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Abstract
High capacity storage systems distribute files across several 
storage devices (nodes) and apply an erasure code to meet 
availability and reliability requirements. Since devices can 
lose network connectivity or fail permanently, a dynamic 
repair mechanism must be put in place. In such cases a new 
recovery node gets connected to a given subset of the operat-
ing nodes and receives a part of the stored data. 

The objective of this paper is to investigate data survival for 
Random Linear Network Coding (RLNC) as a function of topol-
ogy and communication overhead, defined by the number of 
connections and the number of transmitted packets to the recov-
ery node, respectively. The paper includes two main contribu-
tions. First, a sufficient set of conditions for quasi-infinite lon-
gevity of the stored data is derived. Second, a comparison using 
experimental results shows that RLNC can be up to 50% more 
effective than traditional erasure codes like Reed-Solomon.
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1 Introduction and related work
Reliable distributed storage has been one of the driving 

forces behind most online services in the last decade. It has 
also played a key role in the creation of entire new fields such 
as cloud computing and big data. Many traditional distributed 
storage systems that are employed in controlled, observable 
and predictable scenarios, use replication. For example, the 
widely used Apache Hadoop File System (HDFS) uses 3-way 
replication by default. However, there has been a long-running 
trend towards using erasure codes to reduce the storage cost in 
exchange for computational overhead. Windows Azure Storage 
was one of the first large services to make use of erasure codes, 
namely a (6,2,2) Local Reconstruction Code [1] that employed 
2 local parity fragments and 2 global parity fragments for every 
6 data fragments. Facebook employed an extended version of 
HDFS-RAID [2] that introduces Locally Repairable Codes for 
storing rarely accessed cold data. Depending on file size, this 
meant either a Reed-Solomon(10,4) code, or a simpler XOR-
based parity code. An evolution of this called HDFS-Xorbas [3] 
was also considered. Google has stated [4] that Colossus, the 
successor to the Google File System [5] will also make use of 
a Reed-Solomon code. 

On the other hand, in distributed storage systems that lack 
a central entity to direct the repair process and for which the 
exact system state is hard to observe and predict, these tradi-
tional codes have proved less effective [6]. These include gen-
eral P2P storage such as mobile and vehicular storage clouds 
and sensor networks. These systems also behave in a more 
dynamic way, nodes leave and join the system regularly, there-
fore it is crucial to limit the transmission cost associated with 
maintaining data integrity. In this paper we advocate the use of 
random linear network coding, which is better suited for this 
dynamic scenario. 

Network coding was first introduced in 2000 by Ahlswede et 
al. [7] as a way of improving the throughput of packet switched 
networks. Random Linear Network Coding (RLNC) has been 
shown to be very effective as an erasure code for distributed 
storage [8]. Furthermore, our previous work [6, 9] has shown 
using simulation data, that it can outperform replication-based 
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storage and Reed-Solomon codes even in traditional centrally 
controlled systems if the amount of storage and repair traf-
fic is limited. RLNC is effective in maintaining data survival 
because of recoding-based repair, a form of functional repair. 
There is no need for the recovery node to gather the entire sur-
viving data and there is no signaling taking place among nodes 
to describe the state of the system or the distribution of data or 
to coordinate the repair process. This paper sets out to under-
stand and formalize the effectiveness of the recoding process 
and show the values for which recoding provides data survival 
for a large number of subsequent non-concurrent failures. 

It is motivated in part by the seminal work of Dimakis et 
al. [10] which shows that there is an inherent trade-off between 
the amount of data stored on each node and the amount that 
needs to be transmitted to a new node during reconstruction. 
The paper defines bounds on erasure codes using a curve to 
express this trade-off and discusses the two extremal points on 
it. Minimum Storage Regenerating (MSR) codes need the least 
amount of storage to ensure a given level of reliability and are 
therefore equivalent with Maximum Distance Separable (MDS) 
codes. Conversely, Minimum Bandwidth Regenerating (MBR) 
codes store more information in order to decrease the amount 
of information transmitted during reconstruction to a mini-
mum. [10] also introduces the concept of regenerating codes, 
which are optimal in terms of this trade-off and proves the 
existence of such codes based on the existence of a minimum 
cut in the information flow graph for every point on the curve. 
Both extremal points have seen great interest since. [11] studies 
MBR exact repair codes with the repair-by-transfer property 
and assumes that all surviving nodes partake in the reconstruc-
tion of the lost data. It establishes the non-achievability of most 
of the interior points on the curve for exact repair. [12] pro-
poses a scheme to create MSR codes which are also optimal in 
terms of the number of I/O operations performed on each of the 
nodes participating in the reconstruction. 

One of the assumptions [10] makes is that both the amount of 
stored information (α) and transmitted (β  and  γ  respectively) 
information can have non-negative, real values. In real systems 
erasure codes are only able to store and transmit an integer num-
ber of bits and, most likely, are bound by other system require-
ments to manage and store larger data portions. A probabilistic 
approach could be introduced to model the storage and trans-
mission of real number of bits. For example, α = 2.3 could be 
seen as each node storing 2 with  0.7  probability and 3 with 0.3 
probability. However, it is unclear how such an approach would 
affect the aforementioned bounds. Furthermore, increasing the 
granularity with which data is viewed in a system is generally 
not feasible in practice due to a cubic increase in the complexity 
of encoding and decoding operations. Therefore, we have cho-
sen to introduce a more strict condition that these values must 
instead be positive integers. Thus, the bounds that we introduce 
are at least as constraining as those in the original work. 

Beyond this practical consideration, our experimental 
results go a step further by also restricting the number of nodes 
that are available to use during the reconstruction, but without 
explicitly designing the system, as done in [10], to compensate 
for it. This means that we do not consider the same guarantees 
of reliability on each recovery, but can still provide reliability 
over an arbitrarily large number of loss/recovery operations. 
This additional constraint can be used to model storage nodes 
that are unavailable temporarily due to network connectivity or 
are unable to respond in due time due to uneven, dynamically 
changing loads in the system. This is also a novel constraint 
absent in [10]. 

The paper is organized as follows. First, we propose a model 
in Section 2 and show in Section 3 that if the values of certain 
parameters that define the storage system are chosen correctly, 
data integrity can be guaranteed for a large number of rounds. 
We define the constraints to choosing the appropriate values in 
Section 4. Finally, we show the most cost-effective sets of val-
ues and compare RLNC with other erasure codes using results 
from simulations in Section 5.

2 System model
This section introduces the elements of a distributed stor-

age system and proposes a simple and effective way to model 
the reconstruction process for RLNC encoded files based on an 
information flow graph [7]. Each file is divided into  g  packets 
of identical size and distributed evenly to  n  storage devices 
using a rateless RLNC code. Devices are prone to failure and 
any data that is stored on a failed device is lost and must be 
reconstructed from the surviving ones onto a new recovery 
device. Recoding is performed on both surviving devices tak-
ing part in the recovery process and the recovery device itself 
using all available packets. We assume that the reconstruction 
process always completes successfully before another failure 
occurs. We have previously looked into how this assumption 
affects the system in [13] using real-world traces, as well as 
how effective erasure codes are when dealing with concurrent 
device failures [9]. We assume that all devices have the same 
probability to fail, regardless of their age in the system. We 
evaluate the ability of a system to store data reliably by consid-
ering k  rounds of failure and reconstruction pairs representing 
the transitions between the different states of the system. We 
wish to establish the sets of parameters for which a storage sys-
tem that uses recoding is able to maintain data integrity after a 
large number of failure and recovery rounds.

2.1 Recoding
Recoding is the central part of the repair process for RLNC. 

It is the creation of packets by linearly combining existing 
encoded ones. If a storage device has stored  q  linearly inde-
pendent packets, it can create  q  linearly independent recoded 
packets from these. RLNC is a rateless code, therefore, the 
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number of packets that can be generated using recoding is only 
limited in theory by the field size used for calculation. How-
ever, from any set of generated packets for a given file, at most 
g  will be linearly independent. 

R Pj ij i
i

g

=
=
∑α

1

Rj  is a recoded packet,  Pi  is a previously encoded/recoded 
packet and  αij  is a randomly selected coefficient. When working 
over a small finite field, there is a possibility that the values for 
the  αij  are selected in such a way that the  q  recoded packets 
are not linearly independent. The probability for this to happen 
is reduced significantly by selecting a larger field [14]. Our 
model assumes the use of a high field, where recoding does not 
introduce significant linear dependence. Experimental results 
presented in Subsection 5.2 use the relatively small GF(28) field 
and suggest that the probability of generating linearly dependent 
coefficients is low enough to not impact the effectiveness of 
RLNC compared to other erasure codes. The use of a larger field 
such as GF(216) should make this issue negligible in practice. To 
verify this assumption, we have performed and described further 
experiments in Subsection 5.3. Recently, Abdrashitov et al. [15] 
investigated the long-term behavior of a distributed storage 
system using a model very similar to the one used in this paper. 
One of their main results was to define approximations on data 
survival based on Markov chains. These theoretic results are 
consistent with our simulation-based findings.

A different approach can be used if a guarantee is necessary 
that a distributed storage system employing recoding ensures 
data recoverability indefinitely with no constraint on the field 
size used. By checking the invertability of several possible coef-
ficient matrices used to encode the data prior to performing a 
repair, it is possible to select a combination of data and coeffi-
cients that is able to maintain the amount of linear independence 
in certain parts of the system. However, the practical applicabil-
ity of this approach may be limited for highly dynamic, decen-
tralized systems due to its high computational cost as well as 
the need for a mechanism to communicate the coefficients to the 
node that performs the checks and repair selection.

2.2 Modeling distributed storage using network flows
To describe and analyze the way packets are stored and used 

for repair, we employ a model based on network flows, simi-
lar to that proposed in [10]. In this interpretation, the storage 
system behaves similarly to a multi-hop unicast lossy wireless 
network. The maximum number of packets that can be trans-
mitted between the source and the sink in such setups has been 
proven to be the network’s maximum flow, achievable using 
network coding [7]. The nodes of the network are the states of 
the storage devices in each round. 

Node Ni
j  denotes storage device i in round j (where

i = 1,2,…n  and   j = 1,2,…k ,  where  n,k Î + = {1,2,…}). Each 

node stores  q  packets and is able to perform recoding on these 
to generate new packets. We denote the set of nodes belong-
ing to round  j  as Γ j

i
jN i n= ≤ ≤{ }1 . We also introduce two 

special nodes: the data source  Ns  and the data collector or 
sink  Nt . These appear before the first round and after the last 
round respectively. The data source splits a piece of data that 
needs to be stored into  g  pieces (packets) and encodes them 
before distributing them to the storage devices. A special  NENC  
encoder and  NDEC  decoder node is introduced to model the 
encoding and decoding process. Figure 1 shows an overview 
of the network. 

Fig. 1 Overview of the directed acyclic graph representing the storage system

An edge symbolizes the route taken by a packet between 
two states of the network. We distinguish between two cases: 
first, the storage node  i  that is present in the system in both 
round  l  and  l + 1  is denoted by two nodes  Ni

l   and Ni
l+1  

with  q  directed edges connecting them signifying the num-
ber of packets that are stored on it. Second, each new recovery 
node is filled with data by randomly selecting  p  parent nodes 
from the surviving ones and transferring  c  recoded packets 
from each. The recovery node will recode over the received  
p ∙ c  packets and store  q  out of them. The most significant 
difference between this model and the one introduced in [10] 
is that  q, c Î +  as opposed to  q, c Î R≥0 . We assume  p ∙ 

c ≥ q , as otherwise packets on a recovery storage device would 
become linearly dependent. In this case, edges between parents 
and a recovery node denote the transfer of packets used for the 
reconstruction of data. Formally, nodes  Na

l  and Nb
l+1 , where

a ≠ b , are connected by  c  directed edges if Nb
l+1  is a new 

recovery node that has been reconstructed using  c  packets 
from  Na

l . No edges leave a node Ni
l  that failed in round  l , as 

we consider all packets it stored lost. Each edge has unit capac-
ity as they denote the storage/transmission of a single packet 
in the network. In figures, we represent parallel edges with a 
single edge and a number to show their multiplicity. Due to the 
way the graph is constructed, edges only run between nodes of 
consecutive rounds. This structure gives a topological ordering 
for the underlying directed acyclic graph, where each level is 
comprised of nodes for a given loss-recovery round. 

Edges in the network show the path packets take from the 
source to the sink. Each node  Ni

l   (not counting the source and 
the sink) receive  deg Ni

l− ( )   packets on its incoming edges 
and recodes over them to send  deg Ni

l+ ( )   on its outgoing 
edges. Recovery nodes receive  deg N p ci

l− ( ) = ⋅   packets. This 
is potentially more than the storage capacity  q . To correctly 

(1)
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reflect this constraint in the model, all reconstructed recovery 
devices need to be represented by two separate nodes  Ni

l
− and  

Ni
l
+   connected with  q  edges, Fig. 2 illustrates this. We have 

chosen against showing this detail in figures to make them eas-
ier to read. Note also that not just the recovery, but all devices 
may be represented in this manner. 

Fig. 2 Model for data flow with and without storage constraints

Remark 1. The edges used by a flow of capacity  f  between the 
source and the sink on a network of the aforementioned type 
can be used to transfer  f  linearly independent packets between 
the source and the sink. 
Proof. The edges portray how linear combinations of packets 
are generated using recoding. In this sense, edges denote lin-
ear dependence between packets of two nodes. Therefore, if we 
find  f  edge-disjoint directed paths between the source and the 
sink, then these will enable the transmission of  f  linearly inde-
pendent packets. As all edges have unit capacity by definition,  
f  edge-disjoint paths can support a flow of capacity  f  (0-1 flow 
due to the integrality theorem) and as such, the transmission of  f  
linearly independent packets between the source and the sink.  W

Please note, that for all flows,  f ≤ g  because of the minimum 
cut separating the  Ns  and  NENC  as visible on Fig. 1. To be able 
to perform an evaluation based on network flows for RLNC, 
we assume an infinitely large field in Section 3 and 4. We then 
evaluate how much the choice of field size affects data survival 
in practice in Section 5 to validate this approximation. 

The choice to represent the distributed storage system as a 
network comes with additional benefits for the future. Concur-
rent storage device failures can be modeled with few changes. 
Furthermore, devices that are only temporarily unavailable 
between rounds  a  and  b  can also be portrayed by introduc-
ing edges between  Ni

a   and Ni
b . However, a small part of 

the results that are presented in this paper would need to be 
reevaluated, as this would mean that it would no longer be pos-
sible to state trivially that the structure of the underlying graph 
is topologically sorted.

3 System convergence
We wish to show that a storage system using RLNC can 

ensure data survival with a high probability after a large num-
ber of failures given a judicious selection of values for some 
key parameters. Using the previously introduced model, the 
criterion for this is to have a maximum flow with value  f = g  
(or  g  edge-disjoint paths) between the source and the sink. In 
other words, the data collector must be able to gather as many 
linearly independent packets from the surviving storage nodes 
as the number of packets that the source introduced into the 
network (g ). First, the initial data distribution must be per-
formed such that this property is satisfied. Second, subsequent 
node loss and recovery rounds must ensure that the property is 
kept for a large number of rounds. We denote  M  j Í Γ  j  as a 
randomly selected set of non-failing nodes in round  j . It is the 
smallest possible set that stores  g  packets (to make possible a 
flow with value  g  between the source and the sink without the 
traversal of other nodes of round  j ). 

m M g
q

j= =

Definition 2. Robust Data Recoverability (RDR) property: a 
system has the RDR property if and only if data can be recov-
ered from any set  M  j  of non-failing nodes in any round  j , 
where  M j g

q= .

For RLNC this is analogous to having a submatrix of rank  g  
of the matrix composed of the coefficients used to (re)encode 
the data for all selections of nodes of size  m  in each round. The 
RDR property is a generalization of the Maximum Distance 
Separable (MDS) property. It illustrates the efficiency of a code 
in terms of the required storage for a given level of redundancy. 
We introduced RDR to handle cases where  q ≠ 1, common for 
RLNC. For  g | q  the two concepts coincide. 

To have this property, the initial distribution of data must 
meet some conditions. More importantly, the storage system 
must have a robust reconstruction transition between rounds, 
as there is no way to rebuild lost data paths. Newly introduced 
repair edges to the recovery device have the goal of increasing 
the interconnectedness of nodes. They build redundant paths to 
be used in case another node fails in the future. 

The following proposition states that any given non-adap-
tive recovery mechanism either maintains the RDR property 
indefinitely or loses it after some rounds and never recovers it. 

Proposition 3. Considering a storage network with a fixed set 
of values for  g, n, q  and a reconstruction transition with fixed 
values for  c  and  p  that maintains the RDR property between 
at least one pair of consequent rounds  l  and  l + 1 , then this 
transition will also maintain the RDR property for any round
j Î N +.

(2)
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Proof. We divide the proof into several parts: 
• For  j < l : Based on the network construction that pro-

vides a topologically sorted form, it is trivial that if layer  
l  exhibits the RDR property then all layers  j < l  must 
also have this property as the premise of the proposition 
can be applied recursively until round 1. 

• For    j > l + 1 : 
Let us assume that round  j  is the first round after  l + 1 , 
for which there exists a selection of nodes  M  j  that do 
not have  g  edge-disjoint paths pass through them. We 
will show by contradiction that such a selection cannot 
be made and thus round  j   also has the RDR property. 
M   j  can be selected in nm













  ways. Fortunately, it is enough 

to consider two distinct cases. 
- M   j  does not include the newly recovered node. 

In this case, all nodes in  M   j  were already present in 
the previous round, therefore we can easily find the 
corresponding set of nodes  M   j − 1  that includes the 
same storage nodes. These can support  g  edge-dis-
joint paths because round  j  is the first to not have the 
RDR property. The  q  paths between the  m  pairs of 
nodes in round  M   j − 1  and  M  j  will ensure  g  edge-
disjoint paths pass through  M  j

 . We have arrived to a 
contradiction. 

- M  j  includes the newly recovered node. 
Surviving nodes already ensure at least  g − q  edge-dis-
joint paths pass through nodes in the corresponding  M   

j − 1  set in round  j − 1 . Let us assume that the recovered 
node does not provide the minimal number of  q  ad-
ditional paths necessary for the system to keep the RDR 
property in round  j. This implies that there are less then  
q  edges between the recovery node and nodes from 
round  j − 1  outside of  M   j − 1

 , i.e.  (p − (m − 1))c < q .
The original assumption of the proposition is that  p, 

g, q, c  and thus  m  have a fixed value. Therefore, this 
bound must also have had to have been in place in 
rounds  l  and  l + 1 . This would mean that the transi-
tion to round  l + 1  would have lost the system the 
RDR property because the  M   l + 1  set that included the 
node recovered in round  l + 1  would not have had  g  
edge-disjoint paths pass through it either. Again, we 
have arrived to a contradiction.

Because we arrived at contradictions for both categories of 
cases, we can conclude that the system must be able to support 
robust data recoverability in rounds following round  l + 1  as well.

W

For RLNC, the assumption of a large enough field size must 
be made so that  g  edge-disjoint paths correspond to the stor-
age and transmission of  g  linearly independent packets with 
a high probability. Even so, the likelihood of maintaining the 
RDR property decreases as  j  increases. 

Another way of phrasing the contents of this section is that 
the parameters of the system define the lowest value for the 
minimum cut in the network. After a sufficiently large number 
of recovery rounds, the system will converge to this value. This 
is the amount of data that can be stored safely in the distributed 
storage system. By maintaining the RDR property in all rounds 
using a given reconstruction transition, the system ensures that 
the minimum cut is above  g . An important consequence of 
Proposition 3 is that the system can be considered memory-
less if the RDR property is maintained because the ability of a 
reconstruction transition to maintain the RDR property is only 
influenced by the state of the system in the pre-transition round. 

4 Criteria for maintaining the Robust Data 
Recoverability property

In the previous section, we have shown that given a correct 
set of values for the parameters of the system, the RDR prop-
erty can be maintained for a large number of rounds with high 
probability. Here we give the criteria for the parameters as a set 
of inequalities. 

Our model can be defined using the previously introduced 
parameters:  n, q, g, p, c Î +

 . We derive the key constraints for 
these by examining each state and state change of the system. 
From the initial state it is possible to conclude that to be able to 
store the data, we must have at least  n g

q≥    nodes. However, 
an extra node is required to be able to handle a loss. 

n g
q

≥








 + .1

Because the original data is divided into  g  pieces, there is 
no reason to store more than  q ≤ g  packets on a single node 
(there is a  g  sized cut between the source and the rest of the 
network). 

The defining state changes is the transition between any two 
consecutive rounds  l  and  l + 1 . A node fails in round  l  and a 
recovery node is filled with data in round  l + 1  to functionally 
repair the lost data. To be able to contact enough parent nodes, 
the recovery node must have access to at least these  p  nodes. 
Therefore, 

n p≥ + ,1

where the +1  is the recovery node in round  l + 1 . Furthermore, 
each node stores  q  packets, therefore it should receive at least 
that many to make the recoding of  q  linearly independent 
packets possible 

q pc≤ .

Let us look at how to ensure that the system maintains the 
RDR property in round  l + 1 , i.e. there exists a network flow 
with value  f = g  between the source and the sink that only 
traverses nodes from a selected  M  l + 1

 . As detailed in Subsec-
tion 2.2, this is the same as having  g  linearly independent 

(5)

(4)

(3)



17On the Eff. of Recoding-based Repair in Network Coded DSS 2017 61 1

packets transferred on  g  edge-disjoint paths. We assume that 
this property holds for round  l  and let us examine the transi-
tion to   l + 1 . We denote the set of nodes representing the 
surviving devices from round  l  which are also elements of  M  

l + 1  with  M l′  as illustrated on Fig. 3.

Fig. 3 Case I. M l + 1 does not include the newly joined recovery node.

We can choose  m   nodes out of  n  in nm












  ways and the par-

ent nodes for the recovery node can be chosen in n p
−













1  ways. 
However, there are only three distinct cases to analyze (case 
III. is only achievable for storage systems with large numbers 
of nodes): 

• Case I.  M  l + 1  does not include the newly joined recovery 
node.
In this case, there are no additional constraints on any of 
the parameters, as the property will hold true regardless 
of which nodes were used to fill the recovery node. This 
is because  M  l + 1  includes the same devices as  M l′  for 
which the property was true. 

• Case II.  M  l + 1  includes the newly joined node, which 
was repaired using all  m − 1  nodes in  M l′  except itself, 
i.e.  p ≥ m − 1 .
Each of these parent nodes will supply q edge-disjoint 
paths. To be able to have a total of  g  edge-disjoint paths 
crossing  M  l + 1

 , additional paths must traverse the recov-
ery node. However, these should not be the same paths as 
supplied by the parents, as those would not necessarily 
be edge-disjoint. This can be achieved using additional 
parents (padd), which results in

p
g m q

c
g q

cadd

g
q

=
− −( )







 =

−   −( )











1 1

Considering the additional parents from inequality (6) 
results in 

p m p g
q

g q
cadd

g
q

≥ − + =








 − +

−   −( )











1 1
1

Fig. 4 Case II.  M  l + 1  includes the newly joined node, which was repaired 
using all  m − 1  nodes in  M l′  except itself:  p ≥ m − 1 .

• Case III.  M  l + 1  includes the newly joined node, which 
was repaired using  j = 0, …, m − 2  nodes from  M l . 
A total of  jc  paths are created between  M l′  and the 
newly joined node. With reasoning similar to II., the 
number of additional paths that must be created between 
parents not in  M l′  and the recovery node is the same as 
described in Eq. (6). 
This gives the following lower bound for the number of 
parents:

p j p j
g q

cadd

g
q

≥ + = +
−   −( )











1

This is a less strict condition for  p  than Inequality (7) 
because  j m g

q< − =   −1 1  by definition. Furthermore, 
this case is only possible if:   n ≥ j + p + 1 , which is a 
more strict condition for  n  then the one in Inequal-
ity (4). It would also be possible to extend III. to include
j = m − 1  and thus be a generalization of II.

Having studied all types of transitions from round  l  to  
l + 1 , we have identified the sufficient conditions to ensure that 
any randomly chosen  M  l + 1  surviving nodes can be used to 
create a flow with value  g  in round  l + 1  if the property was 
true for round  l . A constraint on the number of nodes can also 
be expressed using Inequalities (4) and (7). 

n g
q

g q
c

g q c
g
q

≥








 +

−   −( )











∀ , , ∈ +
1



Our initial expectation is that these or a subset of these also 
defines the necessary conditions. We plan to investigate this in 
the future. 

(6)

(9)

(8)

(7)
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Finally, the last state change is the data retrieval itself. How-
ever, having already established the constraints to allow the 
recovery of the data using any  m  nodes for the repair transi-
tion, no new constraints need to be added.

Fig. 5 Case III.  M  l + 1  includes the newly joined node, which was repaired 
using   j = 0, …, m − 2   nodes from  M l′

 .

5 Discussion
5.1 Constraints

In this section we evaluate a storage system with parame-
ters that satisfy all previously presented constraints. First, we 
examine the number of storage devices  nsuf   that are sufficient 
to maintain the RDR property between subsequent rounds. 
We derive these results from Eqs. (3) and (9). Figure 6 shows 
that by increasing the storage space  q  on each device, the 
amount of devices needed initially declines. The reason behind 
this reduction is that the required edge-disjoint paths used by 
the repair process can be provided by fewer parent nodes as 
expressed in Inequality (7). However,  nsuf  increases after a 
point, as the amount of parent nodes required to fill the recov-
ery node increases with  q  as expressed by Inequality (5). The 
relationship between the parameters of the system shows simi-
lar trends for both  g = 10  and  g = 20 , as well as other values 
we have examined but not included in the paper. 

Figure 7 shows the same relationship for a wider range of 
values for repair traffic (c). A similar trend can be observed as 
in Fig. 6 for values to the right of the  c = q  plane. Values to the 
left of the  c = q  plane are for cases where  c > q . Clearly, such 
systems have no advantage compared to systems where  c = q , 
as recoding cannot produce more linearly independent packets to 
send to the recovery device than was stored on the parent device. 

The set of constraints offers a wide range of values for the 
parameters for which data integrity is guaranteed. This is due to 
the effectiveness of recoding in the reconstruction process and 
makes RLNC-based systems cost-effective.

5.2 Comparison with other erasure codes
We have also included a short comparison with a repetition-

based code and Reed-Solomon with parameters  nq  and  nq − g  
to showcase how much more effective RLNC is in maintain-
ing data retrievable for a wide range of parameters. Results 
are presented for both a centrally controlled system and a fully 
decentralized one that has no cooperation among nodes during 
the repair process. Figure 8 [9] shows the system after 1000 
rounds of simulation. Operations were performed over GF(28), 
the number of nodes was fixed at  n = 15 ,   g = 15 ,  c = q . The 
vertical axis shows the statistically established probability that 
data availability is maintained. The horizontal axes show the 
constraints in terms of the amount of parent nodes can connect 
to and the amount of storage available per node. 

Simple replication-based storage has the benefit of fast 
retrieval performance. However, it is difficult to guarantee data 
survival if limits are placed on the amount of storage on each 
node and the number of nodes involved in the repair process. 
Data is lost as soon as every replica of any single piece is lost. 
Data survival can therefore only be guaranteed for very con-
strained cases. We have only included the results for the centrally 
controlled version, as the decentralized one basically guarantees 
that data is lost regardless of the parameters of the system.

Reed-Solomon codes are Maximum Distance Separable, 
making them a more effective solution in this case. Data is lost 
as soon as the number of distinct pieces falls below  g . The 
main shortcoming of Reed-Solomon in traffic-bound scenarios 
is the need to gather enough packets to decode (g) before creat-
ing new repair packets. If this cannot be ensured, the best repair 
policy is to fall back to replicating the least common packets. 
The centrally controlled version is significantly more effective 
as it is able to reconstruct the rarest pieces in the system. 

RLNC is able to maintain data integrity for a very wide 
range of parameters, making it a cost-effective solution in traf-
fic-bound dynamic storage systems. Values of  p > 3  and  q > 2  
practically guarantee that data remains recoverable. This means 
as much as 50% less storage and 50% less network traffic com-
pared to the second best centrally controlled Reed-Solomon, as 
it requires  q > 4 and  p > 6 . 

5.3 The impact of field size on the effectiveness of 
recoding

To verify the assumption we made based on prior work [14] 
that recoding does not introduce a significant amount of linear 
dependence for RLNC given a large enough field for calcu-
lations, we have conducted further simulations with different 
fields. We chose four fields of practical interest. GF(2) allows 
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(a) g = 10 (b) g = 20

Fig. 6 The minimum number of storage devices needed to safely store data, with constraints on per device 
storage (q) and repair trac provided (c) for selected values.

(a) g = 10 (b) g = 20

Fig. 7 The minimum number of storage devices needed to safely store data, with constraints on per device 
storage (q) and repair traffic provided (c) for a wider range of values

Fig. 8 Success probability  ps  to retrieve the stored data successfully in relation to the number of parents (P) and the amount of storage (Q) [9]
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for very efficient computations due to the addition operation 
corresponding to the logical XOR operation and multiplication 
to logical AND respectively. Both use a small number of cycles 
on modern CPUs. GF(28) is a natural choice for use in erasure 
codes as its elements can be represented in a byte on most mod-
ern hardware architectures. The relative large size of the field 
is sufficient for use with non-deterministic coding schemes yet 
small enough that a multiplication and addition table can fit in 
memory for many systems. GF(216) has significantly more ele-
ments but is slower in terms of encoding and decoding perfor-
mance. Finally, we have included the field based on the prime 
number  232 − 5 . It has the benefit of having a very large number 
of elements as well as relatively low encoding and decoding 
complexity because addition and multiplication can be per-
formed using efficient integer addition, multiplication and the 
modulo operation. However, it requires some additional steps 
to map data prior to encoding, decoding [16, 17]. 

As in the previous subsection, we fixed the values of the 
following parameters  n = 15 ,  g = 15 ,  c = q  and explored 
different values for  q  and  p . As before, we looked at the suc-
cess probability  ps  of being able to recover the data after 1000 
rounds of simulation based on 100 samples. 

Figure 9 shows a top-down view of the results for RLNC 
from Fig. 8. It illustrates the smallest values of  q  and  p  for 
which data survival is ensured with probability  ps . GF(2) per-
forms worse then the larger fields, however the difference is 
relatively small. The larger fields perform almost identically, 
with the prime field only surpassing GF(28) and GF(216) in a 
single case for  ps ≥ 0.95 . There is no noticeable difference 
between the three larger fields for  ps = 0.95 . Our previous 
work [6] also looks at this for a fixed value of  q  and observes 
the same trend. These results confirm that GF(28) is sufficient 
to ensure data survival for RLNC with high probability over a 
large number of failure and recovery rounds. 

6 Conclusion
Previous experimental results have suggested that RLNC is 

an effective solution, particularly suited to application in fully 
decentralized systems. Data integrity can be maintained with 
up to 50% less storage and 50% less repair traffic compared to 
a centrally controlled Reed-Solomon code. We have shown in 
this paper the reason for RLNC’s effectiveness and given a set 
of conditions, that if met, ensure data survival with high prob-
ability for a large number of subsequent storage device failures. 
The main contribution of this paper is that the analytical results 
it presents can be used almost directly to create cost-effective, 
reliable storage systems. 
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