
12 Period. Polytech. Elec. Eng. Comp. Sci. M. Sipos et al.

On the Effectiveness of Recoding-
based Repair in Network Coded
Distributed Storage

Márton Sipos1,2*, Patrik János Braun1, Daniel Enrique Lucani2,4,
Frank H. P. Fitzek3, Hassan Charaf1

Received 25 April 2016; accepted 06 September 2016

Abstract
High capacity storage systems distribute files across several
storage devices (nodes) and apply an erasure code to meet
availability and reliability requirements. Since devices can
lose network connectivity or fail permanently, a dynamic
repair mechanism must be put in place. In such cases a new
recovery node gets connected to a given subset of the operat-
ing nodes and receives a part of the stored data.

The objective of this paper is to investigate data survival for
Random Linear Network Coding (RLNC) as a function of topol-
ogy and communication overhead, defined by the number of
connections and the number of transmitted packets to the recov-
ery node, respectively. The paper includes two main contribu-
tions. First, a sufficient set of conditions for quasi-infinite lon-
gevity of the stored data is derived. Second, a comparison using
experimental results shows that RLNC can be up to 50% more
effective than traditional erasure codes like Reed-Solomon.

Keywords
distributed storage, erasure coding, network coding

1 Introduction and related work
Reliable distributed storage has been one of the driving

forces behind most online services in the last decade. It has
also played a key role in the creation of entire new fields such
as cloud computing and big data. Many traditional distributed
storage systems that are employed in controlled, observable
and predictable scenarios, use replication. For example, the
widely used Apache Hadoop File System (HDFS) uses 3-way
replication by default. However, there has been a long-running
trend towards using erasure codes to reduce the storage cost in
exchange for computational overhead. Windows Azure Storage
was one of the first large services to make use of erasure codes,
namely a (6,2,2) Local Reconstruction Code [1] that employed
2 local parity fragments and 2 global parity fragments for every
6 data fragments. Facebook employed an extended version of
HDFS-RAID [2] that introduces Locally Repairable Codes for
storing rarely accessed cold data. Depending on file size, this
meant either a Reed-Solomon(10,4) code, or a simpler XOR-
based parity code. An evolution of this called HDFS-Xorbas [3]
was also considered. Google has stated [4] that Colossus, the
successor to the Google File System [5] will also make use of
a Reed-Solomon code.

On the other hand, in distributed storage systems that lack
a central entity to direct the repair process and for which the
exact system state is hard to observe and predict, these tradi-
tional codes have proved less effective [6]. These include gen-
eral P2P storage such as mobile and vehicular storage clouds
and sensor networks. These systems also behave in a more
dynamic way, nodes leave and join the system regularly, there-
fore it is crucial to limit the transmission cost associated with
maintaining data integrity. In this paper we advocate the use of
random linear network coding, which is better suited for this
dynamic scenario.

Network coding was first introduced in 2000 by Ahlswede et
al. [7] as a way of improving the throughput of packet switched
networks. Random Linear Network Coding (RLNC) has been
shown to be very effective as an erasure code for distributed
storage [8]. Furthermore, our previous work [6, 9] has shown
using simulation data, that it can outperform replication-based

1 Department of Automation and Applied Informatics,
Faculty of Electrical Engineering and Informatics,
Budapest University of Technology and Economics
2 Department of Electronic Systems, Faculty of Engineering and Science,
Aalborg University
3 Faculty of Electrical Engineering and Information Technology, Dresden
University of Technology
4 Chocolate Cloud ApS
* Corresponding author, e-mail: siposm@aut.bme.hu

61(1), pp. 12-21, 2017
DOI: 10.3311/PPee.9377

Creative Commons Attribution b

research article

PPPeriodica Polytechnica
Electrical Engineering
and Computer Science

https://doi.org/10.3311/PPee.9377

13On the Eff. of Recoding-based Repair in Network Coded DSS 2017 61 1

storage and Reed-Solomon codes even in traditional centrally
controlled systems if the amount of storage and repair traf-
fic is limited. RLNC is effective in maintaining data survival
because of recoding-based repair, a form of functional repair.
There is no need for the recovery node to gather the entire sur-
viving data and there is no signaling taking place among nodes
to describe the state of the system or the distribution of data or
to coordinate the repair process. This paper sets out to under-
stand and formalize the effectiveness of the recoding process
and show the values for which recoding provides data survival
for a large number of subsequent non-concurrent failures.

It is motivated in part by the seminal work of Dimakis et
al. [10] which shows that there is an inherent trade-off between
the amount of data stored on each node and the amount that
needs to be transmitted to a new node during reconstruction.
The paper defines bounds on erasure codes using a curve to
express this trade-off and discusses the two extremal points on
it. Minimum Storage Regenerating (MSR) codes need the least
amount of storage to ensure a given level of reliability and are
therefore equivalent with Maximum Distance Separable (MDS)
codes. Conversely, Minimum Bandwidth Regenerating (MBR)
codes store more information in order to decrease the amount
of information transmitted during reconstruction to a mini-
mum. [10] also introduces the concept of regenerating codes,
which are optimal in terms of this trade-off and proves the
existence of such codes based on the existence of a minimum
cut in the information flow graph for every point on the curve.
Both extremal points have seen great interest since. [11] studies
MBR exact repair codes with the repair-by-transfer property
and assumes that all surviving nodes partake in the reconstruc-
tion of the lost data. It establishes the non-achievability of most
of the interior points on the curve for exact repair. [12] pro-
poses a scheme to create MSR codes which are also optimal in
terms of the number of I/O operations performed on each of the
nodes participating in the reconstruction.

One of the assumptions [10] makes is that both the amount of
stored information (α) and transmitted (β and γ respectively)
information can have non-negative, real values. In real systems
erasure codes are only able to store and transmit an integer num-
ber of bits and, most likely, are bound by other system require-
ments to manage and store larger data portions. A probabilistic
approach could be introduced to model the storage and trans-
mission of real number of bits. For example, α = 2.3 could be
seen as each node storing 2 with 0.7 probability and 3 with 0.3
probability. However, it is unclear how such an approach would
affect the aforementioned bounds. Furthermore, increasing the
granularity with which data is viewed in a system is generally
not feasible in practice due to a cubic increase in the complexity
of encoding and decoding operations. Therefore, we have cho-
sen to introduce a more strict condition that these values must
instead be positive integers. Thus, the bounds that we introduce
are at least as constraining as those in the original work.

Beyond this practical consideration, our experimental
results go a step further by also restricting the number of nodes
that are available to use during the reconstruction, but without
explicitly designing the system, as done in [10], to compensate
for it. This means that we do not consider the same guarantees
of reliability on each recovery, but can still provide reliability
over an arbitrarily large number of loss/recovery operations.
This additional constraint can be used to model storage nodes
that are unavailable temporarily due to network connectivity or
are unable to respond in due time due to uneven, dynamically
changing loads in the system. This is also a novel constraint
absent in [10].

The paper is organized as follows. First, we propose a model
in Section 2 and show in Section 3 that if the values of certain
parameters that define the storage system are chosen correctly,
data integrity can be guaranteed for a large number of rounds.
We define the constraints to choosing the appropriate values in
Section 4. Finally, we show the most cost-effective sets of val-
ues and compare RLNC with other erasure codes using results
from simulations in Section 5.

2 System model
This section introduces the elements of a distributed stor-

age system and proposes a simple and effective way to model
the reconstruction process for RLNC encoded files based on an
information flow graph [7]. Each file is divided into g packets
of identical size and distributed evenly to n storage devices
using a rateless RLNC code. Devices are prone to failure and
any data that is stored on a failed device is lost and must be
reconstructed from the surviving ones onto a new recovery
device. Recoding is performed on both surviving devices tak-
ing part in the recovery process and the recovery device itself
using all available packets. We assume that the reconstruction
process always completes successfully before another failure
occurs. We have previously looked into how this assumption
affects the system in [13] using real-world traces, as well as
how effective erasure codes are when dealing with concurrent
device failures [9]. We assume that all devices have the same
probability to fail, regardless of their age in the system. We
evaluate the ability of a system to store data reliably by consid-
ering k rounds of failure and reconstruction pairs representing
the transitions between the different states of the system. We
wish to establish the sets of parameters for which a storage sys-
tem that uses recoding is able to maintain data integrity after a
large number of failure and recovery rounds.

2.1 Recoding
Recoding is the central part of the repair process for RLNC.

It is the creation of packets by linearly combining existing
encoded ones. If a storage device has stored q linearly inde-
pendent packets, it can create q linearly independent recoded
packets from these. RLNC is a rateless code, therefore, the

14 Period. Polytech. Elec. Eng. Comp. Sci. M. Sipos et al.

number of packets that can be generated using recoding is only
limited in theory by the field size used for calculation. How-
ever, from any set of generated packets for a given file, at most
g will be linearly independent.

R Pj ij i
i

g

=
=
∑α

1

Rj is a recoded packet, Pi is a previously encoded/recoded
packet and αij is a randomly selected coefficient. When working
over a small finite field, there is a possibility that the values for
the αij are selected in such a way that the q recoded packets
are not linearly independent. The probability for this to happen
is reduced significantly by selecting a larger field [14]. Our
model assumes the use of a high field, where recoding does not
introduce significant linear dependence. Experimental results
presented in Subsection 5.2 use the relatively small GF(28) field
and suggest that the probability of generating linearly dependent
coefficients is low enough to not impact the effectiveness of
RLNC compared to other erasure codes. The use of a larger field
such as GF(216) should make this issue negligible in practice. To
verify this assumption, we have performed and described further
experiments in Subsection 5.3. Recently, Abdrashitov et al. [15]
investigated the long-term behavior of a distributed storage
system using a model very similar to the one used in this paper.
One of their main results was to define approximations on data
survival based on Markov chains. These theoretic results are
consistent with our simulation-based findings.

A different approach can be used if a guarantee is necessary
that a distributed storage system employing recoding ensures
data recoverability indefinitely with no constraint on the field
size used. By checking the invertability of several possible coef-
ficient matrices used to encode the data prior to performing a
repair, it is possible to select a combination of data and coeffi-
cients that is able to maintain the amount of linear independence
in certain parts of the system. However, the practical applicabil-
ity of this approach may be limited for highly dynamic, decen-
tralized systems due to its high computational cost as well as
the need for a mechanism to communicate the coefficients to the
node that performs the checks and repair selection.

2.2 Modeling distributed storage using network flows
To describe and analyze the way packets are stored and used

for repair, we employ a model based on network flows, simi-
lar to that proposed in [10]. In this interpretation, the storage
system behaves similarly to a multi-hop unicast lossy wireless
network. The maximum number of packets that can be trans-
mitted between the source and the sink in such setups has been
proven to be the network’s maximum flow, achievable using
network coding [7]. The nodes of the network are the states of
the storage devices in each round.

Node Ni
j denotes storage device i in round j (where

i = 1,2,…n and j = 1,2,…k , where n,k Î + = {1,2,…}). Each

node stores q packets and is able to perform recoding on these
to generate new packets. We denote the set of nodes belong-
ing to round j as Γ j

i
jN i n= ≤ ≤{ }1 . We also introduce two

special nodes: the data source Ns and the data collector or
sink Nt . These appear before the first round and after the last
round respectively. The data source splits a piece of data that
needs to be stored into g pieces (packets) and encodes them
before distributing them to the storage devices. A special NENC
encoder and NDEC decoder node is introduced to model the
encoding and decoding process. Figure 1 shows an overview
of the network.

Fig. 1 Overview of the directed acyclic graph representing the storage system

An edge symbolizes the route taken by a packet between
two states of the network. We distinguish between two cases:
first, the storage node i that is present in the system in both
round l and l + 1 is denoted by two nodes Ni

l and Ni
l+1

with q directed edges connecting them signifying the num-
ber of packets that are stored on it. Second, each new recovery
node is filled with data by randomly selecting p parent nodes
from the surviving ones and transferring c recoded packets
from each. The recovery node will recode over the received
p ∙ c packets and store q out of them. The most significant
difference between this model and the one introduced in [10]
is that q, c Î + as opposed to q, c Î R≥0 . We assume p ∙

c ≥ q , as otherwise packets on a recovery storage device would
become linearly dependent. In this case, edges between parents
and a recovery node denote the transfer of packets used for the
reconstruction of data. Formally, nodes Na

l and Nb
l+1 , where

a ≠ b , are connected by c directed edges if Nb
l+1 is a new

recovery node that has been reconstructed using c packets
from Na

l . No edges leave a node Ni
l that failed in round l , as

we consider all packets it stored lost. Each edge has unit capac-
ity as they denote the storage/transmission of a single packet
in the network. In figures, we represent parallel edges with a
single edge and a number to show their multiplicity. Due to the
way the graph is constructed, edges only run between nodes of
consecutive rounds. This structure gives a topological ordering
for the underlying directed acyclic graph, where each level is
comprised of nodes for a given loss-recovery round.

Edges in the network show the path packets take from the
source to the sink. Each node Ni

l (not counting the source and
the sink) receive deg Ni

l− () packets on its incoming edges
and recodes over them to send deg Ni

l+ () on its outgoing
edges. Recovery nodes receive deg N p ci

l− () = ⋅ packets. This
is potentially more than the storage capacity q . To correctly

(1)

15On the Eff. of Recoding-based Repair in Network Coded DSS 2017 61 1

reflect this constraint in the model, all reconstructed recovery
devices need to be represented by two separate nodes Ni

l
− and

Ni
l
+ connected with q edges, Fig. 2 illustrates this. We have

chosen against showing this detail in figures to make them eas-
ier to read. Note also that not just the recovery, but all devices
may be represented in this manner.

Fig. 2 Model for data flow with and without storage constraints

Remark 1. The edges used by a flow of capacity f between the
source and the sink on a network of the aforementioned type
can be used to transfer f linearly independent packets between
the source and the sink.
Proof. The edges portray how linear combinations of packets
are generated using recoding. In this sense, edges denote lin-
ear dependence between packets of two nodes. Therefore, if we
find f edge-disjoint directed paths between the source and the
sink, then these will enable the transmission of f linearly inde-
pendent packets. As all edges have unit capacity by definition,
f edge-disjoint paths can support a flow of capacity f (0-1 flow
due to the integrality theorem) and as such, the transmission of f
linearly independent packets between the source and the sink. W

Please note, that for all flows, f ≤ g because of the minimum
cut separating the Ns and NENC as visible on Fig. 1. To be able
to perform an evaluation based on network flows for RLNC,
we assume an infinitely large field in Section 3 and 4. We then
evaluate how much the choice of field size affects data survival
in practice in Section 5 to validate this approximation.

The choice to represent the distributed storage system as a
network comes with additional benefits for the future. Concur-
rent storage device failures can be modeled with few changes.
Furthermore, devices that are only temporarily unavailable
between rounds a and b can also be portrayed by introduc-
ing edges between Ni

a and Ni
b . However, a small part of

the results that are presented in this paper would need to be
reevaluated, as this would mean that it would no longer be pos-
sible to state trivially that the structure of the underlying graph
is topologically sorted.

3 System convergence
We wish to show that a storage system using RLNC can

ensure data survival with a high probability after a large num-
ber of failures given a judicious selection of values for some
key parameters. Using the previously introduced model, the
criterion for this is to have a maximum flow with value f = g
(or g edge-disjoint paths) between the source and the sink. In
other words, the data collector must be able to gather as many
linearly independent packets from the surviving storage nodes
as the number of packets that the source introduced into the
network (g). First, the initial data distribution must be per-
formed such that this property is satisfied. Second, subsequent
node loss and recovery rounds must ensure that the property is
kept for a large number of rounds. We denote M j Í Γ j as a
randomly selected set of non-failing nodes in round j . It is the
smallest possible set that stores g packets (to make possible a
flow with value g between the source and the sink without the
traversal of other nodes of round j).

m M g
q

j= =

Definition 2. Robust Data Recoverability (RDR) property: a
system has the RDR property if and only if data can be recov-
ered from any set M j of non-failing nodes in any round j ,
where M j g

q= .

For RLNC this is analogous to having a submatrix of rank g
of the matrix composed of the coefficients used to (re)encode
the data for all selections of nodes of size m in each round. The
RDR property is a generalization of the Maximum Distance
Separable (MDS) property. It illustrates the efficiency of a code
in terms of the required storage for a given level of redundancy.
We introduced RDR to handle cases where q ≠ 1, common for
RLNC. For g | q the two concepts coincide.

To have this property, the initial distribution of data must
meet some conditions. More importantly, the storage system
must have a robust reconstruction transition between rounds,
as there is no way to rebuild lost data paths. Newly introduced
repair edges to the recovery device have the goal of increasing
the interconnectedness of nodes. They build redundant paths to
be used in case another node fails in the future.

The following proposition states that any given non-adap-
tive recovery mechanism either maintains the RDR property
indefinitely or loses it after some rounds and never recovers it.

Proposition 3. Considering a storage network with a fixed set
of values for g, n, q and a reconstruction transition with fixed
values for c and p that maintains the RDR property between
at least one pair of consequent rounds l and l + 1 , then this
transition will also maintain the RDR property for any round
j Î N +.

(2)

16 Period. Polytech. Elec. Eng. Comp. Sci. M. Sipos et al.

Proof. We divide the proof into several parts:
• For j < l : Based on the network construction that pro-

vides a topologically sorted form, it is trivial that if layer
l exhibits the RDR property then all layers j < l must
also have this property as the premise of the proposition
can be applied recursively until round 1.

• For j > l + 1 :
Let us assume that round j is the first round after l + 1 ,
for which there exists a selection of nodes M j that do
not have g edge-disjoint paths pass through them. We
will show by contradiction that such a selection cannot
be made and thus round j also has the RDR property.
M j can be selected in nm

 ways. Fortunately, it is enough

to consider two distinct cases.
- M j does not include the newly recovered node.

In this case, all nodes in M j were already present in
the previous round, therefore we can easily find the
corresponding set of nodes M j − 1 that includes the
same storage nodes. These can support g edge-dis-
joint paths because round j is the first to not have the
RDR property. The q paths between the m pairs of
nodes in round M j − 1 and M j will ensure g edge-
disjoint paths pass through M j

 . We have arrived to a
contradiction.

- M j includes the newly recovered node.
Surviving nodes already ensure at least g − q edge-dis-
joint paths pass through nodes in the corresponding M

j − 1 set in round j − 1 . Let us assume that the recovered
node does not provide the minimal number of q ad-
ditional paths necessary for the system to keep the RDR
property in round j. This implies that there are less then
q edges between the recovery node and nodes from
round j − 1 outside of M j − 1

 , i.e. (p − (m − 1))c < q .
The original assumption of the proposition is that p,

g, q, c and thus m have a fixed value. Therefore, this
bound must also have had to have been in place in
rounds l and l + 1 . This would mean that the transi-
tion to round l + 1 would have lost the system the
RDR property because the M l + 1 set that included the
node recovered in round l + 1 would not have had g
edge-disjoint paths pass through it either. Again, we
have arrived to a contradiction.

Because we arrived at contradictions for both categories of
cases, we can conclude that the system must be able to support
robust data recoverability in rounds following round l + 1 as well.

W

For RLNC, the assumption of a large enough field size must
be made so that g edge-disjoint paths correspond to the stor-
age and transmission of g linearly independent packets with
a high probability. Even so, the likelihood of maintaining the
RDR property decreases as j increases.

Another way of phrasing the contents of this section is that
the parameters of the system define the lowest value for the
minimum cut in the network. After a sufficiently large number
of recovery rounds, the system will converge to this value. This
is the amount of data that can be stored safely in the distributed
storage system. By maintaining the RDR property in all rounds
using a given reconstruction transition, the system ensures that
the minimum cut is above g . An important consequence of
Proposition 3 is that the system can be considered memory-
less if the RDR property is maintained because the ability of a
reconstruction transition to maintain the RDR property is only
influenced by the state of the system in the pre-transition round.

4 Criteria for maintaining the Robust Data
Recoverability property

In the previous section, we have shown that given a correct
set of values for the parameters of the system, the RDR prop-
erty can be maintained for a large number of rounds with high
probability. Here we give the criteria for the parameters as a set
of inequalities.

Our model can be defined using the previously introduced
parameters: n, q, g, p, c Î +

 . We derive the key constraints for
these by examining each state and state change of the system.
From the initial state it is possible to conclude that to be able to
store the data, we must have at least n g

q≥ nodes. However,
an extra node is required to be able to handle a loss.

n g
q

≥

 + .1

Because the original data is divided into g pieces, there is
no reason to store more than q ≤ g packets on a single node
(there is a g sized cut between the source and the rest of the
network).

The defining state changes is the transition between any two
consecutive rounds l and l + 1 . A node fails in round l and a
recovery node is filled with data in round l + 1 to functionally
repair the lost data. To be able to contact enough parent nodes,
the recovery node must have access to at least these p nodes.
Therefore,

n p≥ + ,1

where the +1 is the recovery node in round l + 1 . Furthermore,
each node stores q packets, therefore it should receive at least
that many to make the recoding of q linearly independent
packets possible

q pc≤ .

Let us look at how to ensure that the system maintains the
RDR property in round l + 1 , i.e. there exists a network flow
with value f = g between the source and the sink that only
traverses nodes from a selected M l + 1

 . As detailed in Subsec-
tion 2.2, this is the same as having g linearly independent

(5)

(4)

(3)

17On the Eff. of Recoding-based Repair in Network Coded DSS 2017 61 1

packets transferred on g edge-disjoint paths. We assume that
this property holds for round l and let us examine the transi-
tion to l + 1 . We denote the set of nodes representing the
surviving devices from round l which are also elements of M

l + 1 with M l′ as illustrated on Fig. 3.

Fig. 3 Case I. M l + 1 does not include the newly joined recovery node.

We can choose m nodes out of n in nm

 ways and the par-

ent nodes for the recovery node can be chosen in n p
−

1 ways.
However, there are only three distinct cases to analyze (case
III. is only achievable for storage systems with large numbers
of nodes):

• Case I. M l + 1 does not include the newly joined recovery
node.
In this case, there are no additional constraints on any of
the parameters, as the property will hold true regardless
of which nodes were used to fill the recovery node. This
is because M l + 1 includes the same devices as M l′ for
which the property was true.

• Case II. M l + 1 includes the newly joined node, which
was repaired using all m − 1 nodes in M l′ except itself,
i.e. p ≥ m − 1 .
Each of these parent nodes will supply q edge-disjoint
paths. To be able to have a total of g edge-disjoint paths
crossing M l + 1

 , additional paths must traverse the recov-
ery node. However, these should not be the same paths as
supplied by the parents, as those would not necessarily
be edge-disjoint. This can be achieved using additional
parents (padd), which results in

p
g m q

c
g q

cadd

g
q

=
− −()

 =

− −()

1 1

Considering the additional parents from inequality (6)
results in

p m p g
q

g q
cadd

g
q

≥ − + =

 − +

− −()

1 1
1

Fig. 4 Case II. M l + 1 includes the newly joined node, which was repaired
using all m − 1 nodes in M l′ except itself: p ≥ m − 1 .

• Case III. M l + 1 includes the newly joined node, which
was repaired using j = 0, …, m − 2 nodes from M l .
A total of jc paths are created between M l′ and the
newly joined node. With reasoning similar to II., the
number of additional paths that must be created between
parents not in M l′ and the recovery node is the same as
described in Eq. (6).
This gives the following lower bound for the number of
parents:

p j p j
g q

cadd

g
q

≥ + = +
− −()

1

This is a less strict condition for p than Inequality (7)
because j m g

q< − = −1 1 by definition. Furthermore,
this case is only possible if: n ≥ j + p + 1 , which is a
more strict condition for n then the one in Inequal-
ity (4). It would also be possible to extend III. to include
j = m − 1 and thus be a generalization of II.

Having studied all types of transitions from round l to
l + 1 , we have identified the sufficient conditions to ensure that
any randomly chosen M l + 1 surviving nodes can be used to
create a flow with value g in round l + 1 if the property was
true for round l . A constraint on the number of nodes can also
be expressed using Inequalities (4) and (7).

n g
q

g q
c

g q c
g
q

≥

 +

− −()

∀ , , ∈ +
1

Our initial expectation is that these or a subset of these also
defines the necessary conditions. We plan to investigate this in
the future.

(6)

(9)

(8)

(7)

18 Period. Polytech. Elec. Eng. Comp. Sci. M. Sipos et al.

Finally, the last state change is the data retrieval itself. How-
ever, having already established the constraints to allow the
recovery of the data using any m nodes for the repair transi-
tion, no new constraints need to be added.

Fig. 5 Case III. M l + 1 includes the newly joined node, which was repaired
using j = 0, …, m − 2 nodes from M l′

 .

5 Discussion
5.1 Constraints

In this section we evaluate a storage system with parame-
ters that satisfy all previously presented constraints. First, we
examine the number of storage devices nsuf that are sufficient
to maintain the RDR property between subsequent rounds.
We derive these results from Eqs. (3) and (9). Figure 6 shows
that by increasing the storage space q on each device, the
amount of devices needed initially declines. The reason behind
this reduction is that the required edge-disjoint paths used by
the repair process can be provided by fewer parent nodes as
expressed in Inequality (7). However, nsuf increases after a
point, as the amount of parent nodes required to fill the recov-
ery node increases with q as expressed by Inequality (5). The
relationship between the parameters of the system shows simi-
lar trends for both g = 10 and g = 20 , as well as other values
we have examined but not included in the paper.

Figure 7 shows the same relationship for a wider range of
values for repair traffic (c). A similar trend can be observed as
in Fig. 6 for values to the right of the c = q plane. Values to the
left of the c = q plane are for cases where c > q . Clearly, such
systems have no advantage compared to systems where c = q ,
as recoding cannot produce more linearly independent packets to
send to the recovery device than was stored on the parent device.

The set of constraints offers a wide range of values for the
parameters for which data integrity is guaranteed. This is due to
the effectiveness of recoding in the reconstruction process and
makes RLNC-based systems cost-effective.

5.2 Comparison with other erasure codes
We have also included a short comparison with a repetition-

based code and Reed-Solomon with parameters nq and nq − g
to showcase how much more effective RLNC is in maintain-
ing data retrievable for a wide range of parameters. Results
are presented for both a centrally controlled system and a fully
decentralized one that has no cooperation among nodes during
the repair process. Figure 8 [9] shows the system after 1000
rounds of simulation. Operations were performed over GF(28),
the number of nodes was fixed at n = 15 , g = 15 , c = q . The
vertical axis shows the statistically established probability that
data availability is maintained. The horizontal axes show the
constraints in terms of the amount of parent nodes can connect
to and the amount of storage available per node.

Simple replication-based storage has the benefit of fast
retrieval performance. However, it is difficult to guarantee data
survival if limits are placed on the amount of storage on each
node and the number of nodes involved in the repair process.
Data is lost as soon as every replica of any single piece is lost.
Data survival can therefore only be guaranteed for very con-
strained cases. We have only included the results for the centrally
controlled version, as the decentralized one basically guarantees
that data is lost regardless of the parameters of the system.

Reed-Solomon codes are Maximum Distance Separable,
making them a more effective solution in this case. Data is lost
as soon as the number of distinct pieces falls below g . The
main shortcoming of Reed-Solomon in traffic-bound scenarios
is the need to gather enough packets to decode (g) before creat-
ing new repair packets. If this cannot be ensured, the best repair
policy is to fall back to replicating the least common packets.
The centrally controlled version is significantly more effective
as it is able to reconstruct the rarest pieces in the system.

RLNC is able to maintain data integrity for a very wide
range of parameters, making it a cost-effective solution in traf-
fic-bound dynamic storage systems. Values of p > 3 and q > 2
practically guarantee that data remains recoverable. This means
as much as 50% less storage and 50% less network traffic com-
pared to the second best centrally controlled Reed-Solomon, as
it requires q > 4 and p > 6 .

5.3 The impact of field size on the effectiveness of
recoding

To verify the assumption we made based on prior work [14]
that recoding does not introduce a significant amount of linear
dependence for RLNC given a large enough field for calcu-
lations, we have conducted further simulations with different
fields. We chose four fields of practical interest. GF(2) allows

19On the Eff. of Recoding-based Repair in Network Coded DSS 2017 61 1

(a) g = 10 (b) g = 20

Fig. 6 The minimum number of storage devices needed to safely store data, with constraints on per device
storage (q) and repair trac provided (c) for selected values.

(a) g = 10 (b) g = 20

Fig. 7 The minimum number of storage devices needed to safely store data, with constraints on per device
storage (q) and repair traffic provided (c) for a wider range of values

Fig. 8 Success probability ps to retrieve the stored data successfully in relation to the number of parents (P) and the amount of storage (Q) [9]

20 Period. Polytech. Elec. Eng. Comp. Sci. M. Sipos et al.

for very efficient computations due to the addition operation
corresponding to the logical XOR operation and multiplication
to logical AND respectively. Both use a small number of cycles
on modern CPUs. GF(28) is a natural choice for use in erasure
codes as its elements can be represented in a byte on most mod-
ern hardware architectures. The relative large size of the field
is sufficient for use with non-deterministic coding schemes yet
small enough that a multiplication and addition table can fit in
memory for many systems. GF(216) has significantly more ele-
ments but is slower in terms of encoding and decoding perfor-
mance. Finally, we have included the field based on the prime
number 232 − 5 . It has the benefit of having a very large number
of elements as well as relatively low encoding and decoding
complexity because addition and multiplication can be per-
formed using efficient integer addition, multiplication and the
modulo operation. However, it requires some additional steps
to map data prior to encoding, decoding [16, 17].

As in the previous subsection, we fixed the values of the
following parameters n = 15 , g = 15 , c = q and explored
different values for q and p . As before, we looked at the suc-
cess probability ps of being able to recover the data after 1000
rounds of simulation based on 100 samples.

Figure 9 shows a top-down view of the results for RLNC
from Fig. 8. It illustrates the smallest values of q and p for
which data survival is ensured with probability ps . GF(2) per-
forms worse then the larger fields, however the difference is
relatively small. The larger fields perform almost identically,
with the prime field only surpassing GF(28) and GF(216) in a
single case for ps ≥ 0.95 . There is no noticeable difference
between the three larger fields for ps = 0.95 . Our previous
work [6] also looks at this for a fixed value of q and observes
the same trend. These results confirm that GF(28) is sufficient
to ensure data survival for RLNC with high probability over a
large number of failure and recovery rounds.

6 Conclusion
Previous experimental results have suggested that RLNC is

an effective solution, particularly suited to application in fully
decentralized systems. Data integrity can be maintained with
up to 50% less storage and 50% less repair traffic compared to
a centrally controlled Reed-Solomon code. We have shown in
this paper the reason for RLNC’s effectiveness and given a set
of conditions, that if met, ensure data survival with high prob-
ability for a large number of subsequent storage device failures.
The main contribution of this paper is that the analytical results
it presents can be used almost directly to create cost-effective,
reliable storage systems.

Acknowledgment
The authors would like to thank Professor János Levendovszky

for his valuable help in formalizing the concepts presented in the
paper as well as proof-reading.

This work was partly supported by desk.io GmbH and par-
tially financed by the Green Mobile Cloud project granted by
the Danish Council for Independent Research (Grant No. DFF
– 0602–01372B), the European Union and the European Social
Fund through FuturICT.hu (Grant no. TAMOP–4.2.2.C–11/1/
KONV–2012–0013) organized by VIKING Zrt. Balatonfüred,
and the Hungarian Government, managed by the National
Development Agency, financed by the Research and Technol-
ogy Innovation Fund (grant no.: KMR_12-1-2012-0441).

Márton Sipos gratefully acknowledges the financial support
he received as a recipient of the Csibi Sándor scholarship.

References
[1] Huang, C., Simitci, H., Xu, Y., Ogus, A., Calder, B., Gopalan, P.,

Li, J., Yekhanin, S. "Erasure Coding in Windows Azure Storage."
In:Proceedings of the 2012 USENIX Conference on Annual Techni-
cal Conference, USENIX ATC’12, 2012, Boston, MA p. 2 URL: http://
dl.acm.org/citation.cfm?id=2342821.2342823; USENIX Association,
Berkeley, CA, USA.

(a) ps = 0.95 (b) ps = 0.99

Fig. 9 Impact of field size on RLNC: the minimal values for p and q for which data survival is ensured
with a given probability ps . Multiple fields are illustrated over which operations are performed.

http://dl.acm.org/citation.cfm?id=2342821.2342823
http://dl.acm.org/citation.cfm?id=2342821.2342823

21On the Eff. of Recoding-based Repair in Network Coded DSS 2017 61 1

[2] Weiyan Wang, H. K. "Saving capacity with HDFS RAID." 2014. [Online].
Available from: https://code.facebook.com/posts/536638663113101/
saving-capacity-with-hdfs-raid. [Accessed: 21st November 2016]

[3] Sathiamoorthy, M., Asteris, M., Papailiopoulos, D., Dimakis, A. G.,
Vadali, R., Chen, S., Borthakur, D. "XORing elephants: novel erasure
codes for big data." Proceedings of the VLDB Endowment. 6(5), pp. 325-
336. 2013. https://doi.org/10.14778/2535573.2488339

[4] Google Faculty Summit AF. Storage Architecture and Challenges, 2015.
[Online]. Available from: http://static.googleusercontent.com/external_
content/untrusted_dlcp/research.google.reverse-proxy.org/en/us/univer-
sity/relations/facultysummit2010/storage_architecture_and_challenges.
pdf [Accessed: 21st November 2016]

[5] Ghemawat, S., Gobioff, H., Leung, S. T. "The Google File System." In:
Proceedings of the Nineteenth ACM Symposium on Operating Systems
Principles. SOSP ‘03. New York, NY, USA, ACM, Oct 19-22, 2003, pp.
29-43. https://doi.org/10.1145/945445.945450

[6] Fitzek, F., Toth, T., Szabados, A., Pedersen, M., Roetter, D., Sipos, M.,
Charaf, H., Medard, M. Implementation and Performance Evaluation
of Distributed Cloud Storage Solutions using Random Linear Network
Coding. In: 2014 IEEE International Conference on Communications
Workshops (ICC), Sydney, NSW, June 10-14, 2014, pp. 249-254.

 https://doi.org/10.1109/ICCW.2014.6881204
[7] Ahlswede, R., Cai, N., Li, S.-Y. R., Yeung, R. W. "Network Information

Flow." IEEE Transactions on Information Theory. 46(4), pp. 1204-1216.
2000. https://doi.org/10.1109/18.850663

[8] Acedaski, S., Deb, S., Medard, M., Koetter, R. "How good is random
linear coding based distributed networked storage." In: 1st Workshop on
Network Coding, Theory and Applications (NetCod), April 2005

[9] Sipos, M., Fitzek, F. H. P., Lucani, D. E. "Random Linear Network Cod-
ing is Key to Data Survival in Highly Dynamic Distributed Storage." In:
2015 IEEE 81st Vehicular Technology Conference (VTC Spring), Glas-
gow, May 11-14, 2015, pp. 1-6.

 https://doi.org/10.1109/VTCSpring.2015.7146040

[10] Dimakis, A. G., Godfrey, P. B., Wainwright, M. J., Ramchandran, K.
"Network Coding for Distributed Storage Systems." In: IEEE Interna-
tional Conference on Computer Communications (INFOCOM), Anchor-
age, AK, May 2007.

[11] Shah, N. B., Rashmi, K. V., Kumar, P. V., Ramchandran, K. "Distributed
Storage Codes with Repair-by-Transfer and Non-achievability of Inte-
rior Points on the Storage-Bandwidth Tradeoff." IEEE Transactions on
Information Theory. 58(3), pp. 1837-1852. 2012.

 https://doi.org/10.1109/TIT.2011.2173792
[12] Rashmi, K. V., Nakkiran, P., Wang, J., Shah, N. B., Ramchandran, K.

"Having Your Cake and Eating It Too: Jointly Optimal Erasure Codes for
I/O, Storage, and Network-bandwidth." In: 13th USENIX Conference on
File and Storage Technologies (FAST 15), Santa Clara, CA, Feb. 2015.
pp. 81-94. URL: https://www.usenix.org/conference/fast15/technical-
sessions/presentation/rashmi

[13] Sipos, M., Fitzek, F., Lucani, D. "On the Feasibility of a Network Coded
Mobile Storage Cloud." In: IEEE International Conference on Commu-
nications, London, June 8-12, 2015, pp. 466-471.

 https://doi.org/10.1109/ICC.2015.7248365
[14] Heide, J., Pedersen, M. V., Fitzek, F. H. P., Medard, M. "On Code Param-

eters and Coding Vector Representation for Practical RLNC." In: 2011
IEEE International Conference on Communications (ICC), Kyoto, July
29, 2011, pp. 1-5. https://doi.org/10.1109/icc.2011.5963013

[15] Abdrashitov, V., Médard, M. "Durable Network Coded Distributed Stor-
age." In: 2015 53rd Annual Allerton Conference on Communication,
Control, and Computing (Allerton), Monticello, IL, 29 Sept.-2 Oct. 2015,
pp. 851-856. https://doi.org/10.1109/ALLERTON.2015.7447095

[16] Crowley. P. "GF(232-5)." 2006. [Online]. Available from: http://www.
lshift.net/blog/2006/11/29/gf232-5/. [Accessed: 21st November 2016]

[17] Pedersen, M. V., Heide, J., Vingelmann, P., Fitzek, F. H. P. "Network
coding over the 232 − 5 prime field. In: 2013 IEEE International Confer-
ence on Communications (ICC), Budapest, 9-13 June, 2013, pp. 2922-
2927. https://doi.org/10.1109/ICC.2013.6654986

https://code.facebook.com/posts/536638663113101/saving-capacity-with-hdfs-raid
https://code.facebook.com/posts/536638663113101/saving-capacity-with-hdfs-raid
https://doi.org/10.14778/2535573.2488339
http://static.googleusercontent.com/external_content/untrusted_dlcp/research.google.reverse-proxy.org/en/us/university/relations/facultysummit2010/storage_architecture_and_challenges.pdf
http://static.googleusercontent.com/external_content/untrusted_dlcp/research.google.reverse-proxy.org/en/us/university/relations/facultysummit2010/storage_architecture_and_challenges.pdf
http://static.googleusercontent.com/external_content/untrusted_dlcp/research.google.reverse-proxy.org/en/us/university/relations/facultysummit2010/storage_architecture_and_challenges.pdf
http://static.googleusercontent.com/external_content/untrusted_dlcp/research.google.reverse-proxy.org/en/us/university/relations/facultysummit2010/storage_architecture_and_challenges.pdf
https://doi.org/10.1145/945445.945450
https://doi.org/10.1109/ICCW.2014.6881204
https://doi.org/10.1109/18.850663
https://doi.org/10.1109/VTCSpring.2015.7146040
https://doi.org/10.1109/TIT.2011.2173792
https://www.usenix.org/conference/fast15/technical-sessions/presentation/rashmi
https://www.usenix.org/conference/fast15/technical-sessions/presentation/rashmi
https://doi.org/10.1109/ICC.2015.7248365
https://doi.org/10.1109/icc.2011.5963013
https://doi.org/10.1109/ALLERTON.2015.7447095
http://www.lshift.net/blog/2006/11/29/gf232-5/
http://www.lshift.net/blog/2006/11/29/gf232-5/
https://doi.org/10.1109/ICC.2013.6654986

	1 Introduction and related work
	2 System model
	2.1 Recoding
	2.2 Modeling distributed storage using network flows

	3 System convergence
	4 Criteria for maintaining the Robust Data Recoverability property
	5 Discussion
	5.1 Constraints
	5.2 Comparison with other erasure codes
	5.3 The impact of field size on the effectiveness of recoding

	6 Conclusion
	Acknowledgment
	References

