci�ed by the azimuthal

angle 2Ψ and the polar angle ∆, i.e.,

cos γ = Sexp · Ssim. (2.6)

Here the experimental data is:

Sexp =


sin(2Ψexp) cos(∆exp)

sin(2Ψexp) sin(∆exp)

cos(2Ψexp)

 , (2.7)
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and the simulated data is:

Ssim =


sin(2Ψsim) cos(∆sim)

sin(2Ψsim) sin(∆sim)

cos(2Ψsim)

 . (2.8)

Using synthetic data corrupted by a Gaussian noise (this is reasonable

to assume, given that the measurement setup is a null-zone ellipsometer

[12, 15], which measures the angles themselves [16]), �ts were done for several

virtual measurements. The aim was to generate output data with noise and

try to �nd the original input by minimizing the sum of errors squared (so

the Euclidean norm) over a certain number of measurements on di�erent

wavelengths, then to �nd the relationship between the error of the �t and

the density of 'states' on the output map.

xfit = arg min
x
‖ γ(ỹ, f(x)) ‖2, (2.9)

here γ is a vector containing angles γ as de�ned by equation (2.6), and

f is the forward operator.

The optimization problem is solved by di�erent numerical techniques:

a simplex-method (implemented in the Matlab fmincon-routine, [17]) and a

nearest neighbor interpolation over the optimal database are used, as detailed

in the numerical examples in Section 3.
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2.2 Characterization of the conditioning of the inverse

problem

Inverse problems can often be ill-posed or ill-conditioned. The latter results

in di�culties when solving the optimization problem de�ned in equation

(2.9). In this section, we introduce a certain measure of the ill-conditioning

of the inverse problem, namely, the mis�t of the found and "true" solution.

One can calculate the deviation between the input data and the �ts'

results:

[d1,fit, bfit]− [d1, b] = [δd1 , δb] . (2.10)

It can be expected that the accuracy of the �tting is better in places where

the density of states is larger, and conversely, in places of smaller density,

the accuracy is worse. This is proven to be true in later parts of this work.

3 Grating theories

To be able to work on the inverse problem, an adequate method is required

to arrive to the forward function f . There are several theoretical approaches

dealing with the EM theory of gratings. The simplest theory of gratings treats

them as corrugated structures that modulate the amplitude and/or phase of

the incident beam. The modulated re�ected (or transmitted) wavefront is

then decomposed into its Fourier spectrum to yield the various di�racted
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orders.

From a mathematical point of view, Maxwell's equations can be expressed

as partial dierential equations. In the grating case, they have constant cof-

fecients - they can be solved numerically in two dimensions. Because of

numerical instabilities, this method - the classical di�erential method - only

works for shallow gratings.

The integral method is based on the idea that the solution of electromag-

netic scattering problems can be found by simple integration, provided that

the �eld and its normal derivative on the surface of the scattering object (and

at in�nity) are known.

Finite element schemes can also be used. The advantage of them is the

availability in commercial software, however, the computational cost involved

is usually high.

Modal methods, like the one we're describing in this work, work for lamel-

lar proles. They are based on the decomposition of EM �eld in a combination

of modes, which are some base vectors chosen according to the situation.

For more details about the methods used to describe di�raction gratings,

see [18].
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3.1 The coupled-wave method for a grating with a sin-

gle anisotropic inhomogenous region between two

isotropic homogenous regions

The analytical formalism of Rokushima and Yamakita treating the Fraun-

hofer di�raction in planar multilayer periodic structures is a powerful method

of describing di�raction gratings [19]. Using parameters of the grating (ma-

terial parameters, geometry) and assuming that the characteristics of the

incident light are known, we are able to calculate the intensity, polarization,

angles of the refracted and transmitted light in speci�c di�raction orders.

To characterize the grating's geometry, we use that the permittivity tensor

inside the grating is periodic (an illustration of the geometric situation can

be seen in �gure 3.1):

←→ε (r) =


εxx(r) εxy(r) εxz(r)

εyx(r) εyy(r) εyz(r)

εzx(r) εzy(r) εzz(r)

 , (3.1)

while also assuming that the the permeability of the grating is equal to

that of vacuum.

In the general case, we can characterize the periodicity of the grating region

with the so-called grating vector:
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Figure 3.1: Geometry and de�nitions shown on a general di�raction grat-
ing. Regions (1) and (3) are homogenous and isotropic, while (2) can be
inhomogenous anisotropic with a periodic tensor of permittivity.

Γ = x̂Γx + ŷΓy + ẑΓz, (3.2)

where

Γi =
2π

Λi

, i = x, y, z. (3.3)

Since ←→ε (r) is periodic, it is possible to expand it into a Fourier series:

εkl(r) =
∑
m

exp(lΓ · r)εkl,m, (3.4)

or rewriting it with normalized components.
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According to the Floquet theorem, the electric and magnetic �elds of

electromagnetic waves can be expressed as a Fourier series:

√
µvac
εvac

E(z̄) =
∑
m

em(z̄) exp(−nm · r̄), (3.5)

√
µvac
εvac

H(z̄) =
∑
m

hm(z̄) exp(−nm · r̄), (3.6)

where

em(z̄) = x̂exm(z̄) + ŷeym(z̄) + ẑezm(z̄), (3.7)

hm(z̄) = x̂hxm(z̄) + ŷhym(z̄) + ẑhzm(z̄), (3.8)

r̄ =
ω

c
r, z̄ =

ω

c
z, (3.9)

and nm is a vector dependent on the angle of incidence in addition to the

aforementioned grating parameters.

After some mathematical operations and physical considerations detailed

in [20], we get the following equations:

d

dz̄
ft̂ = Cf t̂, (3.10)
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fn̂ = Cf t̂. (3.11)

Here,

ft̂ =



ex

hy

ey

hx


, (3.12)

fn̂ =

 ez

hz

 , (3.13)

and C is a square matrix with a size of 4Mx4M (where M is the order of the

Fourier series) dependent on the angle of incidence, material and geometric

parameters. The solution to eqs. (3.10),(3.11) reduces to a problem of �nding

the eigensystem of matrix C.

Ultimately, all the information about the grating can be expressed using

the transfer matrix (superscripts indicate the region or boundary which the

matrices characterize):

W = B(12)U(2)(d̄2)B
(23). (3.14)

Where B(12) and B(23) characterize e�ects on the respective layers' bound-

aries, while U(2) characterizes propagation inside region (2).
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3.2 Rectangular permalloy grating on a semi-in�nite

layer of silicon

A certain di�raction grating has been studied extensively using SE and MOSS

at the Divison of Magnetooptics, Charles University in Prague [12, 15]. The

geometrical situation can be seen on �gure 2.1, while the results of the con-

ducted AFM measurement on �gure 3.2.

Figure 3.2: The AFM measurements

In contrast to a three-region model detailed in subsection 3.1, we have

four regions where two of them are of �nite thickness in between semi-in�nite

regions of air (1) and silicon (4). Using the fact, that s = 0, so that there is

no periodicity in the z direction, we get matrix W in the following form:

W = B(12)U(2)(d̄2)B
(23)U(3)(d̄3)B

(34). (3.15)
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Here we can see, that of the two �nite thickness layers, the �rst (2)

requires the permittivity tensor (basically a Heaviside Π function) to be

expanded into a Fourier series - this can easily be done analitically. The

second (3) layer is homogenous, and in the case of a scalar permittivity, also

isotropic. In this case no Fourier expansion has to be done, or, equivalently,

we calculate the Fourier series of a constant function←→ε 3(r) = ε3.

A standard null-zone ellipsometer measures two angles, Ψ and ∆ . They

can be connected to our model as follows:

ρ =
rpp
rss

= tan(Ψ) exp(∆), (3.16)

where rss is the amplitude re�ection coe�cient connecting the incident

TE and re�ected TE waves, and rpp is amplitude re�ection coe�cient con-

necting the incident TM and re�ected TM waves [19].

We can �nd ρ for each Fourier-mode of the re�ected light:

ρi =
rpp,i
rss,i

(3.17)

Where i = −M, ...,M is the inspected Fourier-mode and M is the order

of the Fourier expansion.
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4 Numerical examples

To illustrate the results of the theory outlined herein, a couple of numerical

studies are presented in this section.

First, the convergence of the simulation with respect to the degree of

the Fourier expansion is qualitatively studied in �gure 4.1. We can see that

the number of Fourier coe�cients considered does not signi�cantly alter the

distribution of values in the input space (d1, b); the simulator converges with

increasingM . Further calculations are performed by setting order asM = 25.
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Figure 4.1: Mapping for b = 330nm, d1 = 22nm, α = 60◦, for a di�erent
number of of Fourier coe�cients.

Second, the sample pattern of some optimal databases D are presented for

di�erent con�gurations in �gure (4.2). Since the databases are equidistant

in the output space, the larger the density of points in a region of the input
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space, the larger the precision of the inversion. This can be understood the

following way: if we consider two neighboring points barely distinguishable

during a measurement in the output space, then the same can be said after

inversion about the corresponding points in the input space. For a region R1

with a small density of states, two neighbors are far apart, and the expected

accuracy of the solution to the inverse problem is smaller. On the other

hand, in a region R2 with a larger density of states, the distance between

neighbors in the input space is smaller, so we can solve the inverse problem

with a larger accuracy. It is said that the problem is well conditioned in R2

and ill conditioned in R1.

18



5 10 15 20 25 30

100

200

300

400

500

600

700

800

900

d
1
 (nm)

b 
(n

m
)

alpha=70deg; mode=+1; M=25

5 10 15 20 25 30

100

200

300

400

500

600

700

800

900

d
1
 (nm)

b 
(n

m
)

alpha=80deg; mode=+0; order=51

5 10 15 20 25 30

100

200

300

400

500

600

700

800

900

d
1
 (nm)

b 
(n

m
)

alpha=70deg; mode=−1; M=25

5 10 15 20 25 30

100

200

300

400

500

600

700

800

900

d
1
 (nm)

b 
(n

m
)

alpha=60deg; mode=+1; M=25

5 10 15 20 25 30

100

200

300

400

500

600

700

800

900

d
1
 (nm)

b 
(n

m
)

alpha=60deg; mode=+0; M=25

5 10 15 20 25 30

100

200

300

400

500

600

700

800

900

d
1
 (nm)

b 
(n

m
)

alpha=60deg; mode=−1; M=25

Figure 4.2: Distribution of states for the �rst, zeroth and minus �rst di�rac-
tion orders, at α = 70◦, and α = 60◦, degrees of incidence.

One could try to explain the zeroth order distributions as follows. Let us

consider a grating with d1 = 0. Since the periodicity of such a grating can be

considered in�nite, only the zeroth di�raction order can be observed. Let us
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assume that d2 is su�ciently large so that all incident light is absorbed before

reaching the boundary of the silicon and permalloy regions. In this case, a

small change in d2 will not result in any change of the re�ected light. On the

contrary, if d2 is su�ciently small, even a small change in it will have an e�ect

on the re�ected light due to secondary re�ection from the permalloy-silicon

boundary (see �gure 4.3).

Figure 4.3: Explaining the zeroth order distributions.

In our case, where d1 6= 0, there are obviously other e�ects at play, but the

general character of the distribution is not inconsistent with the explanation

presented above � where thickness of the surface layer increases, the density

of states in the zeroth di�raction order decreases.

Thirdly, some quantitative analysis is presented in Table 4.1. The true

(to be found) input parameters are chosen such that they represent locations

in the input space with high and low sample density, i.e., well-conditioned

and ill-conditioned regions in the sense of the inverse problem, while the �rst
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one is chosen to model the geometry desribed in [15]. In this comparison, the

simplex method is used to solve the optimization problem (2.1). The noise

function has a parameter of 2.0 degrees, the �t was performed for 20 virtual

experiments in all cases.

Table 4.1: Fits performed for the virtual experiments.

b = 330 nm, d1 = 22 nm, α = 60◦ 0th o.o.d -1st o.o.d. 1st o.o.d.
b[nm] 337.93 330.15 329.35
δb[nm] 16.19 0.92 1.93
d1[nm] 22.13 22.01 21.94
δd1 [nm] 0.27 0.07 0.18

α = 60◦, 0th o.o.d. b = 100 nm, d1 = 26 nm b = 250 nm, d1 = 5 nm
b[nm] 103.91 229.15
δb[nm] 6.52 53.83
d1[nm] 26.05 5.43
δd1 [nm] 0.14 0.75

α = 70◦, 1th o.o.d. b = 200 nm, d1 = 5 nm b = 250 nm, d1 = 27 nm
b[nm] 199.77 250.16
δb[nm] 0.51 3.30
d1[nm] 4.99 27.01
δd1 [nm] 0.04 0.15

α = 70◦, -1st o.o.d. b = 200 nm, d1 = 5 nm b = 250 nm, d1 = 27 nm
b[nm] 199.91 250.26
δb[nm] 6.42 0.52
d1[nm] 5.11 26.99
δd1 [nm] 0.39 0.03

b = 330 nm, d1 = 22 nm, 0th o.o.d. α = 70◦ α = 80◦

b[nm] 330.70 328.98
δb[nm] 7.53 6.34
d1[nm] 22.06 22.03
δd1 [nm] 0.18 0.17

Points (5 nm, 200 nm) and (27 nm, 250 nm) for α = 70◦ demonstrate this
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quite well. While the �rst di�raction order is better conditioned for the

former and a worse for the latter, in the case of the minus �rst order the

opposite is true. A similar comparison can be seen in the case of zeroth

order (26 nm, 100 nm) and (5 nm, 200 nm) at 60 degrees of incidence. Fits

were performed for the dimensions of the grating studied in [12, 15] as well.

Finally, some results of inversion by means of nearest neighbor interpo-

lation are shown in �gure 4.4. Herein a �ne grid de�nes a database and

repeated simulations are done, each using noise-corrupted data of a given

probability distribution. Let us note that the same noise level causes sig-

ni�cantly di�erent uncertainty of the solution for di�erent gratings. This

is consistent with the conclusion drawn from the sample density of optimal

databases.
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Figure 4.4: Results of Nearest Neighbour interpolation on a regular grid at
di�erent levels of measuerement noise (σn: standard deviation of Gaussian
white noise). •: true parameter, N: reconstructed parameter using the noise-
corrupted data (test of 500 runs).
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5 Conclusion

It this work, we have proven that the method used in Eddy-Current non-

destructive Testing can also successfully charaterize the inverse problem in

di�raction gratings' critical dimension measurement, thus give an insight

to the precision of the measurements depending on the grating parameters'

location in the input �eld of grating dimensions. This is numerically demon-

strated in table 4.1 and graphically in �gure 4.4.

It can also be seen that �ts in the minus �rst and �rst di�raction orders

tend to have a smaller deviation value than the zeroth order. To what extent

this is true, and to precisely describe this phenomenon, more information is

needed about the measurements' details; this may be an interesting topic for

further research. We have also not found the choice of angles of incidence

not very signi�cant with regards to the distribution of states, although there

are hints that some angles are more advantageous than others; this question

question requires further investigation as well.

With further work, it seems possible that a method could be devised

to choose an appropriate measurement setting (di�raction order, angle of

incidence), based on the material parameters and the approximate location

of the grating's critical dimensions in the input �eld.
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