
151PLC Program Translation for Verification Purposes� 2017 61 2

PLC Program Translation for
Verification Purposes

Dániel Darvas1,2*, István Majzik1, Enrique Blanco Viñuela2

Received 15 July 2016; accepted after revision 27 November 2016

Abstract
Programmable logic controllers are typically programmed
in one of the five languages defined in the IEC 61131 stand-
ard. While the ability to choose the appropriate language for
each program unit may be an advantage for the developers,
it poses a serious challenge to verification methods. In this
paper we analyse and compare these languages to show that
the ST programming language can efficiently and conveniently
represent all PLC languages for formal verification purposes.
Furthermore, we provide a translation method from IL to ST
programming languages (for the Siemens implementation),
together with a sketch of proof for its correctness. This allows
the usage of the ST-based PLCverif model checking method for
safety PLC programs.

Keywords
PLC, programming languages, formal verification, semantics

1 Introduction and Background
Programmable Logic Controllers (PLCs) are widely used

for various control tasks in the industry. As they often perform
critical tasks – sometimes PLCs are even used in safety-critical
settings up to SIL3 – the verification of these hardware-soft-
ware systems is a must. Besides the common testing and simu-
lation methods, formal verification techniques, such as model
checking are used increasingly often.

The corresponding IEC 61131 standard defines five PLC-
specific programming languages: Instruction List (IL), Struc-
tured Text (ST), Ladder Diagram (LD), Function Block Dia-
gram (FBD) and Sequential Function Chart (SFC) [15]. It is
out of the scope of this article to discuss the features of these
languages in detail, but a simple example in Fig. 1 illustrates
these languages. The first four example program excerpts are
execution equivalent, i.e. for all possible starting (input and
retained) variable valuations, the results of these programs are
the same variable valuations. The SFC example is different
from the others, as this is a special-purpose language for struc-
turing complex applications.

This variety of languages responds to the fact that PLCs are
used in different settings and programmed by people with vari-
ous backgrounds. This is an advantage for the developers, but
an important challenge for the verification. The languages can
be freely mixed, e.g. a function written in IL can call an ST
function. To provide a generally applicable formal verification
solution, all these languages should be supported.

1.1 Motivation
Our practical motivation lies in the PLCverif formal veri-

fication tool and its verification workflow [12, 7]. The PLC-
verif tool provides a way for PLC program developers to apply
model checking to their implementation. This allows to check
the satisfaction of various state reachability, safety and liveness
requirements. The inputs of the model checking workflow are
the source code and the requirements formalised using require-
ment patterns. At the moment, programs (or program units)
written in the Siemens variant of ST are supported natively.
These inputs are selected to be convenient for the users who are

1 Department of Measurement and Information Systems, Faculty of Electrical
Engineering and Informatics, Budapest University of Technology and
Economics (BUTE), H-1117 Budapest, Magyar tudósok körútja 2., Hungary
2 European Organization for Nuclear Research (CERN), CH-1211 Geneva 23,
Geneva, Switzerland
* Corresponding author, e-mail: darvas@mit.bme.hu

61(2), pp. 151-165, 2017
https://doi.org/10.3311/PPee.9743

Creative Commons Attribution b

research article

PPPeriodica Polytechnica
Electrical Engineering
and Computer Science

https://doi.org/10.3311/PPee.9743

152 Period. Polytech. Elec. Eng. Comp. Sci.� D. Darvas, I. Majzik, E. Blanco Viñuela

not familiar with formal verification methods. PLCverif auto-
matically generates temporal logic expressions from the pat-
tern-based requirements, parses the input code, builds a simple,
automata-based intermediate verification model, calls the cho-
sen external model checker tool (e.g. nuXmv), and presents the
results in a simple, self-contained format to the user. The tool
is in use at the European Organization for Nuclear Research
(CERN) to check critical control programs [13]. While most of
the PLC programs are written in ST at CERN, in special cases
(e.g. safety instrumented systems) restrictions forbid the use of
ST. To make PLCverif generally applicable, all five PLC pro-
gramming languages should be supported.

From the development point of view, providing a complete
parser and a verification model builder is a great effort. Further-
more, the grammars of the PLC languages are notably different,
making it difficult to use the same technology stack. For exam-
ple, in case of PLCverif the currently used Xtext-based1 parser
is not suitable for the IL language, where the same tokens can be
treated as keywords or names depending on the context. On the
other hand, the different languages have many common parts,
e.g. function and function block declarations, variable declara-
tions. If these should be developed for each language indepen-
dently, the maintenance of the tool may become difficult.

Instead, in this paper we investigate the possibility of a dif-
ferent approach: is it possible to use the ST language as a pivot
to represent all five standard PLC languages? If the translation
preserves the properties of the model to be checked, adding this
extra translation step (i.e. transformation to ST, then parse and
build the verification model) makes no theoretical difference,
the pivot language might be considered as a concrete syntax
of the underlying intermediate verification model (IM). How-
ever, as it will be discussed later, the required development and
maintenance effort could be significantly lower.

To answer this question, the relations between the PLC lan-
guages have to be investigated. As it might not be possible or
practical to translate each language directly to ST, the relation-
ship between all languages should be discussed.

This paper is a modified and extended version of the
local conference paper [9], and it is structured as follows.

Sections 2–5 are taken from the conference paper [9] with
minor modifications. Section 2 defines our comparison method.
Section 3 discusses the relations between the different IEC
61131 PLC programming languages. Next, Section 4 discusses
a concrete implementation of these languages, namely the one
provided by Siemens. Section 4.1 is an additional subsection
compared to [9] that overviews the organisation of Siemens
PLC programs. Section 5 analyses the results of the paper and
shows that the Siemens implementation of the ST language can
serve as a pivot language for the rest of the languages.

The new contributions are in Sections 6–9. Section 6
describes and formalises the IL to ST translation (using the Sie-
mens implementation of these languages), as proposed in Sec-
tion 5. Section 7 provides a method for the correctness proof
of this translation. Section 8 discusses the application of the
contributions of this paper for verification purposes. The reader
finds an overview of the related work in Section 9. The paper is
concluded in Section 10.

2 Comparison Method
The expressive power of different programming languages

is often discussed in computer science. However, the typical
answer to these questions for a pair of commonly used lan-
guages is that both languages are Turing complete, therefore
their expressive power is equivalent.

For our purposes this is not a useful comparison. When we
are looking for pivot language, it is not enough to know that a
certain program can be represented in another language, i.e. for
each program in source language 𝖲 there exists an execution
equivalent program in language 𝖳. It should be known as well,
how can this translation be performed. Therefore we are inter-
ested in a stronger, element-wise emulation relation that deter-
mines whether each “element”2 of a language 𝖲 can be mapped
to language 𝖳. If this relation holds, then inductively all programs
of language 𝖲 can be translated into language 𝖳, in other words
language 𝖳 can emulate language 𝖲. This is close to defining a
small-step operational semantics for language 𝖲 in language 𝖳.

ST

IF NOT(x = TRUE OR
 y = FALSE) THEN
 r1 := TRUE;
END_IF;
r2 := (a >= b);

x

y

NOT S

r1

r2
>=

IN1
IN2

a
b

LD FBD

r1
S

>=1
x
y

r2
=

>=

IN1
IN2

a
b

S1

T1 T2

S4

S2

S4

T4T3

T5

S1

S3

SFC
A(
O x
ON y
)
NOT
S r1
L a
L b
>=I
= r2

IL (Siemens)

Fig. 1 PLC language examples

1 https://eclipse.org/Xtext/

2 As the PLC languages are significantly different, “element” is understood
on a high level (i.e. an element can be an ST statement, but also an LD wire
junction).

https://eclipse.org/Xtext

153PLC Program Translation for Verification Purposes� 2017 61 2

In the following we investigate for each pair of PLC languages
if such elementwise mapping relation exists. Note that this rela-
tion is transitive, reflexive and asymmetric. We start the investi-
gation with the IEC 61131 version of the languages, as they have
a detailed, yet semi-formal description in [15]. Later, we check
the differences between the standard and the Siemens variants.

3 Standard Languages
In this section, we discuss the element-wise representation

relation for each pair of standard PLC languages. The findings
are summarised in Table 1. Here “–” denotes that the element-
wise representation is not possible.

Table 1 Element-wise mapping between standard languages

to
from

ST IL FBD LD SFC

ST + + − − −

IL − + − − −

FBD − + + + −

LD − + + + −

SFC + + + + +

SFC is based on a specification method called Grafcet [14],
which itself has roots in safety Petri nets. The goal of SFC is to
structure the programs, it is not intended to be a generic PLC lan-
guage. Only certain types of program units can be represented
by SFCs, while the other four languages target all of the pro-
gram unit types, therefore no other language can be universally
represented in SFC. Since it is based on Petri nets, translating
the structure of an SFC program to any other language could be
problematic, because Petri nets allow non-determinism, while
the PLC languages are deterministic. However, determinism is
explicitly required by the standard [15, Sec. 2.6.5]. The parts
of SFC besides the structure are the actions, which can can be
typically regarded as simple program snippets and these specific
parts can be mapped to any other PLC language, assuming that
the ambiguities of the standard are first resolved [1].

FBD and LD are two similar graphical languages. FBD is
composed by signal flow lines and boxes representing built-in
and user-defined program units. LD builds on concepts close
to electric diagrams, such as power rails, contacts and coils.
Despite the differences, IEC 61131 defines LD and FBD in
a similar way, with many common elements. The differences
[15, Sec. 4.2–4.3] are minor and mainly syntactic. All LD-
specific elements (e.g. coils, power rails) can be translated to
equivalent FBD elements and vice versa. The wires and flow
lines represent data flows, the coils and contacts have corre-
sponding instructions in IL (see below). The built-in and user-
defined blocks of FBD and LD can be called from IL as well.
Therefore each FBD and LD program can be element- wise
mapped to IL, in some cases requiring to explicitly introduce

new variables that are only implicitly present (as wires) in the
FBD and LD programs.

Contrarily, LD and FBD programs cannot be element-wise
mapped to ST. The FBD, LD and IL languages support labels and
jumps, but ST enforces structured programming, thus jumps are
missing from the language [15, Sec. B.3]. Although it is known
that Turing complete programs can be made jump-free by replac-
ing jumps with loops and conditional statements [6], this con-
struction does not fit to our approach of element-wise mapping.

IL is an assembly-like, low-level language. It has instructions
such as LD (load value to accumulator) or ST (store the accumu-
lator value to the given variable). As the rest of the languages do
not provide direct access to the accumulator, the element-wise
(instruction by instruction) translation to any other PLC lan-
guage is not possible. Furthermore, the lack of jump instruction
in ST would make the IL to ST translation difficult too.

ST is a high-level, structured textual language. Besides
providing program structuring elements, such as conditional
statements (IF, CASE) and loops, it also makes the indi-
rect variable access possible. For example, the expression
“array_var[var1]” is permitted in ST, but not in FBD or
LD [15, Sec. 2.4.1.2], therefore the ST to FBD or LD transla-
tion is not possible. On the other hand, these expressions are
permitted in IL. More precisely, the ST syntax for defining
expression is permitted in IL in certain cases [11]. Based on the
syntax and semantics definitions of ST and IL, each ST state-
ment can be represented by a list of IL instructions: the corre-
sponding arithmetic operations exist in IL as well, the variable
assignments can be performed through LD and ST, the selec-
tion and iteration statements can be represented by labels and
jumps, etc.

Based on the discussion above and Table 1, ST does not
seem to be a pivot language candidate. However, before the
final conclusion, the implementation of the languages should
also be checked for two reasons: (1) the different manufactur-
ers may have differences in their implementation compared to
the standard, and (2) the IEC 61131 standard is ambiguous [1,
10, 16] and the vendors might resolve the ambiguities differ-
ently. The following section compares a concrete implementa-
tion of the five PLC programming languages.

4 Implementation of the Languages
The IEC 61131 standard does not discuss the implementa-

tion details of the languages. Several decisions are left to the
vendors, marked as “implementation-dependent” features or
parameters in the standard (e.g. range of certain data types,
output values on detected internal errors). Consequently, PLC
providers support different variants of the languages. The
implementation-dependent details are also important for the
behaviour of the programs, thus it is necessary to check these
details. Siemens is the PLC provider most used at CERN
and one of the most used globally, therefore we focus on the

154 Period. Polytech. Elec. Eng. Comp. Sci.� D. Darvas, I. Majzik, E. Blanco Viñuela

Siemens variants of the languages in this section. All five lan-
guages are supported in Siemens PLCs with some differences
[28]. Compared to the standard, the differences are significant
in some cases, also some languages have ancestors from times
before IEC 61131, thus Siemens uses different names for their
languages: instead of ST, IL, FBD, LD, SFC the Siemens lan-
guages are called SCL, STL (AWL), FBD, LAD, SFC/GRAPH,
respectively. To avoid the confusion of the readers, we will use
the standard language names for the Siemens variants too, with
an added apostrophe (e.g. we will use ST’ instead of SCL to refer
to the Siemens implementation of the standard ST language).

4.1 Organisation of Siemens PLC Programs
To make the following discussions more understandable, a

brief overview of the Siemens PLC program structure is pre-
sented. This follows the IEC 61131 with some notable differ-
ences. PLCs have a mainly cyclic behaviour. In each so-called
scan cycle (or PLC cycle) the physical inputs are read, the user-
defined program is executed, then the resulting output values
are assigned to the physical outputs.

The code to be executed in each cycle is described by an
organization block. This is a special program block, similar to a
function, that serves as an interface between the operating sys-
tem and the user code. Similarly, the interrupt handler methods
are organization blocks too. There are two other program block
types: functions and function blocks. Function blocks are state-
ful functions: they can be instantiated and certain variables pre-
serve their values between two calls. There are only few restric-
tions on the implementation of the program blocks: the SFC’
language can only be used for function blocks. The other four
languages can be used for all three types of program blocks.
The program blocks can call each other (except organization
blocks which can only be called by the operating system), no
matter in which language they are written.

An additional block type exists: the data block. A data
block is a structured memory storage. Instance data blocks are
used to store the non-volatile variables of the function block
instances, while the shared data blocks are used for general-
purpose global storage of structured data.

It is worth to be noted that the Siemens PLC programming
languages are not case sensitive.

4.2 Relations Between the Siemens PLC Languages
The following part of the section overviews the differences

between the standard and Siemens implementations of the PLC
programming languages, compared to Table 1. The differences
between the standard and Siemens versions of FBD and LD are
subtle and mainly syntactic3 [28]. Notable differences in syntax

and semantics between the standard and the implementation
can be observed in the Siemens variants of ST and IL. The rela-
tions between the Siemens languages are shown in Table 2 and
discussed in the following.

Table 2 Element-wise mapping between Siemens languages

to
from

ST’ IL’ FBD’ LD’ SFC’

ST’ + + − − −

IL’ − + − − −

FBD’ + + +

LD’ + + +

SFC’ + + + + +

As the FBD’ and LD’ languages match nearly perfectly the
standard versions, the relations between them are valid for the
Siemens variants too. The SFC’ language is an extension of the
standard SFC. A notable difference is the introduction of new
actions in SFC’. As SFC’ has a rich and configurable semantics
that is only described informally, without details, we omit the
deep analysis of this language and we assume that each action
can be translated into any of the languages, therefore the com-
plete SFC’ program can be translated to other languages. ST’ and
IL’ are extended compared to the standard equivalents. Therefore
if a language can be mapped to ST or IL, it can also be mapped to
the corresponding implementation (ST’ or IL’). Similarly, if ST
or IL cannot be mapped to a given standard language, IL’ or ST’
cannot be mapped to the same language either. Consequently, the
shaded cells of Table 2 are inherited from Table 1.

Due to the limitations of the Siemens development envi-
ronment, the FBD’ and LD’ programs can only be exported if
they are translated to IL’ first. According to [22], the translation
from LD’ and FBD’ to IL’ is always possible. We omit the dis-
cussion of transforming LD’ and FBD’ directly to ST’ or SFC’,
as they would be practically infeasible.

The Siemens variant of ST is significantly extended com-
pared to the standard. It includes labels and jump functions,
which invalidates the reasoning of Section 3 why IL, LD and
FBD cannot be represented in ST. Despite the extensions, it is
not possible in ST’ to directly access the registers, e.g. modi-
fying the contents of the accumulators. For example, the IL’
instruction “L var1”, transferring the contents of Accumula-
tor 1 to Accumulator 2 and then loading the content of variable
var1 to Accumulator 1 cannot be directly represented in ST’.
One can argue that a function containing only the instruction
“L var1” is meaningless, as its effect will be made invisible
when the function returns. However, this example is enough
to demonstrate that the element-wise mapping is not possible.

The Siemens IL’ variant is significantly different from the
standard IL, and it dates back well before the first version of
the IEC 1131 standard (the predecessor of IEC 61131), as this

3 For instance, LD’ fully implements the standard. The only difference
between FBD and FBD’ is that the latter does not support the unconditional
jumps, but it is easy to represent them as conditional jumps [28].

155PLC Program Translation for Verification Purposes� 2017 61 2

programming language was used already for the S5 series of
PLCs in the 1980s. The following short example illustrates the
syntactic differences. The IL program in Listing 1 and the IL’
program in Listing 2 give the same output values to the same
input values, but they use a significantly different syntax and
underlying semantics. The behaviour of both code snippets is
equivalent to “r:=(a >= b)” in ST. The background of this
difference is that the standard defines only one “register”, the
result variable. The Siemens implementation is closer to the
assembly-like languages, using several status bits, registers,
accumulators, etc.4 As the ST’ and IL’ language definitions are
non-formal, it is difficult to argue about the ST’ to IL’ transfor-
mation. However, the Siemens development tool provides this
transformation capability, therefore we treat this as possible.

1
2
3

LD a (∗ RES:=a ∗)
GE b (∗ RES:=(RES>=b) ∗)
ST r (∗ r : =RES ∗)

Listing 1 Example IL code

1
2
3
4

L a (∗ ACC2:=ACC1; ACC1:=a ∗)
L b (∗ ACC2:=ACC1; ACC1:=b ∗)
>=I (∗ RLO:=(ACC2>=ACC1) ∗)
= r (∗ r:=RLO ∗)

Listing 2 Example IL’ code

5 Finding a Pivot Language
Looking at Table 2 might lead to the same conclusion for the

Siemens implementations of the languages as Table 1. How-
ever, due to the extensions in the implementations, the gap
between IL’ and ST’ is much smaller than between their stand-
ard equivalents. The only main difference between them is the
possibility to access the registers directly. Therefore ST’ can
be a pivot language, if it is extended with the emulation of reg-
ister access by using dedicated local variables for verification
purposes. We will refer to this format of the programs as STr’.
As the values of the registers are saved on the stack on each
function call, their values are local to each program unit, they
can be represented as local temporary variables. Thus the map-
ping from IL’ to STr’ can be done instruction by instruction,
by explicitly representing the effects of each instruction on the
basis of their semantics. For example, the above-mentioned
“L var1” will be represented as “ACC2 := ACC1;
ACC1 := var1;”, where ACC1 and ACC2 are the local vari-
ables representing Accumulator 1 and 2. This idea is similar to
the SystemC representation used in [29].

Although the FBD’ and LD’ programs cannot be directly
translated to STr’ in practice, it is feasible through IL’. The
SFC’ programs can directly be mapped to ST’, thus to STr’
also. The advantage of this method is that one parser and one

intermediate verification model generator fit all the languages.
Only a simpler, text-to-text mapping to STr’ has to be devel-
oped for each language that is responsible for translating the
language-specific parts, element by element.

One could argue that IL’ might be a good pivot language
without defining any extension or representation convention
for the verification. However, STr’ is a higher-level language,
with a more compact representation (especially the expression
description is more compact). The underlying intermediate
verification model supports also complex expressions (simi-
larly to the formalism of many model checkers, e.g. nuXmv,
UPPAAL), therefore translating a compact ST’ expression to a
lengthy IL’ form is inefficient. Also, in our setting typically ST’
codes are verified, therefore using STr’ (and not IL’) as pivot
can provide support for the other languages without any impact
on the verification of ST’ programs.

Fig. 2 summarises the proposed generic representations of
PLC languages for PLCverif. The FBD’ and LD’ graphical lan-
guages can be translated into IL’ by the Siemens development
environment (1). An instruction-by-instruction transformation
from IL’ to STr’, that makes the effects of the IL’ instructions
explicit, is implemented for the most common instructions
(currently we are focusing on the instructions that are typically
used in safety-critical programs, e.g. Boolean logic operations,
arithmetic operations) (2). This transformation is discussed in
detail in Sections 6–7. The SFC’ to ST’ translation can be im-
plemented using the same principles as the ones used in [12] to
represent SFC’ directly using the PLCverif intermediate model
(3). Finally, ST’ is a subset of STr’, thus it does not need any
further transformation step (4). The STr’ code is the input for
the verification model generation.

FBD’

LD’

SFC’

IL’

ST’

STr’

(1)

(1)
(2)

(3) (4)

Fig. 2 Unified representation of Siemens PLC languages

The PLC interrupts were not targeted in this paper. Certain
PLCs may use them, interrupting the execution of the main pro-
gram. A certain IL’ instruction may be atomic, but the correspond-
ing STr’ representation, comprising several statements will not be
atomic. This might cause concurrency problems and discrepan-
cies between the two representations of the code. However, if this
is critical, a locking mechanism can be added to the translation.
Although the IEC 61131 standard does not define any locking
mechanism, it is defined for the Siemens ST’ language via the
available system function blocks. To fully support the concurrent
behaviour, further work will be necessary.

4 From this point we use the term “register” in a generic way, referring to the
various low-level data structures: status bits, accumulators, nesting stack, etc.

156 Period. Polytech. Elec. Eng. Comp. Sci.� D. Darvas, I. Majzik, E. Blanco Viñuela

6 Mapping IL’ to ST’
We recall that due to our motivation it is not enough to prove

the existence of ST’ code with an equivalent behaviour for any
IL’ program. We also need a precise description of the trans-
lation to be performed. This section describes the translation
from IL’ to STr’ in detail.

The IL’ to STr’ translation is crucial in practice, even though
IL’ is not used for the development of complex programs at
CERN. However, the safety-critical programs of fail-safe PLCs
can only be written in LD’ or FBD’ language according to the
Siemens guidelines. The programs written in those graphi-
cal languages cannot be exported directly, they are converted
to IL’ first using the Siemens development tool. Therefore the
safety-critical programs are accessible only in IL’ language. In
those cases the usage of error-prone features (e.g. floating-point
data types, arrays, structures, pointers; see [27, Sec. 5.1.3] for
complete definition) are prohibited, that is why we focus on the
instructions in the following categories of [23]: bit logic instruc-
tions, simple load and transfer instructions, integer math instruc-
tions and comparison instructions (for integers). Contrarily, the
instructions in the following groups of [23] are not discussed
in this paper: counter instructions, shift and rotate instructions,
floating-point math instructions, program control instructions.

As mentioned previously, IL’ is a low-level, assembly-like
language. It provides access directly to registers, the arithme-
tic operations are performed on values stored in accumulators,
the conditional behaviour is represented by jumps. However, it
provides some higher-level features, such as function calls: the
user does not have to deal with e.g. putting the parameters of
a function call to the stack. Therefore while IL’ is commonly
considered as an assembly-like language, it resembles more to
the bytecodes of managed languages (e.g. Common Intermedi-
ate Language of .NET or the Java bytecode).

Another main difference between IL’ and the typical low-
level instruction sets is the special support for logical opera-
tions. PLCs often deal with Boolean logic, therefore dedicated
registers (status bits, stacks) and instructions are available to
facilitate these operations.

In this section we overview the memory model of the PLCs
(Section 6.1). Then we discuss the IL’ semantics in Section 6.2
and the representation of the IL’ instructions in STr’ (Sec-
tion 6.3). A method for the correctness proof of this translation
is given after, in Section 7.

6.1 Memory Model of Siemens PLCs
In this subsection we overview the key features of the mem-

ory model that affect the IL’ to STr’ translation.

General-Purpose Memory. The Siemens PLCs have a glob-
ally accessible general-purpose memory. The so-called bit
memory is a non-structured memory which needs no allocation.
Data blocks are statically allocated, structured memory blocks.

In non-safety settings all these memory parts support direct,
indirect or symbolic addressing. To simplify the discussion, we
will mainly consider symbolic addressing in the following (i.e.
accessing variables via their names instead of their relative or
absolute addresses).

Input/Output Memory. The physical inputs and outputs of the
PLC are mapped to special ranges of the memory. The speciality
of this memory region is that the input values are only sampled
at the beginning of the PLC cycles, and the values stored in the
output memory will only be assigned to the physical outputs at
the end of the PLC cycles. In other aspects these memory ranges
behave similarly to the general-purpose memory.

Besides the general-purpose memory, PLC programs use
various status bits, accumulators and special-purpose stacks.
As discussed before, they are referred simply as registers. The
following overview of registers is based on [25].

Status Word. Most of the IL’ instructions read and write the
status word (STW). The status word consists of status bits, as
follows [25, p. 13].

•	 FC (not first computation, bit 0) indicates if there was
already any Boolean operation. If it is false, the value of
RLO (see below) should not be taken into account. In the
following, we will refer to this register as nFC.

•	 RLO (result of logic operation, bit 1) stores the result of
the previous logic operations.

•	 STA (status, bit 2) stores the Boolean status of the previ-
ous operation. It has no effect on the execution of the pro-
gram, used only for diagnostic purposes [2, Sec. 15.1].

•	 OR (or, bit 3) stores auxiliary data for the “and before
or” operation.

•	 OV (overflow, bit 5) indicates an overflow occurred in an
arithmetic operation.

•	 Without discussing here their intuitive meaning, the rest
of the status bits are the following: OS (stored overflow,
bit 4); CC0, CC1 (condition codes, bit 6–7); BR (binary
result, bit 8).

Accumulators. To allow binary arithmetic operations, Sie-
mens PLCs use two accumulators, ACCU1 and ACCU2. The
size of the accumulators is 32 bits, but their lower and upper
16 bits can be addressed directly (ACCUx-L and ACCUx-H,
respectively), just as the individual bytes [25, p. 11]. Certain
PLCs have two additional accumulators which might alter the
arithmetic operations [2, p. 198].

Nesting Stacks. In order to facilitate the complex Boolean
operations, a so-called nesting stack is defined. Each entry of this
stack can store a partial result of a logic operation, and the code
of the operation to be performed after the stack entry is popped.
This makes easy to represent complex Boolean operations with

157PLC Program Translation for Verification Purposes� 2017 61 2

parentheses in IL’. For example, the r ← (a ∨ b) ∧ (c ∨ d) ∧ e
operation (in ST’: r := (a OR b) AND (c OR d) AND e;)
can be represented as follows:

1
2
3
4
5
6
7
8
9

10

A(
O	 a
O	 b
)
A(
O	 c
O	 d
)
A	 e
=	 r

// pushing nesting stack entry
// OR operation
// OR operation
// pop nesting stack entry and perform AND operation
// pushing nesting stack entry
// OR operation
// OR operation
// pop nesting stack entry and perform AND operation
// AND operation
// store result in variable r

The A(instruction in line 5 stores the current RLO value
(a ∨ b) and the operation to be performed (AND) on the nesting
stack. As the nFC is set to false by A(, a new logic computa-
tion is started. Therefore the value of RLO will be c ∨ d after
the execution of line 7. When the) instruction is executed,
the topmost nesting stack entry is popped and the stored AND
operation will be performed on the stored RLO value (which
is a ∨ b) and the current RLO value (which is c ∨ d). This will
result in a new value for RLO: (a ∨ b) ∧ (c ∨ d).

Each nesting stack entry contains six bits: three saved sta-
tus bits and three bits to encode a Boolean operation (so-called
function code). We will denote the three status bits of a nesting
stack entry by nsRLO, nsOR, nsBR, and the function code
bits as nsFC2, nsFC1, nsFC0. To refer to the different entries
of the nesting stack, we will use the [] indexing operator. For
example, nsRLO[1] refers to the RLO bit of the first (topmost)
entry of the nesting stack. The nesting stack may contain up
to 7 entries [23, Sec. 2.2], indexed by us from 1 (most recent
entry) to 7 (least recent entry).

Additional Registers and Stacks. For completeness, we
briefly mention some additional registers of Siemens PLCs
which will not be discussed in detail in the following.

•	 AR1 and AR2 are two address registers, providing a base
address for indirect addressing.

•	 The interrupt stack stores the contents of accumulators
and address registers when the execution is interrupted by
a higher-priority organization block [26, Sec. 27.2.3.4].

•	 The local stack (L stack) and the block stack (B stack)
store the local data of function or function block calls and
the return addresses [26, Sec. 27.2.3].

•	 The MCR (master control relay) bit alters the behaviour
of certain instructions which are modifying the values
stored in the memory. Its value can be stored in a special
stack and it is possible to have special “MCR zones” [2,
p. 232]. As the incorrect usage of MCR zones can lead to
errors [2, p. 232], we treat only a simplified case without
MCR zones, handling MCR only as a bit register.

6.2 Syntax and Semantics of IL’ Instructions
The syntax of the IL’ language is rather simple. The body

of an IL’ program consists of statements. Each statement has a
label (optional), an instruction and a parameter (depending on
the instruction). For some instructions no parameter is needed,
for others a symbolic name, a memory address, a label, a func-
tion or a constant is required. Without going into formal details,
an intuitive syntax definition can be the following:

<IL_program> ::= <IL_statement>+;
<IL_statement> ::= [<label> ’:’] <IL_instruction>

[<parameter>] ’\n’;
<IL_instruction> ::= ’A’ | ’O’ | ’X’ | ’SET’ | ’CLR’

| ’=’ | ...;

The instructions and their parameters are defined in [24].
That document typically gives the following information for
each instruction:

•	 The accepted parameter types,
•	 The informal description of the semantics of the instruction,
•	 The effect of the instruction on the status word: which

bits are written by the instruction (if a certain bit is al-
ways set to 0 or 1 by the instruction, this fact is stated,
but if the bit value is conditional, the exact formula is
not defined),

•	 An example.

Some further information is available about the IL’ instruc-
tions in [23, 25]. The latter documentation defines for each
instruction on which status bits do they depend.

However, the authors are not aware of any official documen-
tation that describes the precise semantics of each IL’ instruc-
tion. Obviously, this knowledge is necessary for the formal
verification of IL’ programs. Therefore we have to propose a
method to discover the precise semantics.

Method to Determine the Precise Semantics. In order to dis-
cover the precise semantics, we execute the instructions in all
possible combinations, i.e. checking the results of each instruc-
tion in each possible situation. Of course, testing the behaviour
of each instruction with each possible memory content is not
feasible. However, each instruction depends only on certain reg-
isters and certain parts of the memory. These dependencies are
defined in the description or status word influence part of [23,
25]. It is also defined (or can be assumed based on the descrip-
tion), which registers and memory locations might be altered
by the execution of a certain instruction5. Reproducing all pos-
sible combinations of the registers and parameters that affect a

5 It is precisely defined which status bits can be modified by the instruction,
but the same information is not given for other registers or memory locations.
However, we assume that an instruction with a variable parameter does not
access or modify any other variables if not described explicitly.

158 Period. Polytech. Elec. Eng. Comp. Sci.� D. Darvas, I. Majzik, E. Blanco Viñuela

specific instruction and checking the new values of the altered
affected registers and memory locations seem to be feasible.

On certain PLCs it is possible to set up the status word to a
given value using the “T STW” statement. It is also possible
to determine the current values of the status bits and registers
on a breakpoint using a real PLC or the official Siemens PLC
simulator software6. Therefore we can generate test programs
which execute a given instruction for each interesting valua-
tion. In summary, we determine the precise semantics by check-
ing for each state (for each variable and register valuations)
which new state can be reached by executing a given statement.
This is performed using systematically produced test programs
which set up each fundamentally different state one-by-one,
then execute the IL’ instruction under analysis.

Example. We use the A(instruction as an example to present
the method. According to the documentation, “A((AND nest-
ing open) saves the RLO and OR bits and a function code into
the nesting stack. A maximum of seven nesting stack entries are
possible.” [24]. According to [25], the A(instruction depends
on the BR, OR, RLO and nFC status bits and it sets the STA
bit to true, and the OR and nFC bits to false. The instruction
does not depend on any other status bit and it does not modify
any other status bit. However, it may depend or affect other
data. Based on the informal description, the A(modifies the
contents of the nesting stack.

In order to determine the semantics of the A(, all possible
combinations of BR, OR, RLO and nFC status bits should be
reproduced by a test program, then the resulting values of STA,
OR and nFC registers and the nesting stack should be checked.
We have generated an IL’ test code for the A(instruction. The
IL’ code snippet corresponding to a check for a single valuation
can be seen in Listing 3. This specific code snippet can help us
to determine the behaviour of the instruction when the BR bit
is false, and the OR, RLO and nFC bits are true.

By generating and performing similar checks for all 16
combinations, the data in Table 3 can be obtained. Row 8 of
the table was determined by executing the test program in
Listing 3. According to the documentation, the STA, OR and
nFC bits are set to constant values unconditionally. However,
we have already observed mistakes and contradictions in the
official documentations, thus it is worth to check the values
of STA, OR and nFC too. In the current case the status bit
values observed after the execution matched the defined values,
therefore they are omitted from the table. Based on Table 3
and the documentation the effects of the A(instruction can be
summarised:

•	 It sets the OR and nFC status bits to 0,
•	 It sets the STA status bit to 1,
•	 It creates a new nesting stack entry, where:

-	 The value of OR bit is OR ∧ nFC,
-	 The value of RLO bit is RLO ∨ ¬nFC,
-	 The value of BR bit is BR7,
-	 The value of function encoding is (0, 0, 0), corre-

sponding to the “A(” instruction [23], and
•	 It pushes this new nesting stack entry into the nesting

stack.

1
2
3
4
5
6

L 2#00001011
T STW
A(
NOP 0
)
NOP 0

// BR=0, OR=1, RLO=1, nFC=1

// breakpoint here to check the result
// to restore the empty nesting stack

Listing 3 Test code to determine the semantics of the A(instruction.

Table 3 Behaviour of the A(instruction

Before execution
After execution

(new nesting stack entry)

BR OR RLO nFC nsBR nsOR nsRLO nsFC2,1,0

0 0 0 0 0 0 1 0,0,0

0 0 0 1 0 0 0 0,0,0

0 0 1 0 0 0 1 0,0,0

0 0 1 1 0 0 1 0,0,0

0 1 0 0 0 0 1 0,0,0

0 1 0 1 0 1 0 0,0,0

0 1 1 0 0 0 1 0,0,0

0 1 1 1 0 1 1 0,0,0

1 0 0 0 1 0 1 0,0,0

1 0 0 1 1 0 0 0,0,0

1 0 1 0 1 0 1 0,0,0

1 0 1 1 1 0 1 0,0,0

1 1 0 0 1 0 1 0,0,0

1 1 0 1 1 1 0 0,0,0

1 1 1 0 1 0 1 0,0,0

1 1 1 1 1 1 1 0,0,0

It is worth to be noted that contrarily to the straightforward
meaning of the description, based on our systematic checks the
A(instruction does not store the exact values of the RLO and
the OR bits (i.e. the nsRLO does not equal to RLO in every

7 We were not able to observe directly the BR value of the nesting stack
entry. Instead, we have checked the value of the BR status bit after the)
instruction. The result (i.e. the BR bit of the nesting stack entry equals to the
value of the BR status bit) is in accordance with our expectations based on the
informal descriptions.

6 It worth to note that technical limitations should be taken into account.
For example, according to [23, p. 8-6], in the Siemens S7-300 series PLCs the
access to the status word is limited. These limitations does not apply to the
S7-400 series PLCs.

159PLC Program Translation for Verification Purposes� 2017 61 2

case). This demonstrates that the IL’ to STr’ translation cannot
rely only on the informal description of the instructions.

6.3 STr’ Translation of IL’ Instructions
As discussed previously, there is another challenge in the IL’

to ST’ transformation besides the lack of precise IL’ semantics:
the IL’ language has lower level instructions than the ST’, the IL’
instructions typically access and modify the registers directly.
In our translation method, following the principles discussed
previously, we represent IL’ programs in STr’ by emulating the
registers with local variables, and by making the effects of the
IL’ instructions explicit. In order to avoid the name collisions,
the variables representing registers will be prefixed by “ --”.
The ST’ definition normally forbids the usage of double under-
scores as prefix.

Following these principles and conventions, using the
knowledge gathered by performing the systematic analysis of
the IL’ instruction semantics, it is possible to give an STr’ rep-
resentation for each IL’ instruction. Table 4 shows the STr’ rep-
resentation of the basic bit logic IL’ instructions. After, Table 5
shows the representation of the basic arithmetic instructions.
Note that in Table 5 instructions on 32-bit integers are assumed,
but the instructions for smaller data types can be defined simi-
larly. The more advanced logic instructions, relying on the
nesting stack, are in Table 6.

7 Proving the Correctness of the IL’ to ST’
Translation

In this section we present a method to prove the correctness
of the translation from IL’ to STr’, i.e. if the STr’ equivalents
have the same behaviour as the corresponding IL’ instructions
according to the experiments. For this, we perform the follow-
ing steps:

•	 Defining the formal semantics of STr’ (Section 7.1),
•	 Defining the formal semantics of IL’ (Section 7.2), and
•	 Giving a proof strategy to show the equivalence (Sec-

tion 7.3).

The following discussion focuses on the principles of this
proof strategy and does not provide a complete correctness
proof.

7.1 Formal Semantics for STr’
In this section we draw up an operational semantics for

the ST’ (STr’) language. We will denote the context of an ST’
statement by σ. This is a function σ : V → D, i.e. a function
that assigns a value from pre-defined domains to each defined
variable. The program P executed from an initial context σ0
results in σ1 which will determine the values of the physical
outputs and the initial values of retained variables for the fol-
lowing PLC cycle.

At the beginning of the program execution, each variable has
an explicitly or implicitly defined default value (the implicit
default values are 0 or false). Then in the beginning of each
cycle the non-local variables keep their previously set values,
while the initial values of local variables are undefined. The
execution ends when the final configuration (áskip;ñ, σ) is
reached (“skip;” denotes that there is no more program code
to be executed).

An intuitive formalisation of the ST’ statements’ semantics is
presented in Fig. 3. This is a small-step semantics, i.e. it defines
the operation of a program step by step. The semantics defini-
tion in Fig. 3 consists of a set of inference rules. Each inference
rule consists of some (zero or more) premises (above the hori-
zontal line) and a conclusion (below the line). The operation of
a given program with a given initial context can be determined
by applying the inference rules one after another until the final
configuration (áskip;ñ, σ) is reached.

that σ(v1) = c1. Formally:

σ[v1 �→ c1](x) =
{

σ(x) if x �= v1

c1 if x = v1.

For the sake of readability, we will use the following, comma-separated format
too: σ[v1 �→ c1, . . . , vn �→ cn] =

(
(σ[v1 �→ c1]) · · ·

)
[vn �→ cn].

σ(v1) = c1

(v1, σ) −→a c1
ST’ Variable value

(e1, σ) −→a c1 (e2, σ) −→a c2

(〈e1 OR e2〉, σ) −→a c1 ∨ c2
ST’ OR expression

(e1, σ) −→a c1 (e2, σ) −→a c2

(〈e1 AND e2〉, σ) −→a c1 ∧ c2
ST’ AND expression

(〈s1;〉, σ) −→ (〈skip;〉, σ′)
(〈s1;s2;〉, σ) −→ (〈s2;〉, σ′)

ST’ Sequence

(e1, σ) −→a c1

(〈v1:=e1;〉, σ) −→ (〈skip;〉, σ[v1 �→ c1])
ST’ Assignment

(e1, σ) −→a �
(〈 IF e1 THEN s1 ELSE s2 END_IF; 〉, σ) −→ (s1, σ)

ST’ If (1)

(e1, σ) −→a ⊥
(〈 IF e1 THEN s1 ELSE s2 END_IF; 〉, σ) −→ (s2, σ)

ST’ If (2)

Figure 3: Simplified ST’ semantics

7.2 Formal Semantics for IL’
In this section the goal is to describe the formal semantics of IL’, similarly to
the semantics of ST’ in the previous section. We will denote the context of an
ST’ statement by σ, ρ. The first function is σ : V → D that assigns a value from
pre-defined domains to each defined variable, similarly to the ST’ semantics.
The second function is ρ : R → D that assigns values to the set of registers
R = {MCR, nFC, RLO, STA, . . . , nsRLO[1], nsOR[1], . . . nsFC0[7]}.

At the beginning of the program execution, each variable has an explicitly
or implicitly defined default value in σ (the implicit default values are 0 or
false). Then at the beginning of each cycle the non-local variables keep their
previously set values, while the initial values of local variables are undefined.
The registers are initialised to their default values at the beginning of each
cycle. The default values of the registers are false, except for MCR, RLO and
STA which are initialised to true at the beginning of each cycle.

We define the basics of semantics, such as the variable and register values,
or the semantics of the sequence of instructions, as follows in Figure 4. In the
rules v1 is a variable, c1 is a constant value, s1 and s2 are IL’ statements or IL’
statement lists.

20

Fig. 3 Simplified ST’ semantics

Note that the expression evaluation is not presented in Fig. 3
in detail (only the OR and AND operators are defined as illus-
tration), furthermore only the variable assignment and the IF
statements are presented. In the rules v1 denotes a variable,
e1 , e2 are expressions, c1 , c2 are constant values, s1 and s2 are
ST’ statements or ST’ statement lists. We distinguish between
arithmetic or logic evaluation (denoted by →a) and single-step
program evaluations (denoted by →). If a program evaluation
is possible in more steps we will denote it by →*. Let us denote
by σ[v1  c1] the function that is equivalent to σ except that
σ(v1) = c1 . Formally:

σ
σ

v c x
x x v

c x v1 1

1

1 1

[]() = () ≠

=







 if

 if .

For the sake of readability, we will use the following,
comma-separated format too: σ[v1  c1 , … , vn  cn]
= ((σ[v1  c1]) …)[vn  cn].

160 Period. Polytech. Elec. Eng. Comp. Sci.� D. Darvas, I. Majzik, E. Blanco Viñuela

Table 4 STr’ representation of simple bit logic IL’ instructions

IL’ STr’ equivalent

A var1 IF --NFC THEN --RLO:=--RLO AND (var1 OR --OR); ELSE --RLO:=var1 OR --OR; END-IF;
--STA:=var1; --NFC:=TRUE;

AN var1 IF --NFC THEN --RLO:=--RLO AND (NOT var1 OR --OR); ELSE --RLO:=NOT var1 OR --OR; END-IF;
--STA:=var1; --NFC:=TRUE;

O var1 IF --NFC THEN --RLO:=--RLO OR var1; ELSE --RLO:=var1; END-IF;
--OR:=FALSE; --STA:=var1; --NFC:=TRUE;

ON var1 IF --NFC THEN --RLO:=--RLO OR (NOT var1); ELSE --RLO:=NOT var1; END-IF;
--OR:=FALSE; --STA:=var1; --NFC:=TRUE;

X var1 IF --NFC THEN --RLO:=--RLO XOR var1; ELSE --RLO:=var1; END-IF;
--OR:=FALSE; --STA:=var1; --NFC:=TRUE;

XN var1 IF --NFC THEN --RLO:=--RLO XOR (NOT var1); ELSE --RLO:=NOT var1; END-IF;
--OR:=FALSE; --STA:=var1; --NFC:=TRUE;

O --STA:=TRUE; --OR:=--NFC AND (--OR OR --RLO); --NFC:=--RLO AND --NFC;

= var1 IF --MCR THEN var1:=--RLO; ELSE var1:=FALSE; END-IF;
--OR:=FALSE; --STA:=var1; --NFC:=FALSE;

S var1 IF --MCR AND --RLO THEN var1:=TRUE; END-IF; --OR:=FALSE; --STA:=var1; --NFC:=FALSE;

R var1 IF --MCR AND --RLO THEN var1:=FALSE; END-IF; --OR:=FALSE; --STA:=var1; --NFC:=FALSE;

FP var1

--OR:=FALSE; --STA:=--RLO; --NFC:=TRUE;
IF NOT var1 AND --RLO THEN

var1:=--RLO; --RLO:=TRUE; //rising edge detected
ELSE

var1:=--RLO; --RLO:=FALSE;
END-IF;

FN var1

--OR:=FALSE; --STA:=--RLO; --NFC:=TRUE;
IF var1 AND NOT --RLO THEN

var1:=--RLO; --RLO:=TRUE; //falling edge detected
ELSE

var1:=--RLO; --RLO:=FALSE;
END-IF;

NOT --RLO:=NOT --RLO OR --OR; --STA:=TRUE; (∗It does not set NFC.∗)

CLR --RLO:=FALSE; --OR:=FALSE; --STA:=FALSE; --NFC:=FALSE;

SET --RLO:=TRUE; --OR:=FALSE; --STA:=TRUE; --NFC:=FALSE;

SAVE --BR:=--RLO;

MCRA --MCR:=TRUE;

MCRD --MCR:=FALSE;

Table 5 STr’ representation of load and transfer, and integer math IL’ instructions

IL’ STr’ equivalent

L var1 --ACCU2 := --ACCU1; --ACCU1 := var1;

T var1 IF --MCR THEN var1:= --ACCU1; ELSE var1:=0; END-IF;

>D
--OR:=FALSE; --NFC:=TRUE; --RLO:=(--ACCU1<--ACCU2);

--CC0:=(--ACCU1>--ACCU2); --CC1:=(--ACCU1<--ACCU2);

--OV:=FALSE; --OR:=FALSE; --NFC:=TRUE; --STA:=--RLO;

>=D
--OR:=FALSE; --NFC:=TRUE; --RLO:=(--ACCU1<=--ACCU2);

--CC0:=(--ACCU1>--ACCU2); --CC1:=(--ACCU1<--ACCU2);

--OV:=FALSE; --OR:=FALSE; --NFC:=TRUE; --STA:=--RLO;

<D
--OR:=FALSE; --NFC:=TRUE; --RLO:=(--ACCU1>--ACCU2);

--CC0:=(--ACCU1>--ACCU2); --CC1:=(--ACCU1<--ACCU2);

--OV:=FALSE; --OR:=FALSE; --NFC:=TRUE; --STA:=--RLO;

<=D
--OR:=FALSE; --NFC:=TRUE; --RLO:=(--ACCU1>=--ACCU2);

--CC0:=(--ACCU1>--ACCU2); --CC1:=(--ACCU1<--ACCU2);

--OV:=FALSE; --OR:=FALSE; --NFC:=TRUE; --STA:=--RLO;

==D
--OR:=FALSE; --NFC:=TRUE; --RLO:=(--ACCU1=--ACCU2);

--CC0:=(--ACCU1>--ACCU2); --CC1:=(--ACCU1<--ACCU2);

--OV:=FALSE; --OR:=FALSE; --NFC:=TRUE; --STA:= RLO;

161PLC Program Translation for Verification Purposes� 2017 61 2

Table 6 STr’ representation of nesting stack operations

IL’ STr’ equivalent

A(--nsRLO[7]:=--nsRLO[6]; ... --nsRLO[2]:=--nsRLO[1]; --nsRLO[1]:=--RLO OR NOT --NFC;

--nsOR[7] :=--nsOR[6]; ... --nsOR[2] :=--nsOR[1]; --nsOR[1]:=--OR AND --NFC;

--nsBR[7] :=--nsBR[6]; ... --nsBR[2] :=--nsBR[1]; --nsBR[1]:=--BR;

--nsFC2[7]:=--nsFC2[6]; ... --nsFC2[2]:=--nsFC2[1]; --nsFC2[1]:=FALSE;

--nsFC1[7]:=--nsFC1[6]; ... --nsFC1[2]:=--nsFC1[1]; --nsFC1[1]:=FALSE;

--nsFC0[7]:=--nsFC0[6]; ... --nsFC0[2]:=--nsFC0[1]; --nsFC0[1]:=FALSE;

--OR:=FALSE; --STA:=TRUE; --NFC:=FALSE;

AN(--nsRLO[7]:=--nsRLO[6]; ... --nsRLO[2]:=--nsRLO[1]; --nsRLO[1]:=--RLO OR NOT --NFC;

--nsOR[7] :=--nsOR[6]; ... --nsOR[2] :=--nsOR[1]; --nsOR[1]:=--OR AND --NFC;

--nsBR[7] :=--nsBR[6]; ... --nsBR[2] :=--nsBR[1]; --nsBR[1]:=--BR;

--nsFC2[7]:=--nsFC2[6]; ... --nsFC2[2]:=--nsFC2[1]; --nsFC2[1]:=FALSE;

--nsFC1[7]:=--nsFC1[6]; ... --nsFC1[2]:=--nsFC1[1]; --nsFC1[1]:=FALSE;

--nsFC0[7]:=--nsFC0[6]; ... --nsFC0[2]:=--nsFC0[1]; --nsFC0[1]:=TRUE;

--OR:=FALSE; --STA:=TRUE; --NFC:=FALSE;

O(--nsRLO[7]:=--nsRLO[6]; ... --nsRLO[2]:=--nsRLO[1]; --nsRLO[1]:=--RLO AND --NFC;

--nsOR[7] :=--nsOR[6]; ... --nsOR[2] :=--nsOR[1]; --nsOR[1]:=FALSE;

--nsBR[7] :=--nsBR[6]; ... --nsBR[2] :=--nsBR[1]; --nsBR[1]:=--BR;

--nsFC2[7]:=--nsFC2[6]; ... --nsFC2[2]:=--nsFC2[1]; --nsFC2[1]:=FALSE;

--nsFC1[7]:=--nsFC1[6]; ... --nsFC1[2]:=--nsFC1[1]; --nsFC1[1]:=TRUE;

--nsFC0[7]:=--nsFC0[6]; ... --nsFC0[2]:=--nsFC0[1]; --nsFC0[1]:=FALSE;

--OR:=FALSE; --STA:=TRUE; --NFC:=FALSE;

ON(--nsRLO[7]:=--nsRLO[6]; ... --nsRLO[2]:=--nsRLO[1]; --nsRLO[1]:=--RLO AND --NFC;

--nsOR[7] :=--nsOR[6]; ... --nsOR[2] :=--nsOR[1]; --nsOR[1]:=FALSE;

--nsBR[7] :=--nsBR[6]; ... --nsBR[2] :=--nsBR[1]; --nsBR[1]:=--BR;

--nsFC2[7]:=--nsFC2[6]; ... --nsFC2[2]:=--nsFC2[1]; --nsFC2[1]:=FALSE;

--nsFC1[7]:=--nsFC1[6]; ... --nsFC1[2]:=--nsFC1[1]; --nsFC1[1]:=TRUE;

--nsFC0[7]:=--nsFC0[6]; ... --nsFC0[2]:=--nsFC0[1]; --nsFC0[1]:=TRUE;

--OR:=FALSE; --STA:=TRUE; --NFC:=FALSE;

X(--nsRLO[7]:=--nsRLO[6]; ... --nsRLO[2]:=--nsRLO[1]; --nsRLO[1]:=--RLO AND --NFC;

--nsOR[7] :=--nsOR[6]; ... --nsOR[2] :=--nsOR[1]; --nsOR[1]:=FALSE;

--nsBR[7] :=--nsBR[6]; ... --nsBR[2] :=--nsBR[1]; --nsBR[1]:=--BR;

--nsFC2[7]:=--nsFC2[6]; ... --nsFC2[2]:=--nsFC2[1]; --nsFC2[1]:=TRUE;

--nsFC1[7]:=--nsFC1[6]; ... --nsFC1[2]:=--nsFC1[1]; --nsFC1[1]:=FALSE;

--nsFC0[7]:=--nsFC0[6]; ... --nsFC0[2]:=--nsFC0[1]; --nsFC0[1]:=FALSE;

--OR:=FALSE; --STA:=TRUE; --NFC:=FALSE;

XN(--nsRLO[7]:=--nsRLO[6]; ... --nsRLO[2]:=--nsRLO[1]; --nsRLO[1]:=--RLO AND --NFC;

--nsOR[7] :=--nsOR[6]; ... --nsOR[2] :=--nsOR[1]; --nsOR[1]:=FALSE;

--nsBR[7] :=--nsBR[6]; ... --nsBR[2] :=--nsBR[1]; --nsBR[1]:=--BR;

--nsFC2[7]:=--nsFC2[6]; ... --nsFC2[2]:=--nsFC2[1]; --nsFC2[1]:=TRUE;

--nsFC1[7]:=--nsFC1[6]; ... --nsFC1[2]:=--nsFC1[1]; --nsFC1[1]:=FALSE;

--nsFC0[7]:=--nsFC0[6]; ... --nsFC0[2]:=--nsFC0[1]; --nsFC0[1]:=TRUE;

--OR:=FALSE; --STA:=TRUE; --NFC:=FALSE;

) --OR:=--nsOR[1]; --NFC:=TRUE; --STA:=TRUE; --BR:= nsBR[1];
IF (NOT --nsFC2[1] AND NOT --nsFC1[1] AND NOT --nsFC0[1])THEN

--RLO:=(--nsRLO[1] AND --RLO)OR OR[1]; //A(instruction, FC=(0,0,0)
ELSIF (NOT --nsFC2[1] AND NOT --nsFC1[1] AND --nsFC0[1])THEN

--RLO:=(--nsRLO[1] AND NOT --RLO)OR --OR[1]; //AN(instruction, FC=(0,0,1)
ELSIF (NOT --nsFC2[1] AND --nsFC1[1] AND NOT --nsFC0[1])THEN

--RLO:=nsRLO[1] OR --RLO; //O(instruction, FC=(0,1,0)
ELSIF (NOT --nsFC2[1] AND --nsFC1[1] AND --nsFC0[1])THEN

--RLO:=--nsRLO[1] OR (NOT --RLO); //ON(instruction, FC=(0,1,1)
ELSIF (--nsFC2[1] AND NOT --nsFC1[1] AND NOT --nsFC0[1])THEN

--RLO:= nsRLO[1] XOR --RLO; //X(instruction, FC=(1,0,0)
ELSE

--RLO:= nsRLO[1] XOR (NOT --RLO); //XN(instruction, FC=(1,0,1)
END_IF;
// Stack pop
--nsRLO[1]:=--nsRLO[2]; ... --nsRLO[6]:=--nsRLO[7]; --nsRLO[7]:=FALSE;

--nsOR[1] :=--nsOR[2]; ... --nsOR[6] :=--nsOR[7]; --nsOR[7]:=FALSE;

--nsBR[1] :=--nsBR[2]; ... --nsBR[6] :=--nsBR[7]; --nsBR[7]:=FALSE;

--nsFC2[1]:=--nsFC2[2]; ... --nsFC2[6]:=--nsFC2[7]; --nsFC2[7]:=FALSE;

--nsFC1[1]:=--nsFC1[2]; ... --nsFC1[6]:=--nsFC1[7]; --nsFC1[7]:=FALSE;

--nsFC0[1]:=--nsFC0[2]; ... --nsFC0[6]:=--nsFC0[7]; --nsFC0[7]:=FALSE;

162 Period. Polytech. Elec. Eng. Comp. Sci.� D. Darvas, I. Majzik, E. Blanco Viñuela

7.2 Formal Semantics for IL’
In this section the goal is to describe the formal semantics

of IL’, similarly to the semantics of ST’ in the previous section.
We will denote the context of an ST’ statement by σ, ρ. The first
function is σ : V → D that assigns a value from pre-defined
domains to each defined variable, similarly to the ST’ seman-
tics. The second function is ρ : R → D that assigns values to the
set of registers R = {MCR, nFC, RLO, STA, … , nsRLO[1],
nsOR[1], … nsFC0[7]}.

At the beginning of the program execution, each variable
has an explicitly or implicitly defined default value in σ (the
implicit default values are 0 or false). Then at the beginning
of each cycle the non-local variables keep their previously set
values, while the initial values of local variables are undefined.
The registers are initialised to their default values at the begin-
ning of each cycle. The default values of the registers are false,
except for MCR, RLO and STA which are initialised to true at
the beginning of each cycle.

We define the basics of semantics, such as the variable and
register values, or the semantics of the sequence of instructions,
as follows in Fig. 4. In the rules v1 is a variable, c1 is a con-
stant value, s1 and s2 are IL’ statements or IL’ statement lists.

σ(v1) = c1

(v1, σ, ρ) −→a c1
IL’ Variable value

ρ(r1) = c1

(r1, σ, ρ) −→a c1
IL’ Register value

(〈s1〉, σ, ρ) −→ (〈skip〉, σ′, ρ′)
(〈s1 s2〉, σ, ρ) −→ (〈s2〉, σ′, ρ′)

IL’ Sequence

Fig. 4 Simplified IL’ semantics

Formalising the Discovered IL’ Semantics. As it was dis-
cussed previously, the semantics of the IL’ instructions are not
defined precisely. In our method we conduct systematic ex-
periments to determine the semantics of the IL’ instructions in
each possible configuration. The IL’ semantics is known only
through these observed semantics. This was summarised in ta-
bles, similarly to Table 3. These tables can systematically be
transformed into inference rules. Each row of the table can be
represented as a single inference rule, therefore the semantics
of a given IL’ instruction will be formalised as a set of infer-
ence rules, one for each possible initial configuration. This is
demonstrated by the following example.

Example. Here we will use a simple “or” operation O v1 as
an example, where v1 is a variable. The observed semantics
of O v1 , obtained through a series of tests as described before
can be seen in Table 7.

Table 7 Observed IL’ semantics for O v1

Before execution
After execution

(new nesting stack entry)

RLO nFC v1 v1 OR STA RLO nFC

0 0 0 0 0 0 0 1

0 0 1 1 0 1 1 1

0 1 0 0 0 0 0 1

0 1 1 1 0 1 1 1

1 0 0 0 0 0 0 1

1 0 1 1 0 1 1 1

1 1 0 0 0 0 1 1

1 1 1 0 0 1 1 1

Each row of this table describes the semantics of the O v1
statement with different preconditions. For example, row 2
defines the following formal semantics:

ρ(RLO) = ⊥ ρ(nFC) = ⊥ σ(v1) = �
(〈O v1〉, σ, ρ) −→ (〈skip〉, σ, ρ[OR �→⊥, STA �→�, RLO �→�, nFC �→�])

IL’ O v1 (2)

After formalising the ST’ and IL’ semantics, the only remain-
ing step is to prove that the suggested STr’ representations of
the IL’ statements will provide the same results. This proof will
be drawn up in the next section.

7.3 Strategy for the Correctness Proof
Now it is possible to define formally the correctness of the IL’

to ST’ translation. Formally, the goal is to prove the following:

PIL , ,σ ρ
1 1()(→* skip , , ,σ ρ σ

2 2 1()) ⇒ ′()(PST →* skip; , ′())σ
2

where PST is the STr’ representation of the IL’ code PIL , and
σi' is the representation of σi , ρi such that:

′() =
()
()






σ

σ

ρi
i

i

x
x

y

The program PIL is a sequence of IL statements. Based on the
ST’ Sequence and IL’ Sequence inference rules of the seman-
tics definitions discussed before, it is enough to prove that the
behaviour of each IL’ instruction corresponds to their STr’ rep-
resentations’ behaviour. We have to show that the proposed
STr’ equivalent of a certain IL’ instruction provides the same
semantics as the original IL’ instruction. As the semantics of
a given IL’ instruction is formalised as a set of inference rules
(as discussed in the previous section), the goal is to show that
for each IL’ inference rule given the same premises (equivalent
initial contexts), given the STr’ representation, and using the
inference rules of the ST’ semantics, the reached final configu-
ration of the STr’ program corresponds to the final configura-
tion of the IL’ instruction. This is demonstrated by the follow-
ing example.

if is x a real variable

if is x is the STr’ variable representing the register y (--y = x)

163PLC Program Translation for Verification Purposes� 2017 61 2

Example. For example, based on Table 7, the STr’ equivalent
presented in Listing 4 can be proposed for O v1 .

For each row of Table 7 it is possible to formally prove
based on the defined STr’ semantics that the proposed STr’
equivalent provides the same result. The inference tree in Fig. 5
proves that the above STr’ code matches the previously dis-
cussed IL’ O v1 (2) semantic rule. This proof shows that from
the same premises (σ(--nFC) = ^ , σ(--RLO) = ^ , σ(v1) = ),
by applying the inference rules of the ST’ semantics, the
reached configuration corresponds to the one reached by the
execution of the IL’ statement: the context σ'[--OR  ^,
--STA  , --RLO , --nFC  ] reached by the STr’ code
emulates the final configuration in the IL’ semantics definition
(ρ[OR  ^, STA  , RLO  , nFC  ], σ).

1
2
3
4
5
6
7
8

IF --NFC THEN

--RLO:=--RLO OR v1;
ELSE

--RLO:=v1;
END_IF;

--OR:=FALSE;

--STA:=v1;

--nFC:=TRUE;

Listing 4 STr’ equivalent of the O v1 IL’ statement

By looking at Fig. 5 it can also be seen that the result does
not depend on the value of the RLO register, therefore the same
proof can be used for the IL’ O v1 (6) semantic rule, describing
row 6 of Table 7:

ρ ρ σ
σ ρ σ ρ

RLO nFC
OR STA RLO

() = () = () =
()→

⊥
⊥

v
v

1

1
0 skip , , , , , ,    , nFC[]()

8 Application and Outlook to Verification
The motivation of this work was to extend PLCverif with

support for more PLC languages. The LD’ and FBD’ languages
are especially interesting, as these are the only languages that
can be used to program fail-safe (safety) Siemens PLCs. The
only way to access the source code written for Siemens safety
PLCs is to export the LD’ or FBD’ code as IL’ code. Therefore
the verification tool to be used has to handle programs written
in IL’. By establishing an IL’ to STr’ translation, the PLCverif
tool made available for the verification of safety PLC programs.

Complete Verification Workflow. The complete verification
workflow of a safety PLC program is depicted in Fig. 6. The
verification is based on the implementation of the safety logic
(written either in LD’ or FBD’ language) and the informal spec-
ification. The LD’ or FBD’ implementation can be transformed
into IL’ code by the Siemens development tool. Then, using the
IL’ to ST’ translation principles discussed in this paper, an STr’
representation can be generated that has an equivalent behav-
iour to the original IL’ code.

σ
(

nF
C)

=
⊥

(_
_N

FC
,

σ
)

−
→

a
⊥

(〈
IF

__
NF

C
TH

EN
__

RL
O:

=_
_R

LO
OR

v1
;

EL
SE

__
RL

O:
=v

1;
EN

D_
IF

; 〉
,

σ
)

−
→

(〈
__

RL
O:

=v
1;

〉,
σ

)

σ
(v

1
)

=
�

(v
1,

σ
)

−
→

a
�

(〈
IF

__
NF

C
TH

EN
__

RL
O:

=_
_R

LO
OR

v1
;

EL
SE

__
RL

O:
=v

1;
EN

D_
IF

;〉
,

σ
)

−
→

(〈
sk

ip
;〉

,
σ

[
RL

O
�→

�
])

·

(〈
__

OR
:=

FA
LS

E;
〉,

σ
[

RL
O

�→
�

])
−

→
(〈

sk
ip

;〉
,

σ
[

O
R

�→
⊥

,
RL

O
�→

�
])

(〈
IF

__
NF

C
TH

EN
__

RL
O:

=_
_R

LO
OR

v1
;

EL
SE

__
RL

O:
=v

1;
EN

D_
IF

;
__

OR
:=

FA
LS

E;
〉,

σ
)

−
→

(〈
sk

ip
;〉

,
σ

[
O

R
�→

⊥
,

RL
O

�→
�

])

σ
(v

1
)

=
�

(v
1,

σ
)

−
→

a
�

(〈
__

ST
A:

=v
1;

〉,
σ

[
O

R
�→

⊥
,

RL
O

�→
�

])
−

→
(〈

sk
ip

;〉
,

σ
[

O
R

�→
⊥

,
ST

A
�→

�
,

RL
O

�→
�

])

(〈
IF

__
NF

C
TH

EN
__

RL
O:

=_
_R

LO
OR

v1
;

EL
SE

__
RL

O:
=v

1;
EN

D_
IF

;
__

OR
:=

FA
LS

E;
__

ST
A:

=v
1;

〉,
σ

)
−

→
(〈

sk
ip

;〉
,

σ
[

O
R

�→
⊥

,
ST

A
�→

�
,

RL
O

�→
�

])

·

(〈
__

NF
C:

=T
RU

E;
〉,

σ
[

O
R

�→
⊥

,
ST

A
�→

�
,

RL
O

�→
�

])
−

→
(〈

sk
ip

;〉
,

σ
[

O
R

�→
⊥

,
ST

A
�→

�
,

RL
O

�→
�

,
nF

C
�→

�
])

(〈
IF

__
NF

C
TH

EN
__

RL
O:

=_
_R

LO
OR

v1
;

EL
SE

__
RL

O:
=v

1;
EN

D_
IF

;
__

OR
:=

FA
LS

E;
__

ST
A:

=v
1;

__
nF

C:
=T

RU
E;

〉,
σ

)
−

→
(〈

sk
ip

;〉
,

σ
[

O
R

�→
⊥

,
ST

A
�→

�
,

RL
O

�→
�

,
nF

C
�→

�
])

Fi
gu

re
5:

Pr
oo

fo
fs

em
an

tic
eq

ui
va

le
nc

e
be

tw
ee

n
th

e
ST

r’
re

pr
es

en
ta

tio
n

of
O

v1
an

d
th

e
se

m
an

tic
ru

le
IL

’
O

v 1
(2

)

24
Fig. 5 Proof of semantic equivalence between the STr’ representation

of O v1 and the semantic rule IL’ O v1 (2)

 
IL’ O v1 (6)



164 Period. Polytech. Elec. Eng. Comp. Sci.� D. Darvas, I. Majzik, E. Blanco Viñuela

STr’ code

IM

Verif. report

Specification

Reduction

IL’ code

LD’ FBD’

Req. patterns

PLCverif
model checking

FBD’

PLCverif

IL’ to ST’

Fig. 6 Workflow of checking a safety PLC program (based on [8])

The requirements from the informal specification can be
extracted using requirement patterns. Each pattern has a pre-
cise textual description with some placeholders, which have to
be filled by the user based on the informal specification. Each
pattern has a formal representation too based on temporal logic
which can be then used by the model checker tool [12].

The original PLCverif workflow [13] is based on an ST’
(STr’) implementation and some filled requirement patterns.
Based on these artefacts an intermediate model (IM) is gener-
ated, which is then reduced and translated to the concrete syn-
tax of the chosen model checker. The external model checker
tool is executed, after its result is parsed and then presented to
the user in a verification report.

Using PLCverif for Safety-Critical Systems. In [8] we have
presented a first case study of using PLCverif for safety-critical
PLC programs. The target of this work was the verification of
a safety logic that is used in the SM18 Cryogenic Test Facility
at CERN. This test facility allows to check various properties
of superconducting magnets at low temperatures, in vacuum,
and at high currents. These magnet tests might be dangerous if
certain subsystems are not ready, e.g. high currents should only
be applied when the cryogenic system is properly working. The
purpose of the safety logic under verification is to ensure the
safety of the magnet tests by allowing or forbidding them based
on preconditions of the magnet test scenarios.

This safety logic is a significantly large, real safety-critical
program. The IL’ representation of the implementation consists
of 9,500 lines of code, while the generated STr’ representation
is composed of more than 120,000 statements [8].

This verification case study has demonstrated that model
checking can reveal complex issues with moderate effort,
before putting the system in production. In this case 12 differ-
ent problems were identified using the above-described model
checking workflow implemented in PLCverif. More details
about this case study can be found in [8].

9 Related Work
This is not the first paper aiming to translate programs

between PLC languages. Sülflow and Drechsler [29] translated
Siemens IL’ (STL) programs to SystemC for verification pur-
poses. They have discussed the semantics of Siemens IL’, but
only to a limited extent, e.g. the nesting logic statements are
not targeted. Pavlović et al. targets the formal verification of
Siemens IL’ programs in [19]. For this reason, they discuss the
formal and informal semantics of the Siemens IL’ instructions.
Both in [29] and [19] one can find translations similar to the
ones in Table 4 and 5 of the current paper. However, they did
not discuss how could the precise semantics be determined,
therefore due to the lack of available semantics definition, they
could not handle the nesting stack for example. Besides, they
did not target the proof of correctness.

Meulen [17] provides formal semantics for the Siemens
IL’ (STL) language to use propositional logic for verification.
In his thesis the discussion of instructions is more complete
than in [19, 29], however the instructions with more complex
semantics are not targeted here either.

Sadolewski discussed the translation of IEC 61131 ST pro-
grams to C and Why for verification [21, 20]. Similarly, Kabra
et al. [16] targeted the ST to C translation. Biha and Blech dis-
cusses the formal semantics of IL and LD languages [5, 4].
However, as they translated programs written in IEC 61131
standard languages, their results cannot be directly applied to
Siemens PLC programs due to the semantic and syntactic dif-
ferences. Therefore to the authors’ best knowledge no previous
work published precise STL semantics that is essential for the
formal verification of these programs.

Certain works target specifically the verification of Siemens
variants of IL’ (STL) programs [3, 19, 18]. However, none of
these papers focus specifically on the details of the semantics,
e.g. the precise representation of the nesting stack operations.

Awlsim8 is an open-source simulator for Siemens IL’ (STL)
programs. The authors claim that it provides a nearly complete,
Siemens-equivalent simulation of IL’ programs. However, by
analysing the source code it seems that the semantics was not
determined precisely, and for example the nesting stack han-
dling is simplified compared to what is observed in reality9.

10 Summary
This paper presented the relations between the different

PLC programming languages, both for the standard versions of
IEC 61131 and the Siemens implementations. For our practical

8 http://bues.ch/cms/automation/awlsim.html
9 See for example https://github.com/mbuesch/awlsim/blob/master/awlsim/

core/instructions/insn_ub.py that implements the behaviour of the A(instruction.
It can be seen that the complete status word is saved to the nesting stack as it is,
however in Section 6.2 it was shown that the OR and RLO bits are modified
before saving them.

165PLC Program Translation for Verification Purposes� 2017 61 2

goals, i.e. to extend PLCverif to support all five Siemens vari-
ants of the PLC languages, a good pivot language candidate
was proposed: STr’ that is the Siemens ST’ language emulating
register access with variable access for verification purposes.
Using STr’, PLCverif can efficiently support the verification
of low-level languages (IL’, FBD’, LD’), without modifying
the core workflow or decreasing the verification performance
of the programs written in ST’ language. We have drawn up a
translation from IL’ language to STr’, which is a crucial step
towards the verification of safety PLC programs. This transla-
tion description included a systematic observation of seman-
tics, the formalisation of semantics and a correctness proof
method of the transformation.

References
[1]	 Bauer, N., Huuck, R., Lukoschus, B., Engell, S. "A unifying semantics

for sequential function charts." In: Integration of Software Specification
Techniques for Applications in Engineering. (Ehrig, H., Damm, W., De-
sel, J., Große-Rhode, M., Reif, W., Schnieder, E., Westkämper, E. (eds.)).
Springer, Volume 3147 of Lecture Notes in Computer Science, pp. 400–
418. 2004. https://doi.org/10.1007/978-3-540-27863-4_22

[2]	 Berger, H. "Automating with STEP 7 in STL and SCL." Publicis Corpo-
rate Publishing, 3rd edition, 2005.

[3]	 Biallas, S., Brauer, J., Kowalewski, S. "Arcade.PLC: A verification plat-
form for programmable logic controllers." In: Proceedings of the 27th
IEEE/ACM International Conference on Automated Software Engineer-
ing. pp. 338–341. IEEE, 2012.

	 https://doi.org/10.1145/2351676.2351741
[4]	 Ould Biha, S. "A formal semantics of PLC programs in Coq." In: 2011

IEEE 35th Annual Computer Software and Applications Conference.
IEEE, pp. 118–127, 2011. https://doi.org/10.1109/COMPSAC.2011.23

[5]	 Blech, J. O., Ould Biha, S. "On formal reasoning on the semantics of PLC
using Coq." Preprint, available online arXiv:1301.3047 [cs.SE], 2013.

[6]	 Böhm, C., Jacopini, G. "Flow diagrams, Turing machines and languages
with only two formation rules." Communications of the ACM. 9(5), pp.
366–371. 1966.

[7]	 Darvas, D., Fernández Adiego, B., Blanco Viñuela, E. "PLCverif: A tool
to verify PLC programs based on model checking techniques." In: 15th
International Conference on Accelerator and Large Experimental Phys-
ics Control Systems (Corvetti, L., Riches, K., Schaa, V. R. W. (eds.)). pp.
911–914. JACoW, 2015.

	 https://doi.org/10.18429/JACoW-ICALEPCS2015-WEPGF092
[8]	 Darvas, D., Majzik, I., Blanco Viñuela, E. "Formal verification of safety

PLC based control software." In: Integrated Formal Methods. Volume
9681 of Lecture Notes in Computer Science. (Ábrahám, E., Huisman, M.
(eds.)). pp. 508–522. Springer, 2016.

	 https://doi.org/10.1007/978-3-319-33693-0_32
[9]	 Darvas, D., Majzik, I., Blanco Viñuela, E. "Generic representation of PLC

programming languages for formal verification." In: Proceedings of 23rd
PhD Mini-Symposium. pp. 6–9. Budapest University of Technology and
Economics, Department of Measurement and Information Systems, 2016.

	 https://doi.org/10.5281/zenodo.51064
[10]	 de Sousa, M. "Proposed corrections to the IEC 61131-3 standard." Com-

puter Standards & Interfaces. 32(5-6), pp. 312–320. 2010.
	 https://doi.org/10.1016/j.csi.2010.03.006

[11]	 de Sousa, M. "Ambiguities in IEC 61131-3 ST and IL expression seman-
tics." In: 13th IEEE International Conference on Industrial Informatics.
IEEE, 2015, pp. 1312–1317.

	 https://doi.org/10.1109/INDIN.2015.7281925
[12]	 Fernández Adiego, B., Darvas, D., Blanco Viñuela, E., Tournier, J-C.,

Bliudze, S., Blech, J. O., González Suárez, V. M. "Applying model
checking to industrial-sized PLC programs." IEEE Transactions on In-
dustrial Informatics. 11(6), pp. 1400–1410. 2015.

	 https://doi.org/10.1109/TII.2015.2489184
[13]	 Fernández Adiego, B., Darvas, D., Tournier, J-C., Blanco Viñuela, E.,

González Suárez, V. M. "Bringing automated model checking to PLC
program development. – A CERN case study." In: IFAC Proceedings
Volumes. 47(2), pp. 394–399. Elsevier, 2014.

	 https://doi.org/10.3182/20140514-3-FR-4046.00051
[14]	 IEC 60848:2013 – GRAFCET specification language for sequential

function charts, 2013.
[15]	 IEC 61131-3:2003 – Programmable controllers – Part 3: Programming

languages, 2003.
[16]	 Kabra, A., Karmakar, G., Patil, R. K. "A structured text to MISRA-C

translator and issues with IEC 61131-3 standard." In: 2012 IEEE Confer-
ence on Emerging Technologies & Factory Automation. IEEE, 2012.

	 https://doi.org/10.1109/ETFA.2012.6489693
[17]	 Meulen, M. G. "Verification of PLC source code using propositional

logic." Master's Thesis, TU Eindhoven, 2010. URL: http://redesign.esi.
nl/publications/falcon/meulen2010.pdf

[18]	 Pavlović, O., Ehrich, H-D. "Model checking PLC software written in
function block diagram." In: 2010 Third International Conference on
Software Testing, Verification and Validation. IEEE, 2010. pp. 439–448.

	 https://doi.org/10.1109/ICST.2010.10
[19]	 Pavlović, O., Pinger, R., Kollmann, M. "Automated formal verification

of PLC programs written in IL." In: Proceedings of 4th International
Verification Workshop in connection with CADE-21. (Beckert, B. (ed.)).
Volume 259 of CEUR-WS, pp. 152–163. University of Koblenz-Landau,
2007.

[20]	 Sadolewski, J. "Automated conversion of ST control programs toWhy for
verification purposes." In: Proceedings of the Federated Conference on
Computer Science and Information Systems. IEEE, pp. 849–854. 2011.

[21]	 Sadolewski, J. "Conversion of ST control programs to ANSI C for verifi-
cation purposes." e-Informatica Software Engineering Journal. 5(1), pp.
65–76. 2011.

	 https://doi.org/10.2478/v10233-011-0031-3
[22]	 Siemens. SIMATIC Ladder Logic (LAD) for S7-300 and S7-400 Pro-

gramming, 1996. C79000-G7076-C504-02.
[23]	 Siemens. SIMATIC Statement List (STL) for S7-300 and S7-400 Pro-

gramming – Reference manual, 1998. C79000-G7076-C565.
[24]	 Siemens. SIMATIC Statement List (STL) for S7-300 and S7-400 Pro-

gramming, 2002. A5E00171232-01.
[25]	 Siemens. S7-300 Instruction List, 2010. A5E02354744-03.
[26]	 Siemens. SIMATIC Programming with STEP 7, 2010. A5E02789666-01.
[27]	 Siemens. SIMATIC Safety – Configuring and Programming, 2011.

A5E02714440-01.
[28]	 Siemens. Standards compliance according to IEC 61131-3, 2011. URL:

http://support.automation.siemens.com/WW/view/en/50204938
[29]	 Sülflow, A., Drechsler, R. "Verification of PLC programs using formal

proof techniques." In: Formal Methods for Automation and Safety in
Railway and Automotive Systems. (Tarnai, G., Schnieder, E. (eds.)). pp.
43–50. L’Harmattan, 2008.

https://doi.org/10.1007/978-3-540-27863-4_22
https://doi.org/10.1145/2351676.2351741
https://doi.org/10.1109/COMPSAC.2011.23
https://doi.org/10.18429/JACoW-ICALEPCS2015-WEPGF092
https://doi.org/10.1007/978-3-319-33693-0_32
https://doi.org/10.5281/zenodo.51064
https://doi.org/10.1016/j.csi.2010.03.006
https://doi.org/10.1109/INDIN.2015.7281925
https://doi.org/10.1109/TII.2015.2489184
https://doi.org/10.3182/20140514-3-FR-4046.00051
https://doi.org/10.1109/ETFA.2012.6489693
http://redesign.esi.nl/publications/falcon/meulen2010.pdf
http://redesign.esi.nl/publications/falcon/meulen2010.pdf
https://doi.org/10.1109/ICST.2010.10
https://doi.org/10.2478/v10233-011-0031-3
http://support.automation.siemens.com/WW/view/en/50204938

	1 Introduction and Background
	1.1 Motivation

	2 Comparison Method
	3 Standard Languages
	4 Implementation of the Languages
	4.1 Organisation of Siemens PLC Programs
	4.2 Relations Between the Siemens PLC Languages

	5 Finding a Pivot Language
	6 Mapping IL’ to ST’
	6.1 Memory Model of Siemens PLCs
	6.2 Syntax and Semantics of IL’ Instructions
	6.3 STr’ Translation of IL’ Instructions

	7 Proving the Correctness of the IL’ to ST’ Translation
	7.1 Formal Semantics for STr’
	7.2 Formal Semantics for IL’

	8 Application and Outlook to Verification
	9 Related Work
	10 Summary
	References

