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Abstract
Modern battery management systems (BMS) for advanced bat-
tery energy storages are expected to provide sufficient and reli-
able State-of-Charge (SoC) and State-of-Health (SoH) infor-
mation. Focusing also on mid- and long-term maintenance 
purposes, health monitoring can be realized only by using 
high performance real-time estimation algorithms involving 
online electrical battery cell model. Due to the nonlinear I-V 
characteristics of cells and multivariable nonlinear functions 
describing the model parameters, a real-time model synthe-
sized to FPGA seems to be the best solution to fulfill also the 
strongest requirements of energy management and e-mobility 
applications in respect of scalability, modularity, accuracy and 
effectiveness. In this paper, an FPGA-synthesizable battery cell 
model is presented and proposed. The design approach is dis-
cussed from offline to online model design including the model 
considerations using MATLAB/Simulink®. The performance 
analysis and evaluation referenced to the offline model are pre-
sented and discussed.

Keywords
battery cell model, battery management, real-time simulation, 
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1 Introduction
E-mobility and large-scale stationary energy storages specify 

even more specific and safety-critical requirements on advanced 
battery systems, hereby boosting the development need of spe-
cial purpose electrical battery cell models. In opposite to this, 
applied research focuses more on the scalability and modularity.

In technical point of view, developing electrical battery cell 
models has two main driving forces. One is the offline (con-
tinuous-time with floating-point number representation) circuit 
simulation of battery systems providing I-V characteristics for 
electrical system design purpose [1]. In applications, where the 
battery pack is connected to nonlinear systems (especially high 
power motor drives, or grid-connected energy storages), it is 
crucial to verify the designed battery system behavior [2]. 

The other is the online simulation, where the goal is to create 
a real-time electrical battery cell model, which can be run in 
real-time simulations and in online, i.e. model-based SoC and 
SoH estimation algorithms, as well [3, 4]. Such online model 
is essential in advanced battery energy storages. Expected 
modularity allows extra functions to be attached easily, and 
the required scalability enables level-to-pack extensions within 
certain error tolerances and additional dependencies of param-
eters [5, 6]. All these complex requirements lead the developers 
to switch rather to FPGA from MCU in the BMS for running 
high performance, online SoC and SoH estimation algorithms. 
Next to this, if the battery cell model is available in synthesiz-
able form, then one more great advantage is that it can be used 
also in modern FPGA-based Hardware-In-the-Loop (HIL) sim-
ulators. HIL is a test approach, where, in this case, the BMS is 
tested involving the original BMS electronics and the real-time 
simulator of the battery on the expected cell- or pack level solv-
ing the state equations numerically step by step [7]. By using 
battery HIL simulator, also the extreme failure cases are repro-
ducible, which is not possible in the real system [8].

In this paper, an FPGA-synthesizable electrical battery cell 
model is introduced using fixed-point number representation, 
which is designed and verified in MATLAB/Simulink. This 
online Simulink model can be used in FPGA or in processor-
based BMS and also in real-time HIL simulators.
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The paper is organized as follows. At first, basic modeling 
considerations and assumptions are described in Section 2 
while introducing the offline battery cell model, which is taken 
as reference for the online model and its verification process. 
Next, Section 3 deals with the offline-to-online model conver-
sion process involving the fixed-point calculation method and 
discretization procedures. In Section 4, the verification process 
is explained as a preparation in order to get the best understand-
ing of Section 5, where the online model performance will be 
shown and evaluated. In the final section, the conclusion dis-
cusses the impact of the designed online model.

2 Offline model design
Since the online battery cell model is expected to fit strict 

requirements, it is crucial to start from a corresponding model. 
The first step in model design was to get a good compromise 
between model complexity and implementability. This trade-
off demand appears as a representation of the application-spe-
cific property, because here the priority of considering some 
parameters is boosted, others are decreased or totally neglected 
regarding which one is important in certain application.

In the model design, the aim was essentially to take into 
consideration only the most necessary parameters and depend-
encies that are needed to allow us to analyze and evaluate 
the online model performance in comparison to the offline 
model. Besides, according to the energy- and power density 
requirements coupled to the weight and volume limitations 
in advanced battery storages, lithium-ion technology-related 
considerations were principally taken. First, the chosen model 
topology is introduced.

Unite the advantages of Thevenin-based [1, 9], impedance-
based [10, 11] and runtime-based [12, 13] electrical models, a 
combined battery cell model shown in Fig. 1 was designed and 
proposed [14]. It is widely used in practical applications due 
to its simplicity, scalability and effectiveness. This topology 
essentially fulfills the above mentioned claims with a certain 
degree of modifications needed.

Fig. 1 Combined electrical battery cell model.

In “Battery lifetime” part,  vSoC  is the per unit voltage repre-
sentation of the SoC measured on  CQ  capacitor, which repre-
sents the cell capacity in Ampere-seconds. The nonlinear open 
circuit voltage characteristic of the cell is stored in voc(vSoC); 
the terminal or cell voltage is vcell . The resistor Rsd is used to 

characterize the self-discharge energy loss when the battery 
is stored for a long time. These elements are inherited from 
runtime-based models. Internal resistance is represented by  R0. 
The RC network, composed of  Rs ,  Cs ,  Rl  and  Cl , represents 
the transient response similarly to the Thevenin-based models. 
On one hand, using two RC time constants is practically the 
best trade-off between accuracy and computational complex-
ity [4, 14]. On the other hand, when this equivalent circuit is 
considered as a reduced order model based on electrochemistry 
principles, the second-order RC network represents the effec-
tive double polarization such as electrochemical and concentra-
tion polarization separately [3, 4, 15].

Based on the combined model, the used model can be seen 
in Fig. 2, and its state equations can be followed in (1). The sign 
of the cell current  id  is positive when the cell is discharged, and 
negative when charged.
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where  τs = RsCs  denotes the short time-constant and  τl = RlCl 
is the long time-constant, and  vDoD = 1 − vSoC  means the Depth-
of-Discharge (DoD). Hereinafter,  vSoC  and  vDoD  will simply 
be referred to as SoC and DoD. The self-discharge effect is 
ignored due to the very low per month self-discharge rate of 
advanced lithium-ion cells, and because daily or weekly usage 
of the batteries is assumed in this paper.

Fig. 2 Used electrical battery cell model.

The first order differential equations shown in (1) have to be 
modified to integral forms explained in the next section. The 
resulting state equations, therefore, got an additional constant 
component that has a physical meaning of the initial values. In 
case of  vs  and  vl , these components are zero, but in case of DoD, 
the initial SoC value of the battery cell needs to be considered:
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The cell temperature is calculated using a one-time constant 
equivalent thermal model of the battery cell shown in Fig. 3.

(1)

(2)
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Fig. 3 Used equivalent thermal model of the battery cell.

In the thermal model, Cth capacitor represents the heat 
capacitance of the cell, and  Rth  resistor represents the resulting 
thermal junction between the cell internal heat generation and 
the ambient medium through the cell surface. Therefore, the 
thermal behavior is described in (3).
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Theoretically, all the quantities/parameters in the electrical 
model vary with current, temperature, SoH, SoC and so on [6]. 
Battery model using such topology can be effectively identified 
to get realistic model parameters as multivariable nonlinear 
functions [3, 6, 14]. However, it is important to mention that 
regarding the performance analysis and verification process, 
the designed online model does not require realistic and valid 
model parameters, because it is verified directly to the offline 
model. Hereby, only the equivalence must be ensured between 
the offline and online model parameters, and the offline model 
parameters are not necessarily needed to be identified and vali-
dated based on real battery cell measurement data. In the online 
model, only the DoD-dependency of the internal resistance 
and the RC network elements are not identified; others were 
obtained as nonlinear functions derived from a real and widely-
used lithium-ion battery cell. The detailed model dependency 
graph can be seen in Fig. 4, where the quantity/parameter at the 
end of the arrow is dependent from the quantity/parameter at 
the base of the arrow.

Fig. 4 Quantity/parameter-dependencies in the used model.

3 Online model design
In order to obtain the online model, certain modifications are 

needed in the offline model. By shortening cycle times, signals 
can be processed on higher frequencies according to the Nyquist-
Shannon sampling theorem, which leads to a more realistic sim-
ulation. These methods require the implementation of digital 
integrators to store the values of the state variables. The iterative 
calculations of state variables are done by using forward-Euler 
numerical integration method described as follows:

y t t y t t u t+( ) = ( ) + ⋅ ( )∆ ∆

where  u(t)  is the input,  y(t)  is the output quantity and  ∆t  is 
the time-step. When keeping the time-step as low as possible 
compared in order of magnitudes to the system time constants, 
the numerical instability can be avoided and the truncation 
error of the numeric approximation can be kept at significantly 
low level [16, 17]. Therefore, this numerical method seems 
to provide the best trade-off between accuracy, effectiveness, 
complexity and offline-to-online design time. This is the main 
reason why it is worth modifying the state equations in (2) to 
integral forms. Since the online model is aimed to be synthe-
sized to modern FPGAs that has integrated hardware multiplier 
units using minimum 18×25 bits, it was worth using fixed-point 
representation focusing on minimizing the non-generated cod-
ing while not losing significant precision.

The nonlinear functions for quantities/parameters are real-
ized by look-up tables, where the output vectors belong to input 
vectors derived by the division of the domains into equidistant 
points. In case of  voc  being a two variable nonlinear function 
of DoD and  Tcell , a 2-D look-up table would be the best choice. 
Nonetheless, the 2-D look-up table is part of a library contain-
ing Simulink blocks capable of HDL code generation, the reali-
zation considerations raised subject of great debate. Basically, 
voc  measurement is available in 9 different temperature points 
(in every 10 °C steps from -20 to 60 °C). The DoD is divided 
into 4096 equidistant points. Hereby, the 4096×9 size 2-D table 
could be indexed by the calculated DoD and  Tcell  tempera-
ture. First problem is that in order to do this, these indexing 
quantities are expected to be represented exactly in the same 
fixed-point form. However, the ranges of the two quantities can 
be fitted, the precisions should be considered. The temperature 
resolution is 0.01 °C and the DoD resolution is 0.001 % in the 
used ranges. Since the DoD resolution is more critical, it is not 
modified to the weaker temperature precision. Otherwise, if the 
temperature would be represented the same as DoD, it would 
be a waste of resources.

The second problem was with the equidistance requirement 
of the table data. By changing the voltage and temperature vec-
tor elements to fixed-point representation, those became not 
equidistant, which generated block error in Simulink. Even 
when these indexing vectors are replaced by such auxiliary 
indexing vectors, a new external logic is also needed.

(3)

(4)
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Due to all described above, instead of using 2-D look-up table, 
multiple 1-D look-up tables are applied (Fig. 5) and the synthesis 
to block RAMs is guaranteed, which will be detailed later.

Fixed-Point Designer is a built-in tool of MATLAB that has 
been used to determine the fixed-point representations featuring 
the fixdt form. The general form is fixdt(s, s+n+m, m), where s 
means the sign bit, n means the integer bit count and m means 
the fraction bit count. After specifying the resolution (q), the 
maximum (umax) and minimum (umin) values, the fixdt form can 
be achieved for all state- and auxiliary variables in the model:
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Other equations are valid to get the representations of the 
multiplier factors belonging to the integrands. The absolute 
values of the multiplier factors are typically smaller than 1, 
thus the LSB of the product will be placed on a less significant 
bit than the LSB of the multiplicand. These bits might to be 
eliminated, but the error is accumulated by the integrator. This 
should be avoided, thus those bits have to be extended with 
bit count warranted by the multiplier factor. The unnecessary 
bits can already be left at the output of the integrator, since the 
error will not be accumulated, because the values are stored 
more accurately by the integrator. The bit depth is given by 
the hardware multipliers of the FPGAs, only the extension of 
the fraction are needed to be calculated, as shown in (6). The 
input signal is extended with the fraction bits of the multiplier 
constant (u). It is important to be stated that the effect of the 
extension is negative if the multiplier constant is bigger than 1.
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For better understanding, the Simulink representation of the 
online model is split into parts shown from Fig. 5 to Fig. 8.

The presented online model is converted into HDL code with 
HDL Coder tool of MATLAB/Simulink. The tool generates 
the Verilog or VHDL files of the model, which can be directly 
imported into any synthesizer tool, such as Xilinx ISE Design 
Suite or Vivado Design Suite and so on. The HDL Coder gener-
ates registers from the look-up tables, which is wasteful of the 
resources. Placing a unit delay with one time-step after each 
1-D look-up table in the Simulink model, the resulting delayed 

readout of the generated registers will be optimized to block 
RAMs by the synthesis tool. The detailed utilization is pre-
sented in Section 5 in comparison between 3 modern FPGAs.

Fig. 5 Open circuit voltage part of the online model.

4 Verification process
The online model verification process was started with 

running the offline and online models in the same simula-
tion cycle of MATLAB/Simulink. In order to get precious 
information also in terms of time-steps in different order of 
magnitudes, 1 ms, 100 ns and 10 ns version of online model 
is prepared for verification. The model performance is ana-
lyzed by calculating the errors of the quantities  vcell , SoC, Tcell  
and  CQ  between the offline and online models observing the 
total DoD range. Additionally, the error analysis is taken also 
between 1 ms and 10 ns online models exploring the effects of 
5 order of magnitudes difference in time-steps. The selection 
between using absolute- or relative error was considered based 
on which provides more information to conclude whether if 
it is accurate enough in certain applications for the BMS and 
HIL developers.

It has to be noted, that the in-situ validation of the FPGA-
synthesized model requires a complete BMS or HIL simulator. 
Such developments are in progress, and the results are planned 
to be published later.

(5)

(6)
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Fig. 6 Internal impedance part of the online model.

Fig. 7 Battery lifetime part of the online model.

Fig. 8 Thermal part of the online model.

5 Results and evaluation
From Fig. 9, it clearly turns out how the  voc − Tcell  storage 

and indexing considerations affect the discharge characteristics 
compared to the offline curves stored in 2-D look-up table with 
linear interpolation between the vectors elements represented 
as floating-point numbers.

Each of the three online models calculate with the open cir-
cuit voltage belonging to one actual temperature value until the 
cell heats up to the next temperature point, where the indexer 
changes to the other voltage table. During normal circum-
stances, the cell temperature heats up to 40-50 °C from about 
20 °C when discharged by half of the maximum continuous 
discharge current considering no cooling as in this simulation. 
Therefore, cell voltage jumps can be found at 3 different DoD 
values. The maximum absolute error caused by this effect is 

34.37 mV. However, this is in 2 order of magnitude greater than 
the cell voltage measurements could be done by a 12 bit A/D 
converter, but precise enough according to the cell temperature 
measurement accuracy done usually by PTC/NTC sensors.

Next analysis shows a more significant relative error on 
the cell voltage in Fig. 10. As it is known, at the end of the 
discharge characteristics from about 90 % DoD, the voltage 
curve slope highly decreases with normally increasing DoD. 
In theory, this slope approaches to infinity due to total usable 
capacity loss, hereby the simulated voltage error can be theo-
retically also infinite. In discrete time and using fixed-point 
numbers, the error will not be infinite but directly based on 
the sampling and precision properties of the stored data. One 
possible solution is that the DoD can be divided into two parts. 
One includes the values in range from 0 % to about 90 % DoD 
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considering the same sample elements. Other is for the rest 
10 % storing more samples for the precision. The drawback 
of this trick is that an additional indexing logic is needed then. 

In Fig. 10, the error peaks at near 100 % DoD with 8.6568 %. 
Using this model in SoC estimators, aside from the cell voltage 
measurement accuracy in the BMS, the most significant errors 
will occur at the 3 temperature switching points (30 °C, 40 °C 
and 50 °C) and at the very end of the DoD domain considering 
the same circumstances.

Since now, for the online model, this behavior is known, 
these errors can be compensated if it is necessarily needed.
Figure 11 presents an SoC error, if the Ampere-integral used 
in the offline model would be used in online (discrete-time and 
fixed-point) form as an input for the online battery cell model. 
Most of the online estimation algorithms use the battery model 
with SoC or DoD input and cell voltage output to compensate 
the basic Ampere-integral (Coulomb-counting) based on the 
measured voltage and by using a controller. Therefore, Fig. 11 
shows a worst case error for using the most basic Coulomb-
counting estimation with a peak error of only 0.7398 % for the 
worst performance (1 ms) online model.

In dependency from the cell temperature accuracy, the us-
able capacity is important to know to get the most accurate cell 
voltages for the SoC estimator. For this, the relative cell capac-
ity error of 0.0044 % (Fig. 12) and the relative cell temperature 
error of 0.0357 % (Fig. 13) are sufficient enough in almost all 
applications.

At this point, it is needed to mention that in case of real-
izing even more precise SoH estimation algorithms, the usable 
capacity part of this online model would be placed outside to the 
estimator, and the capacity would be a new input of the online 
model. It is mainly for when the cycle number is estimated 
based on the measured and calculated fractions of total charge/
discharge cycles and internal resistance measurement-based 
correction of SoH is also used.

According to the BMS implementation in a certain applica-
tion, it is also worth investigating whether an FPGA or high 
performance processor is necessarily needed or also a modern 
MCU is enough for running the estimation algorithms. In this 
respect, the errors of the online model using 1 ms time-step are 
examined referenced to when using 10 ns time-step.

It can be seen in Fig. 14 that the relative cell voltage error 
significantly peaks at the switching points of temperature. 
Certainly, it is because the fixed-point representation of state- 
and auxiliary variables is the same in the online models, there-
fore the errors can caused by the indexing refreshing at differ-
ent instances. Since the time-steps are fixed in the used solver 
method, these errors will be systematic errors.

The SoC, usable capacity and temperature error analyses are 
similar to the described about the cell voltage errors. Table 1 
summarizes the errors. It turns out, that the online model with 
1 ms time-step is still accurate enough to be implemented in 
MCU compared to the 10 ns time-step model when consider-
ing the same fixed-point representation.

Fig. 9 Discharge characteristics of offline and online models at 1 ms, 100 ns 
and 10 ns time-step.

Fig. 11 SoC error of online models at 1 ms, 100 ns and 10 ns time-step.

Fig. 10 Cell voltage error of online models at 1 ms, 100 ns and 10 ns time-step.

Fig. 12 Cell useable capacity error of online models at 1 ms, 100 ns 
and 10 ns time-step.
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Table 1 Errors of the online model at 1 ms compared to 10 ns time-step

ΔVcell [%] ΔSoC [%] ΔQ [%] ΔT [%]

0.9154 0.002 0.004 0.039

However, based on the results in Table 1, the presented online 
model seems to be implementable also in modern processors, 
but either when the temperature is also considered in case of 
internal impedance parameters, or when more cell models have 
to be run real-time in the same BMS, or when the effects of 
active balancing with 10-100 kHz PWM are needed to consider, 
then it is crucial to use an FPGA in order to achieve the required 
efficiency of a model-based SoC or SoH estimation algorithm.

Table 2 summarizes the utilization of the introduced online 
model synthesized to 3 modern FPGAs highlighting necessary 
logic components and run frequency capabilities.

Table 2 Utilization and maximum possible frequency information

Artix 7 
XC7A100T

Kintex 7 
XC7K70T

Virtex 7 
XC7VX330T

Speed grade -3 -3 -3

Slice Registers [%] 0.16 0.24 0.05

Slice LUTs [%] 2.27 3.50 0.70

BRAM [%] 16.30 16.30 2.93

DSP48E1s [%] 6.67 6.67 1.43

Max. possible 
frequency [MHz]

55 76 77

The maximum possible frequencies show that this online 
model could be synthesized allowing a minimum time-step of 
12 ns. By increasing the input clock frequency from the actual 
100 MHz using hardware phase-locked loop (PLL) units, 
the time-step could be decreased to 10 ns in order to achieve 
even 100 MHz run frequency. It is question of consideration 
whether if it is worth increasing the input clock frequency up 
to more hundred MHz while facing with hardware design and 
electromagnetic compatibility issues.

6 Conclusion
The aim of the present paper was, in one hand, to give an 

overview of the design approach of the battery cell model. The 
discussion has clearly showed the considerations taken into to 
get an easy-to-set MATLAB/Simulink implementation. This 
allows an effective design and rapid verification observing 
and analyzing the dynamic behaviour also for the offline and 
online representation. The introduced online model is designed 
for HDL code generation from MATLAB/Simulink that allows 
perfect traceability between the model behaviours in the differ-
ent forms. The model performance is investigated and evalu-
ated in respect of discussing the error analysis and regarding 
the utilization results in modern FPGAs. 

In conclusion, it can be said that based on an existing electri-
cal cell model topology, a verified, FPGA-synthesizable online 
electrical battery cell model is designed and evaluated. It can 
be used in high performance, model-based SoC and SoH esti-
mation algorithms in BMS and real-time simulators, as well. 
The measurement-based validation of the FPGA-synthesized 
model is a future work, where a BMS or a HIL simulator is 
implemented, which will be published later on.

The published and proposed online model can be taken as 
basis for further cell- or pack-level models due to its ability to 
be effectively scaled, configured and extended.
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