
34 Period. Polytech. Elec. Eng. Comp. Sci.� D. Urbán, G. Mezei, Z. Theisz

Formalism for Static Aspects of
Dynamic Metamodeling

Dániel Urbán1, Gergely Mezei1*, Zoltán Theisz2

Received 02 June 2016; accepted 16 October 2016

Abstract
The viability of any multi-level meta-modeling technology
clings on the correct and exact definition of the underlying
instantiation concept. Although multi-level instantiation has
been well researched and conceptualized, current methodolo-
gies mostly limit their scopes to design-time modeling. Hence,
state-of-the-art meta-modeling seriously neglects important
practical needs of run-time modeling.

In this paper, we present two incarnations of our Dynamic
Multi-Level Algebra (DMLA), a modular, semantically correct
multi-level meta-modeling formalism consisting of (i) an alge-
braic ASM foundation, (ii) a flexibly replaceable bootstrap
mechanism for defining modelled entities, (iii) a corresponding
set of logical validation formulae for establishing instantiation
semantics. The expected features of DMLA clearly derive from
practical modeling needs so that the resulting mechanism be
applicable for both design-time and run-time modeling. The
core components of the theory are explained both individually
and by comparing their two versions of DMLA. Hence, the aim
of this style of presentation is to showcase the balance struck
between parsimoniousness and wanted modularity within our
semantically correct, practical multi-level meta-modeling
approach. A simplified networking model is also included to
demonstrate the approach.

Keywords
dynamic instantiation, multi-level meta-modeling, algebraic
formalism, modular meta-modeling, meta-modeling lifecycle

1 Introduction
Metamodeling has become a well-established software engi-

neering methodology that has standardized the way software
architects build practical models for various complex software
intensive applications on industrial scale. The models may
serve many purposes, but the most important thereof are the
different domain specific analyses, congruent model transfor-
mations and almost full-automatic code generation. Although
modeling tools have matured a lot and the Eclipse Modeling
Framework (EMF) [1] started to dominate the technology, the
core paradigm still relies on the four level semantics of OMG’s
MOF [2]. Nevertheless, the number of meta-levels turned out
to become rather limited. In theory, three meta-levels are avail-
able for modeling, taken for granted that level M3 is fixed by
the OMG. However, in practice, only level M2 and M1 are
freely available in design-time and only M0 is used in run-time
explicitly. Moreover, the separation between design-time and
run-time modeling is kept quite rigid; there is no automatic
mechanism available that validates M0 models against their
M1 meta-model. Obviously, specific deployments, for exam-
ple highly configurable adaptive systems may allow case-by-
case application of such solutions; however, these are merely
exceptions rather than the deployment of state-of-the-art tech-
nologies. In summary, one may claim that EMF provides, by
default, only two modeling levels implemented in a single
threaded design environment.

Taken into account that concurrent model manipulation is
also needed at run-time, Models@runtime solutions resur-
faced to solve the challenge of run-time concurrent model
management. Nevertheless, these technologies do not facilitate
standard modeling tools such as model transformation or flex-
ible code generation. Hence, a unified multi-level modelling
framework for both design- and run-time applicability is still
missing. This paper focuses on the fundamentals of a solution
capable of fixing the aforementioned shortcomings of current
modeling approaches.

Since instantiation is the real essence of any metamodeling
discipline, the best way to start formalizing a multi-level meta-
modeling approach is through a semi-formal definition of the

1 Department of Automation and Applied Informatics,
Faculty of Electrical Engineering and Informatics,
Budapest University of Techology and Economics
H-1117 Budapest, Magyar tudósok krt. 2., Hungary
2 evopro Innovation Ltd.,
H-1116 Budapest, Hauszmann Alajos str. 2, Hungary
* Corresponding author, e-mail: gmezei@aut.bme.hu

61(1), pp. 34-47, 2017
DOI: 10.3311/PPee.9547

Creative Commons Attribution b

research article

PPPeriodica Polytechnica
Electrical Engineering
and Computer Science

mailto:gmezei@aut.bme.hu
https://doi.org/10.3311/PPee.9547

35Formalism for Static Aspects of Dynamic Metamodeling� 2017 61 1

requirements imposed on the instantiation. All current instan-
tiation approaches share the following principle: let us take a
meta-definition and process it by instantiating all defined items
of the definition. In other words, it means that, for example,
if we have three attribute definitions, then we are forced to
instantiate all those three variables at the same time. We cannot
decide, for example, to instantiate only two of them right now
and keep the last item in the state of being uninstantiated.

Dynamic Multi-Level Algebra (DMLA) is the formal defini-
tion of our multi-level modeling approach which acknowledges
all requirements presented above. DMLA offers a rather flex-
ible and customizable modelling structure and it can easily deal
with both design-time and run-time aspects of modelling. To
achieve this, the concept of instantiation is dynamic in spirit
and the formalism is able to account for explicit model states
and not just for simple isolated snapshots. The basic mecha-
nism of DMLA is based on Abstract State Machines (ASM).

DMLA has two incarnations: the first one (DMLA 1.0) fol-
lowed the naive approach of each major concern having been
allocated to its own slot of representation in a 6-tuple structure
defined over the ASM representation. We aimed to use DMLA
1.0 for experimentation in order to test and compare the expres-
siveness of DMLA to other multi-level modeling techniques
[3-5]. Although the approach proved its merit we could also
recognize some of its technical shortcomings which were later
fixed by DMLA 2.0, mainly in the fields of modularity, flex-
ibility and conceptual harmonization.

Although a short introduction of DMLA 1.0 is given in the
paper, the main focus is on DMLA 2.0. The formal definition
of the modelling structure, the mechanisms of instantiation
(including validation formulae to ensure validity of models) is
elaborated in detail. A short, illustrative case study is also pre-
sented in order to illustrate the concepts in practice.

2 Related Work
Multi-level metamodeling has enjoyed its renaissance during

the last couple of years thanks to the reemerging interest in flex-
ible modeling approaches and the slight disillusion of incum-
bent four level MOF and two level EMF modeling techniques.
Although there are many flavors of multi-level modeling, all
possess some facilities that enable instantiation across multiple
levels. In general, there are two variants of instantiation:

1)	 shallow instantiation where the information is defined at
modeling level n and this information is directly used at
the immediate instantiation level n+1,

2)	 deep instantiation that allows to define some information
on the nth modeling level which can later be used on the
(n+x)th (x > 0) modeling level [6].

One of the earliest and probably the most well-known deep
instantiation approach is the so called potency notion [6]. The
core idea is both simple and genuine: non-negative numbers

are attached to all model elements which are then decremented
by each instantiation until they reach 0, where no further
instantiation is permitted. The approach works well and has
been successfully implemented even in EMF by Melanee [7].
Nevertheless, potency notion bears also some disadvantages
due to its Orthogonal Classification Architecture (OCA) [8]
because OCA assumes that all meta-model management facili-
ties are universally accessible in such a way as if almost the
usual full MOF potential were available at all meta-levels. In
general, instantiation is only controlled by one explicitly defined
scalar value, however, Melanee subdivides it into potency, dura-
bility and mutability. Nevertheless, potency derived values can
be decremented only synchronously, on each model elements at
the exact moment of an instantiation, which results in a preset
number of meta-levels each element can be instantiated at. This
inflexibility requires fine-grained harmonization of the instan-
tiation process throughout the entire metamodel, which makes
modular design of complex industrial applications rather dif-
ficult to achieve. The apparent fragility of the method stems
from the fact that potency notion is both too permissive and too
restrictive at the same time. It is too permissive because at each
meta-level the full potential of all meta-model building facili-
ties is available, but it is also too restrictive because the model
designer must know in advance at which meta-level the final
instances will be needed and the potency values must be set
accordingly. Also, although OCA does not prescribe it, potency
notion is slightly asymmetrical since it prefers nodes to edges
within the meta-model building process. Nevertheless, potency
allocation at the end-points can be consistently extended towards
the edges via DDI [9], the rigidity of the original approach has
not been effectively relaxed thereby, that is, nodes still remain
to be preferred to edges.

By OCA becoming the mainstream of multi-level metamod-
eling there seems to be a tendency to implement deep instan-
tiation frameworks by predominantly relying on the clear dif-
ferentiation between linguistic and ontological instantiation.
Note that the terminology “ontological” in this context only
relates to the things that exist in the universe of discourse of the
domain to be modeled and it has nothing to do with contem-
porary ontological research [10]. In fact, OCA has introduced
an explicit ontological representation into the original linguis-
tically defined MOF meta-model interpretation. Nevertheless,
this technique has not novel at all since UML also allowed the
usage of both class and corresponding object diagrams in the
same model: both being represented as instances of meta-con-
cepts. However, their association had to be taken for granted
and implemented implicitly by any UML compatible tooling.
In order to extend UML’s special interpretation of combined
linguistic-ontological metamodeling, OCA generalizes onto-
logical representation in such a way that the ontological instan-
tiation [11] must enable any particular M1 (or M2) model ele-
ment to become an ontological instance of another element of

36 Period. Polytech. Elec. Eng. Comp. Sci.� D. Urbán, G. Mezei, Z. Theisz

the same M1 (or M2) level) multi-level. Hence, although MOF
meta-levels are still linguistically defined in OCA, the domain
semantics needed for deep multi-level instantiation can be
theoretically introduced within the frame of any existing MOF
compatible tools. Nevertheless, the approach has been only
sporadically used and only Melanee succeeded in this endeavor.
Nevertheless, OCA has been implemented also by metaDepth
[12], one of the most successful frameworks among tools ena-
bling building of systems with arbitrary number of meta-levels
through predominantly ontological deep metamodeling. A clear
application of showcasing the benefits of multi-level instan-
tiation over classical MOF techniques has been demonstrated
by comparing two-level and multi-level modeling methods
through the example of CloudML [13] and some well-known
design patterns used in practical metamodeling [14].

Finally, one must not forget that UML’s standard profiling
mechanism also showcases some mechanisms to mimic shal-
low multi-level modeling via mixed multi-level concepts such
as meta-classes representing descriptors (e.g. Classifier) or
items (e.g. InstanceSpecification). One of the best known appli-
cation of these concepts can be found in MARTE [15], which
clearly demonstrates the relevance of and the need for multi-
level modeling for industrial solutions. Hence, multi-level met-
amodeling, if it is done in the proper way, may revitalize also
classical modeling disciplines.

3 Multi-level metamodeling in practice
Multi-level metamodeling technologies have matured a lot

during the years, however their practical applicability is still
rather limited. Some of the reasons behind this retard may be
that usually, contemporary industry solutions still consist of
ad-hoc pattern-based multi-level meta-modeling implemen-
tations, which are also combined with either relational data-
base techniques or XML technologies to enable meta-level
shifts between meta-levels via proprietary domain specific
promotion and demotion operations. Furthermore, current
multi-level modeling frameworks are mainly visualization
driven (e.g. Melanee, XModeler [16]) or though textual (e.g.
metaDepth), but still not capable enough to meet the scalability
needs of real industrial applications, or simply prefer design-
time focus to run-time modeling aspects due to their EMF
heritage. However, in practical industrial modeling, there is a
definitive need for ecosystem thinking when it comes to build
large-scale model-based applications. In principle, traditional
model-based software components have been designed without
effectively considering life-cycle and inter-component integra-
tion. Therefore, all modeling activities had to be finished before
the application was about to be deployed. However, in the era
of Cloud-deployed component applications, the instances of
a meta-model-based application - a potentially infinite num-
ber of them - may remain active and thus must be kept alive
for an extended period of time. Moreover, entities, besides

being instances of a metamodel, may also play the role of tem-
plates, i.e. a meta-model, for other instances running within the
same application. Hence, recursive meta-model nesting is not
an exception now, but it is the real nature of modern Cloud-
aware component software solutions. In effect, the design-time
and run-time aspects of modeling are to be mixed and even
blended; therefore, meta-models cannot and must not be sealed
after design-time instantiation. As a consequence, the concept
of instantiation must be multi-level and such that it covers both
design-time and run-time perspectives.

The abstract requirements for a genuine representation of
practical multi-level instantiation can be summarized as follows:

•	 Instantiation copies the structure of the meta-definition and
decides whether to instantiate child elements one by one

•	 Instantiation of a type results in a compatible value within
the same meta-definition slot

•	 Instantiation of a cardinality limit results in a more re-
stricted value imposed on the same meta slot

•	 Instantiation of type constraints results in further
restriction(s) on the set of valid instances

In practice, the consequence of the above instantiation rules
will result in a system that enables the automatic creation of
a hierarchy of meta-definition templates where template vari-
ables are gradually substituted in a well-orchestrated sequence
of execution. Also, optional template variables may even be
simply left out during the same instantiation process. The pro-
posed instantiation process also covers both design- and run-
time aspects of meta-model based software development by
allowing the integrated and semantically correct co-existence
of all model elements, from the very abstract top-level concepts
down to their most concrete executable instances.

Dynamic Multi-Level Algebra (DMLA) is the formal defi-
nition of our multi-level modeling approach, which acknowl-
edges all the requirements presented above. It supports
dynamic instantiation. The instantiation is explicitly given by
a meta-reference that directly connects the instances to their
meta-definition. In order to provide a uniform representation
for both meta- and instance data, the formalism applies multi-
slot tuple encoding. The tuple encoding must support compos-
ability by allowing the explicit representation of substructures
as children. This feature is vital since it formalizes the tem-
plate induced origin of complex meta-definitions. Moreover,
the multiplicity of substructures is determined by the explicitly
given cardinality information that can also be instantiated by
further restrictions on their allowed domains. Similarly, non-
cardinality related constraints can be attached to the substruc-
tures and they can be instantiated by imposing further limita-
tions on their domains of satisfiability. Finally, substructures
can also be represented by simple, built-in datatypes whose
instantiation is accomplished as a traditional value selection
which is validated by domain checks on the permitted values.

37Formalism for Static Aspects of Dynamic Metamodeling� 2017 61 1

4 Dynamic Multi-Layer Algebra 1.0
In this section, we introduce the base concepts of our origi-

nal Dynamic Multi-Layer Algebra (DMLA). DMLA is a multi-
level instantiation technique based on Abstract State Machines
(ASM, [16]). It consists of three major parts: The first part
defines the modeling structure and defines the core ASM
functions operating on this structure. In essence, it defines an
abstract state machine and a set of connected functions that
specify the transition logic between the states. The second part
is the initial set of modeling constructs, built-in model elements
(e.g. built-in types) that are necessary to make use of the mode-
ling structure in practical applications. This, second part is also
referred to as the bootstrap of the algebra. Finally, the third part
defines the instantiation mechanism.

We have decided to separate the first two parts because the
algebra itself is structurally self-contained and it can also work
with different bootstraps. Moreover, any concrete bootstrap
selection seeds the concrete metamodeling capability of the
generic DMLA, which we consider as an additional benefit
compared to the unlimited and universal modeling capability
potency supports at all meta-levels. In effect, the proper selec-
tion of the bootstrap elements determines the later expressibil-
ity of DMLA’s modeling capability on the lower meta-levels.

4.1 Data representation
In DMLA, the model is represented as a Labeled Directed

Graph. Each model element such as nodes and edges can have
labels. Attributes of the model elements are represented by
these labels. Since the attribute structure of the edges follows
the same rules applied to nodes, the same labeling method is
used for both nodes and edges. For simplicity, we use a dual
field notation in labelling of Name/Value pairs. In the follow-
ing, we refer to a label with the name N of the model item X as
XN. We define the following labels:

•	 XName: the name of the model element
•	 XID: a globally unique ID of the model element
•	 XMeta: the ID of the meta-model definition
•	 XCardinality: the cardinality of the model element, it is used

during instantiation as a constraint. It determines how
many instances of the model element may exist in the
instance model.

•	 XValue: the value of the model element (used in case of at-
tributes only as described later)

•	 XAttributes: A list of attributes

Due to the complex structure of attributes, we do not repre-
sent them as atomic data, but as a hierarchical tree, where the
root of the tree is always the model item itself. Nevertheless,
we handle attributes as if they were model elements. More pre-
cisely, we create virtual nodes from them: these nodes do not
appear as real (modeling) nodes in diagrams but – from the
algebra’s formal point of view – they behave just like usual

model elements. This solution allows us to handle attributes
and model elements uniformly and avoid multiplication of
labeling and ASM functions. Since we use virtual nodes, all
the aforementioned labels are also used for them, e.g. attributes
have a name. Moreover, they may also have a value. This is the
reason why we have defined the Value label. In order to avoid
any misunderstanding, in the following, we are going to use the
word entity exclusively if we refer to an element which has the
label structure. Let us now define the algebra itself.

Definition The superuniverse |A| of a state A of the Multi-
Layer Algebra consists of the following universes:

•	 UBool containing logical values {true/false}
•	 UNumber containing rational numbers {} and a special

symbol ∞ representing infinity
•	 UString containing character sequences of finite length
•	 UID containing all the possible entity IDs
•	 UBasic containing elements from {UBool È UNumber È UString

È UID}

Additionally, all universes contain a special element, undef,
which refers to an undefined value. The labels of the entities
take their values from the following universes: (i) XName: UString,,

(ii) XID: UID, (iii) XMeta: UID, (iv) XCardinality: [UNumber , UNumber], (v)
XValue: UBasic, (vi) XAttrib: UID[]. The label Attrib is an indexed list
of IDs, which refers to other entities.

The label Attrib is an indexed list of IDs, which refers to
other entities. Now, let us have a simple example:

RouterID = 12, RouterMeta = 123,
RouterCardinality = [0, ∞], RouterValue = undef,
RouterAttrib = []

This definition formalizes the entity Router with its ID being
12 and the ID of its meta-model being 123. In the sequel, we will
rely on a more compact representation with equal semantics.

{“Router”, 12, 123, [0, ∞], undef, []}

4.2 Functions
Functions are used to rule how one can change states in the

ASM. In DMLA, we rely on shared and derived functions.
The current attribute configuration of a model item is repre-
sented using shared functions. The values of these functions
are modified either by the algebra itself, or by the environ-
ment of the algebra. Derived functions represent calculations
which cannot change the model; they are only used to obtain
and to restructure existing information. The vocabulary ∑ of
DMLA is assumed to contain the following characteristic func-
tions: (i) Name(UID): UString, (ii) Meta(UID): UID, (iii) Card(UID):
[UNumber, UNumber], (iv) Attrib(UID, UNumber): UID, (v) Value(UID):
UBasic. The functions are used to access the values stored in the

38 Period. Polytech. Elec. Eng. Comp. Sci.� D. Urbán, G. Mezei, Z. Theisz

corresponding labels. We suppose that the Attrib labels return
undef when the index is greater or equal to the number of the
stored entities. Note that the functions are not only able to
query the requested information, but they can also update it.
For example, one can update the meta definition of an entity by
simply assigning a value to the Meta function.

Moreover, there are two derived functions: (i) Contains(UID,
UID): UBool and (ii) DeriveFrom(UID , UID): UBool. The first func-
tion takes an ID of an entity and the ID of an attribute and
checks if the entity contains the attribute. The second function
checks whether the entity identified by the first parameter is
an instantiation, also transitively, of the entity specified by the
second parameter.

4.3 Bootstrap Mechanism
The ASM functions define the basic structure of our algebra.

The functions allow to query and change the model. However,
based only on these constructs, it is hard to use the algebra due
to the lack of basic, built-in constructs. For example, entities
are required to represent the basic types; otherwise one cannot
use label Meta when it refers to a string since the label is sup-
posed to take its value from UID and not from UString. We need
to define those base constructs somewhere inside or outside of
the core algebra. Obviously, there may be more than one “cor-
rect” solution to define this initial set of information. Here, we
restrict the usage of basic types to an absolute minimum. The
bootstrap has two main parts: basic types and principal entities.

4.3.1 Basic Types
The built-in types of the DMLA are the following: Basic,

Bool, Number, String, ID. All types refer to a value in the cor-
responding universe. In the bootstrap, we define an entity for
each of these types, for example we create an entity called Bool,
which will be used to represent Boolean type expressions.

4.3.2 Principal Entities
Besides the basic types, we also define two principal entities:

Attribute and Base. They act as root meta elements of attrib-
utes, and combined node and edge meta-types, respectively.
Both principal entities refer to themselves by meta definition.
Thus, for example, the meta of Attribute is the Attribute entity
itself. For example, the definition of Attribute describes that an
attribute can have zero or more attributes as children.

{“Attribute”, IDAttrib,IDAttrib,[0,inf],undef,
 [
 {“Attributes”,IDAttribs,IDAttrib,[0, ∞],undef,[]}
]}

The third principal entity, AttribType is used as a type con-
straint to validate the value of the attribute in the instances.
The Value label of AttribType specifies the type to be used in

the instance of the referred attribute. Using AttribType and set-
ting its Value field is mandatory if the given attribute is to be
instantiated, otherwise AttribType can be omitted. The defini-
tion of AttribType is an instantiation of Attribute and it also
uses AttribType to restrict its own type.

{“AttribType”, IDAType,IDAttrib, [0,1], undef,
 [
 {“AType”, IDATypeType, IDAType, [0,1],IDID,[]}
]}

4.4 Dynamic Instantiation
Based on the structure of the algebra and the bootstrap, we

can represent our models as states of DMLA. Now, we will
discuss the instantiation procedure that takes an entity and
produces a valid instance of it. During the instantiation, one
can usually create many different instances of the same type
without violating the constraints set by the meta definitions.
Most functions of the algebra are defined as shared, which
means that they allow manipulation of their values also from
outside the algebra. However, the functions do not validate
these manipulations because that would result in a considerably
complex exercise. Instead, we distinguish between valid and
invalid models, where validity checking is based on formulae
describing different properties of the model. We also assume
that whenever external actors change the state of the algebra,
the formulae are evaluated.

The formulae (detailed and explained in [4, 5]) defines valid
instantiation as follows:

1.	 All attributes of the Instance must be a clone, a copy, or a
valid instantiation of an attribute of the MetaType.

2.	 If it is a clone, then the same entity is used in the Instance
as in the MetaType. The definition is transferred to the
next level without any modification.

3.	 If it is a copy, then the ID label must be, while the
Cardinality label may be changed.

4.	 If it is an instantiation, then it must always have at least
one instantiated (sub)attribute, or its value must be set.

5.	 The accumulated (copied, instantiated) instances must
not violate the cardinality constraint defined by the meta
definition.

6.	 If a component is a direct or indirect instantiation of
Attribute and it has a Value set, then its meta definition
must have an AttribType component and the type of
value must match the type defined by AttribType. The
only exception to this formula are attributes deriving
from AttribType itself, for which we validate the Value
field against the Value of meta definition directly.

The instantiation process is specified via validation rules
that ensure that if an invalid model may result from an instan-
tiation, it is rejected and an alternative instantiation is selected

39Formalism for Static Aspects of Dynamic Metamodeling� 2017 61 1

and validated. The only constraint imposed on this procedure
is that at least one instantiation step (e.g. instantiating an attrib-
ute, or model element) must succeed in each step. The pro-
cedure consists of instructions that involves a selector and an
action. We model these instructions as a tuple {λselector, λaction}
with abstract functions. The λselector takes an ID of an entity as its
parameter and returns a possibly empty list of IDs referring to
the selected entities. The function λaction takes an ID of an entity
and executes an action on it. The actions λaction must invoke only
functions previously defined for the ASM. Hence, the functions
λselector and λaction can be defined as abstract, which allows us to
treat them as black boxes. Also, the operations can be defined a
priori in the bootstrap similar to attributes.

5 DMLA 2.0
Although the original version of DMLA possesses a univer-

sal modeling capability, we found a few features which can be
improved for greater flexibility and easier usage. Three main
factors drove us in this direction. The first aspect regards the
universality of our system: we recognized that by lifting certain
features from our core data representation into the bootstrap
makes the foundation of DMLA even more generic. The source
of the second improvement was that we recognized that the
mandatory concretization rule (rule #4 in the list of formulae
for DMLA 1.0) can be avoided. The third improvement fixes a
few cases of ambiguity we have found in the original version
of DMLA. Hence, we established a more compact type system,
which resulted in much cleaner validation formulae and also
eliminated the ambiguities.

These changes affect multiple areas of the original algebra,
however the role of the basic components (ASM-based core,
bootstrap and instantiation mechanism) and the principal ideas
behind the theory remain intact. In this section, we introduce
the changes we have applied to DMLA, and we will also exam-
ine the effects these changes may have on the semantics and
flexibility of the original DMLA mechanisms.

5.1 Data representation and functions
The structurally most important change we carried out was

the reduction of the number of labels used in the representation
of entities. Choosing the number of labels in the representa-
tion is a practical trade-off between flexibility, usability and the
level of abstraction. The more labels one has, the more built-
in features one can rely on in the bootstrap level. However,
if the labels are fewer, the bootstrap becomes more customiz-
able. More precisely, although the labels limit the expressive-
ness of the core, they also help to impose essential constraints
one must follow in the models. In the extreme case of having
only one label (a universal set of general attributes), the result-
ing ASM would necessitate a full behaviour customization
within its bootstrap. However, this representation would be too

general for the purposes of generic multi-level metamodeling:
it would neither restrict the usage of attributes, nor define pre-
cisely their semantics. Also, the identification of entities and
meta relationships would become part of the bootstrap, which
would go against the general principles of DMLA.

We decided to reduce the number of labels from six to four,
by leaving out labels XName and XCardinality. This move unlocks
a few new possibilities in customizing the bootstrap, while it
still encompasses all the main concepts as built-in, mandatory
features.

The sole purpose of having label XName was to improve the
legibility of the model, it had no other semantic meaning. We
realized that by using a more readable, string-based ID conven-
tion, we can replace it perfectly.

On the contrary, the label XCardinality does have a real and
important semantics in meta-modeling. Nevertheless, in
DMLA, cardinality constraints are validated by the validation
formulae, which anyhow depend on the bootstrap due to some
special treatments of selected entities (e.g. AttributeType).
Therefore, it turned out to become too rigorous to restrict the
format and thus the expressiveness of cardinality constraints by
the core of DMLA. For example, if someone wanted to define
valid cardinality ranges instead of the ASM default of a lower
and an upper limit, (s)he would have to unnecessarily modify
the core. In order to overcome this limitation, we moved the
cardinality from the core ASM representation as reified feature
into the bootstrap by adding it as an attribute to all containment
slots in the model entities.

The new ASM representation has four labels: XID identifies
and references to model elements. Since DMLA’s main focus
lies on multi-level instantiation, XMeta encodes type – instance
relationships. As mentioned before, these two labels could be
a part of a generic attribute set, but since these are relevant in
most use-cases, extracting them makes our concept easier to
use. Keeping the XAttributes label is a necessity in order to provide
composability of entities. Finally, XValue serves to differentiate
contained attributes from fully-instantiated values resulting in
simple and clear validation formulae. The only minor change
between the original and the new ASM formalism is to enable
XValue to become a list, making it possible to store multiple val-
ues in the slot.

The above changes do not affect the data representation of
the superuniverse. The modified XValue label is now defined as
UBasic[], therefore we also changed the Value(UID) function to
Value(UID, UNumber), allowing direct indexing of list of values.

Also, the derived functions Name(UID) and Card(UID) have
been removed.

The Router example expressed by the new representation:

{“Router”, “RouterMeta”, undef, []}

40 Period. Polytech. Elec. Eng. Comp. Sci.� D. Urbán, G. Mezei, Z. Theisz

5.2 Mandatory Concretization
In DMLA 1.0, instantiation of an entity was valid only if

at least one of its meta slots was concretized. The restriction
was included (encoded) in the validation formulae. The origi-
nal purpose of mandatory concretization was the aim to avoid
unlimited instantiation chains, for example by instantiating an
element again and again, without changing anything in it.

When DMLA 2.0 was created, we reconsidered the con-
straint. We have realized that by allowing infinite cardinality
in entities, unlimited chains may occur even if the condition is
satisfied. Thus, we have removed the constraint on mandatory
concretization from the formulae.

However, we have also recognized that by extending the cur-
rent bootstrap of DMLA 2.0 at some key points, one can easily
impose the original concretization constraint again. These key
points are also mentioned in the paper.

5.3 Bootstrap Mechanism
DMLA 2.0 regularized the exceptional cases of the original

DMLA considering the validation formulae, the instantiation
procedure and also created a bootstrap that handles these cases
more uniformly. The key changes applied to the bootstrap are
as follows:

•	 We have created a new entity Base that is root meta en-
tity of every model element. It has two instances, Entity
and SlotDef. Entity is used as the root entity for all usual
model entities, while SlotDef represents a slot definition
to be filled later with concrete values. SlotDef acts as a
wrapper for all constraints on the contained attributes
and references.

•	 Since Entity is the meta of every entity except slot defini-
tions, one can use Entity in type constraints as a reference
instead of their IDs. Therefore, we have removed the ID
and the Basic types.

•	 Since the cardinality label has been removed from the
ASM, it had to be re-introduced into the bootstrap, thus,
we have created a Cardinality entity.

•	 SlotDef wraps all constraints of a given slot as mentioned
earlier. This means that it supersedes the original prin-
cipal entity AttribType. However, SlotDef does not only
take over the role of simple type validation, but also ena-
bles for example a wrapping for Cardinality constraint
and a generic extension point for defining further con-
straints (e.g. range restrictions) on attributes.

•	 We have also changed how validation formulae work.
Instead of using the same formula for each model en-
tity, we now allow entity dependent formulae, i.e. a for-
mula may act differently for different entities. For ex-
ample when validating Base, we can be less restrictive,
than when validating a constraint. This way, validation is
more modular and easier to customize.

•	 The mechanism of entity validation is split into two sepa-
rate kinds of formulae now. The first (α) kind is used to
validate the instantiation of an entity against one of its
instances. The second (β) kind has to evaluate the validity
of instantiation in context, checking an entity against a list
of entities, consisting of clones and instances. The second
kind of formulae can validate for example whether the
cardinality constraint is violated by the list of candidates.
Note that if we wanted to add the mandatory concretiza-
tion check from DMLA1.0 to the bootstrap, we could
add a third (γ) kind of formulae, which would evaluate
the concretization in context and call this third kind of
validation from the appropriate α formulae, respectively.

5.3.1 The Base entity
In DMLA 2.0, the Base entity has become the root meta of

every entity. In order to eliminate apparent self-meta recursion,
the meta of the Base entity is set to undef since principal enti-
ties were anyhow treated exceptionally regarding their meta
relation in the original DMLA as well.

Since Base acts as the root meta, it must be based on the
most flexible structure DMLA may enable, that is, it consists of
an arbitrary amount of slots of any type. This is expressed by
adding the SlotDef entity as an attribute to Base.

We have also added an additional slot called IsPrimitive in
order to draw a clear distinction between instances of Base.
IsPrimitive attribute marks basic types (e.g. string), while
every other entity eliminates this slot, when instantiating Base.
Realizing this structure, the illustration of Base is the following:

{“Base”, undef, undef,
[
“SlotDef”,
{“IsPrimitive”, “SlotDef”, undef,
 [[“BOOL”], [0, 1]]
 }
]}

5.3.2 The Entity entity
In DMLA 2.0, Entity entity is the root meta of every entity

except the slots. Flexibility is a key feature here similarly
to Base, but we must restrict the contained elements type to
Base. This restriction is applied via an instance of SlotDef, as
explained later. The Entity entity also clones the IsPrimitive
flag of the Base, since every basic type is an instance of Entity.

{“Entity”, “Base”, undef,
[
{“Children”, “SlotDef”, undef,
 [[“Base”], [0, ∞]]
 },
 “IsPrimitive”
]}

41Formalism for Static Aspects of Dynamic Metamodeling� 2017 61 1

5.3.3 The SlotDef entity
The SlotDef entity is meant to represent a slot of the contain-

ing entity. In this bootstrap, it has two parts: a type constraint
and a cardinality constraint. In the future, we are going to cre-
ate other bootstraps containing more constraints (e.g. range
check for integers, or regular expression constraints on strings).

The SlotDef has two ways of instantiating: either a value
is provided, which conforms to the constraints set in the meta
SlotDef, or no value is provided, but some of the constraints of
the SlotDef definition is concretized. The wrapper of SlotDef
feature clearly formalizes the generic instantiation principle
of DMLA. In effect, SlotDef controls and helps validating the
contained values, therefore SlotDef is the only element capable
of containing a value.

For example, two possible instances of the aforementioned
Children slot of the Base would be:

//concretized SlotDef
{“SampleEntity”, “Entity”, undef,
[
 {“SpecChild”, “Children”, undef, [
 [“Base”],//clone from the meta
 [1, 2] //concretized cardinality instance
]}
]}

//filled-in SlotDef
{“SampleEntity2”, “Entity”, undef,
[
 {“SpecChild2”, ”Children”,
 [“ChildID”], undef}
]}

SlotDef makes DMLA 2.0 more powerful, consistent and
parsimonious in labels since one single ASM label spawns a
separate entity in the bootstrap in order to represent every fur-
ther constraint in the model (type and cardinality). The boot-
strap itself can handle the concretization of the constraints
as instantiations rather than delegate it as exceptions within
validation formulae [1]. This also provides a hook for further
extensions: for example, one may create an alternative repre-
sentation of cardinality instead of the default min-max pair,
simply as an instance of the Cardinality entity.

The following definition is the definition of SlotDef. Note
that the parts of the SlotDef entity refers to SlotDef as their
meta, making it self-descriptive, but not self-meta recursive.

{“SlotDef”, “Base”, undef,
[
{“TypeConstraint”, “SlotDef”, undef,
 [[“Base”],[1,1]]},
{“CardConstraint”, “SlotDef”, undef,
 [[“Cardinality”],[1, 1]]}
]}

Although the description notation used for the entities are
expressive and compact, we have also created a more intuitive
graphical notation to visualize the entities. The definition of
Entity, SlotDef and the examples can be visualized as:

Entity: Base

 Children: SlotDef [Base (0..inf)]
IsPrimitive: SlotDef [BOOL,(0..1)]

SampleEntity: Entity

 SpecChildr Children [Base (1..2)]

SampleEntity2: Entity

 SpecChild:2 Children – [ChildID]

SlotDef: Base

 TypeConstraint: SlotDef[Base (1..1)]
CardConstraint: SlotDef[Cardinality (1..1)]

Fig. 1 Visual notation: Entity, SlotDef, examples

5.3.4 The Cardinality entity
Since cardinality has been removed from the ASM as a label,

it is now used as a constraint. To achieve this, it must be defined
as an entity within the bootstrap. Cardinality is an instance of
Entity and it eliminates the IsPrimitive slot expressing that it is
not a primitive basic type. By default, we have kept the original
min-max semantics, however, more generic concept may also
be possible to be further concretized by instantiation. Thus, the
current structure of the Cardinality entity looks like as:

{“Cardinality”, “Entity”, undef,
[
{“CardMin”, “Children”, undef,
 [[“NUMBER”], [1, 1]]
]},
{“CardMax”, “Children”, undef,
 [[“NUMBER”], [1, 1]]
]}
]}

Cardinality: Entity

 CardMin: Children [NUMBER (1..1)]
CardMax: Children [NUMBER (1..1)]

Fig. 2 The Cardinality entity

5.3.5 Type conformity
An important difference between DMLA 1.0 and 2.0 is the

way we handle the type constraint. In the bootstrap, the value
provided in the TypeConstraint attribute of the SlotDef is a
restriction on the value of SlotDef instances. If the value is an
ID, the referred element has to be a direct, or indirect instance

42 Period. Polytech. Elec. Eng. Comp. Sci.� D. Urbán, G. Mezei, Z. Theisz

of the provided type. If the value is a built-in type, the respec-
tive basic type has to pass the check. Since the Base entity is the
topmost meta of every element in the model, setting the Base as
the type of the attribute equals to the use of the Basic type in the
original version. Note that since the value of the TypeConstraint
element is restricted to Base instances, and the SlotDef is a Base
instance, the SlotDef itself can also be used as a type restriction.

5.3.6 Basic types
The bootstrap of DMLA 2.0 has also built-in basic types as

DMLA 1.0. The types and their definitions are the following:

STRING: Base

I s P r i m StringIsPr: IsPrimitive – [True]

NUMBER: Base

I s P r i m NumberIsPr: IsPrimitive – [True]

BOOL: Base

I s P r i m BoolIsPr: IsPrimitive – [True]

Fig. 3 Basic types

5.4 Example of Node-Edge rebalancing
As a simple, though practically quite useful example of a

customized bootstrap, let us now illustrate how easy it is to
solve the so called node-edge dichotomy [1] by the new
DMLA 2.0 formalism. For the sake of compactness, we use the
graphical formalism for the definition of both Node and Edge.

Node is a direct instance of Entity. The only difference between
Node and Entity is that Node eliminates the IsPrimitive flag.

Node: Entity

 Children: SlotDef [Base (0..inf)]

Fig. 4 The Node entity

Edge is also a direct instance of Entity. It keeps the Children
collection to be able to define attributes for edges, however – at
the same time – it also instantiates the Children attribute to cre-
ate two slots representing the end points of the edge. Note that
Edge is a good example to dynamic instantiation (part of the
slot definitions are kept untouched for later usage, while others
are instantiated).

Edge: Entity

 Children: SlotDef [Base (0..inf)]
Links: Children [Node (2..2)]

Fig. 5 The Edge entity

5.5 Validation formulae
The concept of validation remained basically the same: we

use the validation formulae to differentiate between valid and
invalid states of the ASM. However, correspondingly to the
modified bootstrap, we carried out some changes. We intro-
duced a simplification step and discarded the concept of cop-
ies from our model. This does not cause any problem since
the concretization of a cardinality constraint is defined as an
instantiation, instead of an exceptional branch of the formulae
(as it is in DMLA 1.0).

Further modification in formulae can be summarized as
follows:

The first change is that the formulae are now dependent on
the meta of the validated entity. This means that now we have
specialized formulae for certain sub-trees of our meta-hierarchy.
This is mostly needed because of the different characteristics of
the Base and the SlotDef entity. The Base entity has the general
concept of instantiation, meaning that the instantiation may con-
cretize the meta entity. On the other hand, the SlotDef entity has
a different behaviour, because it has two ways of instantiation:
providing a value or concretizing the constraints. These formu-
lae were also provided for the type constraint and cardinality
constraint of SlotDef, and the minimum and maximum slots for
Cardinality. These specialized cases of the formulae are capable
of referring to the more generic cases, which makes these sub-
formulae extensions and not disjoint expressions.

The second change results in the fact that the validation of
every element is split into two main formulae as mentioned
earlier. The first formula (alpha type formula) has to validate a
meta entity against one instance entity, checking if the instance
violates any constraints. The second formula (beta type for-
mula) has to validate a meta entity in its context, which means
that it has to validate a list of clone and instance entities. This
formula is mostly needed to check the cardinality constraint of
the meta element. The in context checks (beta formulae) are
evaluated while validating the first type (alpha formula) of the
validation formula, checking the validity of every child of the
meta entity against the relevant children of the instance entity.

5.5.1 Helper formulae
The formula DeriveOrEq checks if the entity I equals M, or

if I is an nth level instance of M.

DeriveOrEq I M, : ,() () ∨ =DeriveFrom I M I M

The formula InstanceOf checks if entity I is a direct instance
of entity M.

InstanceOf I M, :() () =Meta I M

The formula CloneOf checks whether the two elements are
equal (clones). The formula is used only to increase the leg-
ibility of the formulae.

(1)

(2)

43Formalism for Static Aspects of Dynamic Metamodeling� 2017 61 1

CloneOf ID ID
1 2 1 2
, :() =ID ID

The formula ChildrenByMeta obtains a set containing all
attributes of C that are equal to M or an nth level instance of M.

ChildrenByMeta C M, : | : ,

,

() ∃ = () ∧{
()}

a i a Attrib C i

DeriveOrEq a M

The formula ChildrenByMeta selects a single attribute of C
that is equal to M or an nth level instance of M.

ChildrenByMeta C M, : | : ,

,

() ∃ = () ∧
())

a i a Attrib C i

DeriveOrEq a M

The formula ValueCount counts the number of values of I.

ValueCount I() ∃ = () ∧ ≠{ }: | : ,v i v Value I i v undef

The formula HasValue returns true if I has at least one filled
in value.

HasValue I() ∃ = () ∧ ≠: , | ,a i a Value I i a undef

The formula IsSlotPart returns true, if I equals to or derives
from TypeConstraint or CardConstraint.

IsSlotPart I() () ∨: ,

,

DeriveOrEq I ID

DeriveOrEq I I
CardConstraint

DDTypeConstraint()

The formula IsSlotInstance returns true if I equals to or
derives from TypeConstraint, CardConstraint, CardMin or
CardMax.

IsSlotInstance I() () ∨
() ∨

:

,

IsSlotPart I

DeriveOrEq I ID DeCardMin rriveOrEq I IDCardMax,()

5.5.2 Validation formulae
The formula φIsValid checks if I is a valid instance of M. I

has to have M as its Meta element, and also needs to validate
against the proper alpha type formula.

ϕ
IsValid

I M, : , ,() () ∧ ()InstanceOf I M I MValidInstanceϕ

The formula ValidInstance selects the proper alpha type
formula and validates instance I and the meta element M.
The selection is based on the type of I, which is M. As the
formula shows, SlotDef parts are to be processed separately
(αSubstitutableConstraint), the validation must be customized in these
cases and slot definitions themselves require special handling
as well (αSlotDef). Otherwise, we can use the default validation
applicable for all Base instances.

ϕ
ValidInstance

I M, :

, ,)

()
() ∧ ()DeriveOrEq M ID I MCardMin CardMinα ∨∨(

¬ () ∧(
() ∧

DeriveOrEq M ID

DeriveOrEq M ID
CardMin

CardMax Card

,

, α MMax

CardMax

Subs

I M

DeriveOrEq M ID

IsSlotPart M

,

,

()() ∨(
¬ () ∧(

() ∧α ttitutableConstraint I M

IsSlotPart M

DeriveOrEq M I

,

,

()() ∨(
¬ () ∧(

DD I M

DeriveOrEq M ID

Der

SlotDef SlotDef

SlotDef

() ∧ ()() ∨(
¬ () ∧(

α ,

,

iiveOrEq M ID I MBase Base, ,() ∧ ()()
))

))
))
)

α

The formula ValidContext selects the proper beta type for-
mula and validates the attribute a and the Children elements.
The selection is based on the meta of the entity a. Similarly to
the alpha formulae, parts of SlotDef and SlotDef itself require
custom validation.

ϕ
ValidContext

a Children, :()
()() ∧(IsSlotInstance Meta a

Substiβ ttutableConstraint a Children

IsSlotInstance Meta a

,()) ∨
¬ ()() ∧(
DDeriveOrEq Meta a ID

a Children

De

SlotDef

SlotDef

()() ∧((
()) ∨

¬

,

,β

rriveOrEq Meta a ID

DeriveOrEq Meta I ID

SlotDef

Base

()() ∧(
()() ∧
,

, βBBase I Children,()()
))
)

The formula TypeConformity checks if value V conforms
to the type T. If value V is an ID, it has to be equal to T or an
nth level instance of T. If value V is a primitive type, the cor-
responding built-in ID has to fulfill the condition.

ϕTypeConformity T V, :()
≠ ∧ ≠ ∧

∈ ∧

T undef V undef

V U DeriveOrEq IDBool BOOOL

Number NUMBER

String

T

V U DeriveOrEq ID T

V U D

,

,

()() ∨(
∈ ∧ ()() ∨
∈ ∧ eeriveOrEq ID T

V U DeriveOrEq V T

STRING

ID

,

,

()() ∨
∈ ∧ ()())

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13)

44 Period. Polytech. Elec. Eng. Comp. Sci.� D. Urbán, G. Mezei, Z. Theisz

The helper formula ValidContextMeta calls the beta for-
mula of the ith attribute of M, and checks all relevant attributes
of I (based on their meta) for the call.

ϕ
ValidContextMeta

I M i, , : | ,

,

() ∃ = () ∧a a Attrib M i

a CValidContextϕ hhildrenByMeta I a,()()

The formula CardMin returns the minimum cardinality con-
tained by the SlotDef I.

ϕ
CardMin

I() ∃

= () ∧
=

: | , :

,

val c m

c ChildByMeta I ID

m C
CardConstraint

hhildByMeta Value c ID

val Value m
CardMin, ,

,

0

0

()() ∧
= ()

The formula CardMax returns the maximum cardinality
contained by the SlotDef I.

ϕ
CardMax

I() ∃

= () ∧
=

: | , :

,

val c m

c ChildByMeta I ID

m C
CardConstraint

hhildByMeta Value c ID

val Value m
CardMax, ,

,

0

0

()() ∧
= ()

The alpha formula of the Base element consists of several
parts. The first part checks the validity of all of the attributes
of I with the beta formulae. The second part checks if all of the
attributes of I are related to the attributes of M. Note that the
equality in αBase2 expresses that the two sets (IAttributes and the
calculated union) consists of the same elements. The third part
checks if the I element has a value filled in, which is prohibited
for the Base element.

α
Base

I M, :() ∧ ∧α α αBase Base Base1 2 3

α
Base

I M
1
, : | , ,() ¬ ()i I M iValidContextMetaϕ

α
Base

I M
2
, : | : : ,() ∀ ∃ = ()
= ∧ =

j a i a Attrib M i

I j ChildrenBAttributes  yyMeta I a,()










α
Base

I M
3
, :() ¬ ()HasValue I

The beta formula for the Base element. The in-context valid-
ity is always true in the case of the Base element, since the
Base element does not have any constraints on the in-context
instantiation and cloning of an element.

β
Base

a Children, :() true

The alpha formula of the SlotDef element. The formula pro-
hibits the instantiation of a SlotDef that has any values filled in.
Otherwise, if instance I has no values, the formula delegates to
the alpha formula of the Base element. If instance I has a value,
it is validated against the type and the maximum cardinality

constraint of M. Note that minimum cardinality cannot be
checked here, since it would require context information.

α
SlotDef

I M, :

,

() ¬ () ∧
¬ () ∧ ()() ∨(

HasValue M

HasValue I I M

HasV

Baseα

aalue I I M I MSlotDef SlotDef() ∧ () ∧((()))α α
1 2
, ,

αSlotDef TypeConformityv i v Value I i

Value Chi

1
I M, : | : ,() ∃ = () ∧¬ ϕ

lldByMeta M ID vTypeConstraint, , ,()()()0

αSlotDef CardMaxValueCount I M
2
I M, :() () ≤ ()ϕ

The beta formula of the SlotDef element. If the attribute a is
the SlotDef entity itself, the formula delegates to the Base beta
formula, since the SlotDef does not contain a concrete cardi-
nality constraint yet. Otherwise, if attribute a has a value, the
context can only contain the clone of a, since a filled in SlotDef
cannot be instantiated or discarded. If a has no value, the valid-
ity depends on the cardinality constraint in the element. The
elements of Children are counted based on the number of filled
in values, or the provided cardinality constraints. This results in
two numbers, the possible minimum and maximum number of
values. These values are to be checked against the cardinality
in the a element.

β

β

SlotDef

SlotDef Base

a Children

CloneOf a ID a Children

, :

, ,

()
() ∧ ()) ∨

¬ () ∧ ()∨CloneOf a IDSlotDef SlotDef SlotDef, β β1 2

βSlotDef a Children

HasValue a Count Children

Childr

1

1

, :()
() ∧ () = ∧

een a0[] =

β

ϕ

SlotDef

Ca

a Children

low up min HasValue a

low

2 , :

, , , |

()
∃ ¬ () ∧

=

max

rrdMin CardMaxa up a

min m c i c Children i

HasVa

() ∧ = () ∧
= ∑ ∀ ∃ = []∧

¬

ϕ

| : :

llue c m c

HasValue c m ValueCount c

ma

CardMin() ∧ = ()() ∨(
() ∧ = ()()) ∧

ϕ

xx m c i c Children i

low min up max

= ∑ ∀ ∃ = []∧
∧ ≤ ∧ ≥)

| : :

The alpha formula of the TypeConstraint and CardConstraint
elements. The only changes compared to the SlotDef alpha for-
mula is that these elements allow the instantiation of an ele-
ment with a filled in value thus concretizing the value even

(14)

(15)

(16)

(17)

(18)

(20)

(19)

(21)

(22)

(23)

(24)

(25)

(26)

(27)

45Formalism for Static Aspects of Dynamic Metamodeling� 2017 61 1

more. For example, the cardinality [1..2] is a valid instance
of the cardinality [1..4]. The value of I has to be an nth level
instance of the value of M. The formula also restricts the value
for the ID universe.

αSubstitutableConstraint I M

ValueCount M ValueCount I

, :()
¬ () = ∧1 (() =() ∧(

()) ∨
() = ∧ () = ∧(

∃

1

1 1

αSlotDef I M

ValueCount M ValueCount I

,

mmv iv mv Value M mv U ID

iv Value I iv U DeriveID

, : , _

,

= () ∧ ∈ ∧((
= () ∧ ∈ ∧

0

0 FFrom iv mv,()))

The beta formula of the TypeConstraint, CardConstraint,
MinCard and MaxCard elements. This formula accepts the
instantiation of a filled in element. If the element is instanti-
ated, the context can only contain the instance (and no clones).

βSubstitutableConstraint a Children

ValueCount a c i

, :

, :

()
() = ∧1  cc Children i c a

Count Children

ValueCount a

= []∧ =() ∧(
() =) ∨

¬ () = ∧

1

1((= []∧ =()()
∧ ())

c i c Children i c

a ChildrenSlotDef

, :

,

0

β

The alpha formula of the CardMin element. The formula
allows the instantiation of an already filled in element with a
greater minimum value.

α

α

CardMin

SlotDef

I M

ValueCount M ValueCount I

, :()
¬ () = ∧ () =() ∧(1 1

II M

ValueCount M ValueCount I

mv iv mv Value M

,

, : ,

()) ∨
() = ∧ () = ∧(

∃ =

1 1

00 0() ∧ = ()(
∧ <))

iv Value I

iv mv

,

The alpha formula of the CardMax element. It allows the
instantiation of an element with a lower maximum value.

α

α

CardMax

SlotDef

I M

ValueCount M ValueCount I

, :()
¬ () = ∧ () =()(∧1 1

II M

ValueCount M ValueCount I

mv iv mv Value M

,

, : ,

()) ∨
() = ∧ () = ∧(

∃ =

1 1

00 0() ∧ = ()(
∧ ≤ ∧ ≥)

iv Value I

low min up max

,

6 Evaluation
In this section, we give an evaluation of our approach by

summarizing and comparing its features to other solutions in
the field. As first, we present a short example to show, how
DMLA 2.0 works in practice, then we give an overview of
DMLA 1.0 and 2.0 differences and finally we place DMLA 2.0
in the field multilevel modeling.

6.1 Simple Router Example
As a simplified concrete example, let us describe a network.

In this network, a generic Router concept is concretized by
various types of routers that have many instances deployed
in the network. That situation is a frequently reoccurring one
in network management, which may challenge state-of-the-
art meta-model based tools resulting in an ad-hoc solution.
Nevertheless, the situation is easy to be represented in [1]. In
particular, DMLA 2.0 even facilitates formally correct defini-
tions in its graphical notations as follows.

In the example, four entities are defined: the first one intro-
duces IPType. It specifies the address as a String and it also has
an IsIPv4 flag showing whether we use IPv4, or IPv6.

IPType: Entity

 Address: Children [STRING (1..1)]
IsIP4: Children [BOOL (1..1)]

Fig. 6 The IPType entity

Other entities define the instantiation hierarchy starting with
RouterType, which instantiates Node by restricting the types of
Attributes. Then, a particular router type, SimpleRouter, further
restricts the cardinality of IPAddresses to two.

RouterType: Node

 IPAddresses: Children [IPType (0..inf)]

SimpleRouter: RouterType

 SimpleIPAddresses: IPAddresses [IPType (2..2)]

Fig. 7 RouterType and SimpleRouter

Finally, the MyRouter instance sets the concrete IP addresses
according to the definition of IPType. Note that In and Out
attributes are set by instances of the IPType entity rather than
by a primitive expression (e.g. a string literal).

In a similar vein, other entity hierarchies can be created:
one that represents the companies, which manage the router(s).
Companies may also have (any number of) logs. Each of the
logs consists of exactly one entry modeled as a string.

(28)

(29)

(30)

(31)

46 Period. Polytech. Elec. Eng. Comp. Sci.� D. Urbán, G. Mezei, Z. Theisz

MyRouter: RouterType

 In: SimpleIPAddresses - [MyRouterInIp]
Out: SimpleIPAddresses - [MyRouterOutIp]

MyRouterInIP: IPType

I s P r i m InAddr:Address - [“12.18.0.1”]
 IsIPv4 – [True]

MyRouterOutIP: IPType

I s P r i m OutAddr:Address - [“19.16.0.2”]
 IsIPv4 – [True]

Fig. 8 Concrete router and its attributes

LogType: Entity

I s P r i m Log: Children [STRING (1..1)]

Company: Node

I s P r i m Logs: Children [LogType (0..inf)]

Fig. 9 The Company and LogType entities

It is also possible to create concrete companies. Here, we
used the ability to instantiate attributes partially. We add a con-
crete log entry to the company, but we do not remove the attrib-
ute slot. Therefore, the instances of MyCompany can also add
further log entries to themselves.

MyCompanyLogData: LogType

 MyLogData: LogData - [“log_data”]

MyCompany: Company

 Logs: Children [LogType (0..inf)]
MyLog: Logs - [MyCompanyLogData]

Fig. 10 A concrete company

Finally, we can create a third hierarchy expressing the rela-
tions between router management and router by instantiating
Edge. As it is shown, the type of the source and target links
are set at the metalevel, while their concrete value is set at the
instance level.

Management: Edge

 Src: Links [Company (1..1)]
Trg: Links [RouterType (1..1)]

MyManagement: Management

 ManagingCompany: Src – [MyCompany]
ManagedRouter: Trg – [MyRouter]

 Fig. 11 Management - the link between

As the example clearly demonstrates, the DLMA notation
is compact, formal and easily customizable by the bootstrap.

6.2 DMLA 1.0. vs DMLA 2.0
Although we have already mentioned the differences

between the two major versions of DMLA when presenting
DMLA 2.0, for the sake of clarity, we give a short summariza-
tion here.

The most important difference is that DMLA 1.0 uses a
6-tuple to represent the data and the modeling relations, while
DMLA 2.0 is based on a 4-tuple. The DMLA 2.0 solution is
more compact (entity names are omitted) and more flexible
(cardinality handling is not wired in the core of the algebra) at
the same time.

Modeling relations are restricted by their metamodel but a
simple type-instance relation is not always enough, additional
constraints are needed. Cardinality is a good example to this,
but format expressions (e.g. the format of email addresses),
range limits (e.g. pick any number under 100) and other kind
of constraints may also be useful in many cases. DMLA 1.0
emphasized the role of cardinality and encoded the attribute
type restrictions in AttribType [2], which is a strict, but rigid
solution. In DMLA 2.0, constraint handling is raised to a whole
new level, by introduction SlotDef and allowing to extend the
type of constraints later. It is out of the scope of this paper,
but we should mention that we successfully managed to extend
constraints by range and format constraints with only a slight
modification in the bootstrap presented in this paper. Such
extensions would be much harder to add to DMLA 1.0.

Another good example to the flexibility of constraint han-
dling in DMLA 2.0 is that the mandatory concretization con-
dition (hard wired in DMLA 1.0) is omitted in the presented
bootstrap; however, it could be also easily added by modifying
the formulae .

The principal entities and built-in types are also reformed
in DMLA 2.0. This is mainly a pure consequence of the afore-
mentioned changes. However, we should also mention that
by introducing Base as the basis of all modeling entities, the
meta relations can be expressed more elegantly by using the
instance-of relation instead of referencing to model elements
by their ID.

Finally, the structure of validation formulae (the separation of
α and β formulae) of DMLA 2.0 allows us to control instantiation
in a more sophisticated (precise, compact and flexible) way.

To sum up, DMLA 1.0 can be considered as an experimental
prototype of our approach for dynamic, multilevel modeling
with great expression power. It contained a very promising set
of ideas, but it still featured some unpolished edges. In contrast,
DMLA 2.0 is a more advanced, flexible approach which is also
much easier to be used and implemented. Hence, in DMLA 2.0,
the concepts have been revisited and the original format has
been changed for the better representation wherever it served
to eliminate accidental complexity.

47Formalism for Static Aspects of Dynamic Metamodeling� 2017 61 1

7 Conclusion
Despite the growing need for model-based software develop-

ment and the essential role of instantiation is meta-modelling
approaches, current state-of-the-art techniques face difficulties at
expressing domain specific design rules within models, probably
due to their lack of adequate dynamic multi-level instantiation.
Dynamic Multi-Layer Algebra (DMLA) is a novel ASM-based
algebraic formalism that enables formally correct and expressive
multi-level metamodeling for combined design- and run-time
applications. Although the original DMLA formalism worked
well and also demonstrated the benefits resulting from a balanced
structural separation of ASM, bootstrap and formulae parts, the
representation itself turned out unnecessarily complex. In this
paper, we have highlighted the shortcomings and came up with a
clarified, more compact and more streamlined formalism, which
exhibits a 4-tuple representation instead of the original 6-tuple
one. The improvement is semantically relevant because the type
and cardinality constraints have become more uniform and for-
mally specified by the respective formula extensions, which
opens the door to further relaxation of the current structure of
e.g. cardinality constraints. Furthermore, we introduced the con-
cept of SlotDef, which is an easy-to-use extension point to add
additional instantiation validators to the system. SlotDef makes
it also possible to introduce OCL like multi-level constraints into
the meta-model. However, complex constraint introduction and
the relaxation of the type conformity formula are still ongoing
research. We are currently also working on a practical implemen-
tation of the formalism in C# and Xtext so that real-life industrial
automation and telecom management models could be tested for
their flexible representation and semi-automatic run-time pro-
cessing. The results of the practical experimentation may further
shape and improve the formalism.

References
[1]	 "Eclipse Modeling Framework (EMF)." [Online]. Available from: htt-

ps://eclipse.org/modeling/emf/.
[2]	 OMG, "MetaObject Facility." OMG, [Online]. Available from: http://

www.omg.org/mof/.
[3]	 Theisz, Z., Mezei, G. "An Algebraic Instantiation Technique Illustrated

by Multilevel Design Patterns." In MULTI@MoDELS, Ottawa, Canada,
2015.

[4]	 Theisz, Z., Mezei, G. "Multi-level Dynamic Instantiation for Resolving
Node-edge Dichotomy." In: Proceedings of the 4th International Confer-
ence on Model-Driven Engineering and Software Development, Rome,
Italy, 2016.

[5]	 Theisz, Z., Mezei, G. "Towards a novel meta-modeling approach for
	 dynamic multi-level instantiation." In: Automation and Applied Computer

Science Workshop, Budapest, Hungary, 2015.
[6]	 Atkinson, C., Kühne, T. "The Essence of Multilevel Metamodeling." The

Unified Modeling Language. Modeling Languages, Concepts, and Tools.
2185, pp. 19-33, 2001.

[7]	 Atkinson, C., Gerbig, R. "Melanie: Multi-level modeling and ontology
engineering environment." ACM, New York, USA. Article No. 7. 2012
https://doi.org/10.1145/2448076.2448083

[8]	 Atkinson, C., Gutheil, M., Kennel, B. "A Flexible Infrastructure for Mul-
tilevel Language Engineering." IEEE Transactions on Software Engi-
neering. 35(6), pp. 742–755. 2009. https://doi.org/10.1109/TSE.2009.31

[9]	 Neumayr, B., Jeusfeld, M. A., Schrefl, M., Schütz, C. "Dual Deep In-
stantiation and Its ConceptBase Implementation." In: Proceedings of the
26th International Conference on Advanced Information Systems Engi-
neering, Thessaloniki, Greece, 2014. pp. 503-517.

	 https://doi.org/10.1007/978-3-319-07881-6_34
[10]	 Atkinson, C., Gerbig, R., Kühne, T. "Comparing multi-level modeling

approaches." Proceedings of the 1st Workshop on Multi-Level Modelling.
1286, pp. 53-61. 2014.

[11]	 Atkinson, C., Kühne, T. "Model-Driven Development: A Metamodeling
Foundation." IEEE Software. 20(5), pp. 36-41. 2003.

	 https://doi.org/10.1109/MS.2003.1231149
[12]	 de Lara, J., Guerra, E. "Deep Meta-modelling with MetaDepth." Objects,

Models, Components, Patterns. 6141, pp. 1-20. 2010.
	 https://doi.org/10.1007/978-3-642-13953-6_1
[13]	 Rossini, A., de Lara, J., Guerra, E., Nikolov, N. "A Comparison of Two-

Level and Multi-level Modelling for Cloud-Based Applications." Model-
ling Foundations and Applications. 9153, pp. 18-32. 2015.

	 https://doi.org/10.1007/978-3-319-21151-0_2
[14]	 de Lara, J., Guerra, E., Cuadrado, J. S. "When and How to Use Multi-

level Modelling." Journal ACM Transactions on Software Engineering
and Methodology. 24(3), Artice No. 12. 2014.

	 https://doi.org/10.1145/2685615
[15]	 OMG, "UML Profile for MARTE: Modeling and Analysis of Real-time

Embedded Systems." [Online]. Available from: http://www.omg.org/
spec/MARTE/1.1/. [Accessed: 1st October 2016]

[16]	 Clark, T., Gonzalez-Perez, C., Henderson-Sellers, B. "A Foundation for
Multi-Level Modelling." In: Proceedings of the Workshop on Multi-Level
Modelling co-located with ACM/IEEE 17th International Conference on
Model Driven Engineering Languages & Systems. 1286, pp. 43-52. 2014.

[17]	 Börger, E., Stark, R. "Abstract State Machines: A Method for High-Level
System Design and Analysis." Springer-Verlag Berlin Heidelberg. 2003.
https://doi.org/10.1007/978-3-642-18216-7

https://eclipse.org/modeling/emf
https://eclipse.org/modeling/emf
http://www.omg.org/mof
http://www.omg.org/mof
https://doi.org/10.1145/2448076.2448083
https://doi.org/10.1109/TSE.2009.31
https://doi.org/10.1007/978-3-319-07881-6_34
https://doi.org/10.1109/MS.2003.1231149
https://doi.org/10.1007/978-3-642-13953-6_1
https://doi.org/10.1007/978-3-319-21151-0_2
https://doi.org/10.1145/2685615
http://www.omg.org/spec/MARTE/1.1/
http://www.omg.org/spec/MARTE/1.1/
https://doi.org/10.1007/978-3-642-18216-7

	1 Introduction
	2 Related Work
	3 Multi-level metamodeling in practice
	4 Dynamic Multi-Layer Algebra 1.0
	4.1 Data representation
	4.2 Functions
	4.3 Bootstrap Mechanism
	4.3.1 Basic Types
	4.3.2 Principal Entities

	4.4 Dynamic Instantiation

	5 DMLA 2.0
	5.1 Data representation and functions
	5.2 Mandatory Concretization
	5.3 Bootstrap Mechanism
	5.3.1 The Base entity
	5.3.2 The Entity entity
	5.3.3 The SlotDef entity
	5.3.4 The Cardinality entity
	5.3.5 Type conformity
	5.3.6 Basic types

	5.4 Example of Node-Edge rebalancing
	5.5 Validation formulae
	5.5.1 Helper formulae
	5.5.2 Validation formulae

	6 Evaluation
	6.1 Simple Router Example
	6.2 DMLA 1.0. vs DMLA 2.0

	7 Conclusion
	References

