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Abstract
Failure Mode and Effects Analysis (FMEA) is a systematic 
technique to explore the possible failure modes of individ-
ual components or subsystems and determine their potential 
effects at the system level. Applications of FMEA are common 
in case of hardware and communication failures, but analyzing 
software failures (SW-FMEA) poses a number of challenges. 
Failures may originate in permanent software faults commonly 
called bugs, and their effects can be very subtle and hard to 
predict, due to the complex nature of programs. Therefore, a 
behavior-based automatic method to analyze the potential 
effects of different types of bugs is desirable. Such a method 
could be used to automatically build an FMEA report about 
the fault effects, or to evaluate different failure mitigation and 
detection techniques. This paper follows the latter direction, 
demonstrating the use of a model checking-based automated 
SW-FMEA approach to evaluate error detection and fault tol-
erance mechanisms, demonstrated on a case study inspired by 
safety-critical embedded operating systems.

Keywords
Failure Mode and Effects Analysis, SW-FMEA, model 
checking, fault tolerance, error detector

1 Introduction
The risk of failure is one of the main concerns of safety-

critical systems. Certification requires the systematic analysis 
of potential failures, their causes and effects, and the evaluation 
of risk mitigation techniques used to reduce the chance and the 
severity of system-level failures.

One of the first systematic techniques for failure analysis 
was Failure Mode and Effect Analysis (FMEA) [2]. FMEA is 
often the first step in reliability analysis, as it collects the poten-
tial failure modes of subsystems, their root causes and their 
effects on the whole system. Together with criticality analysis 
(often treated as part of FMEA, sometimes emphasized by the 
term FMECA), the output of FMEA serves as the basis of other 
qualitative and quantitative analyses, as well as design deci-
sions regarding risk mitigation techniques.

FMEA is usually applied at the hardware and communi-
cation level, where it requires a qualified analyst to collect 
postulated component failures and identify their effects on 
other components and the system level. In case of software 
(SW-FMEA), failure modes originate in different types of pro-
gramming faults, commonly referred to as bugs. Due to the 
complex nature of software and the many types of potential 
bugs, it is much harder to collect failure modes and deduce 
their potential effects, so an automated mechanism is desired.

This paper presents a way of automated SW-FMEA with 
the use of executable software models. Assuming a set of pre-
defined fault types (programming faults) and a specification 
of safe behavior at the system level, the proposed approach 
applies model checking to systematically generate execution 
traces leading from fault activations to states that violate the 
specification of safe behavior (system-level failures). These 
traces can be used to understand and demonstrate fault propa-
gation through the system and also as test sequences to reveal 
actual faults in the final product.

Our approach improves existing model checking-based 
SW-FMEA by optimizing fault activations and using monitor 
components instead of a formal specification. The optimization 
helps in scaling the solution to apply it on more complex sys-
tems and situations, whereas using a monitor instead of formal 
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specifications to describe correct and incorrect behaviors is 
closer to the way engineers think about systems, facilitating 
correctness and productivity.

In addition to automated SW-FMEA, the proposed approach 
can be used to evaluate the efficiency of fault tolerance and 
error detection mechanisms. In traditional FMEA, the enu-
meration of possible faults and their effects is followed by the 
definition of detection and mitigation mechanisms targeting 
the given fault (this section of the FMEA report is commonly 
called disposition) [18]. In case of off-the-shelf components 
(COTS), these mechanisms are often compiled into a wrapper 
to reduce the risk of using the component [3]. In such a set-
ting, it is equally important to demonstrate that these mecha-
nisms are indeed capable of detecting and isolating the faults 
they are meant to handle. Fault tolerance mechanisms should 
mask as many faults as possible (reducing the number of fault 
activations that can lead to a system-level failure), while error 
detectors should catch the propagating error on as many traces 
as possible. To the best of our knowledge, no other work 
addresses the problem of evaluating such auxiliary components 
in a model-based FMEA setting.

Throughout the paper, a running example will be used to 
demonstrate the introduced concepts and to serve as a detailed 
walk-through for readers to help in implementing the approach 
for their own systems. We also employ the evaluation of error 
detectors on an industrial case study, using a model of the 
OSEK API specification [1], which is a commonly used inter-
face specification for embedded operating systems.

This paper is an extended version of [19]. In addition to the 
ideas outlined in the conference paper, this version includes a 
detailed case study and running example to explain, refine and 
clarify the proposed approach, providing various alternatives to 
implement it in different projects.

The paper is structured as follows. Section 2 introduces 
the key concepts of FMEA and model checking. Section 3 
describes the running example, then a framework for model 
checking-based FMEA is outlined in Section 4. Applications of 
the approach are discussed in Section 5, while Section 6 pre-
sents an industrial case study. Section 7 provides the conclud-
ing remarks and our directions for future work.

2 Background
This section summarizes the main idea of FMEA and in par-

ticular SW-FMEA, as well as model checking that is the basis 
of the approach presented in Section 4.

2.1 Failure Mode and Effects Analysis
FMEA involves 1) the enumeration of potential failure 

modes of subsystems, 2) an inductive reasoning of their effects 
(or costs) on different levels of the whole system (called 
error propagation), and 3) often the deductive analysis of 
their root causes. The analysis is usually based on a model or 

specification of a component, as well as historical data about 
faults and failures (in case of software, the typical types of 
bugs) and experience with similar components. The result is 
recorded in an FMEA spreadsheet [18]. Failure modes are 
then categorized based on criticality, representing the level of 
chance and the severity of potential consequences. Criticality 
can prioritize failures, and based on the discovered causes and 
effects, fault-tolerance or error detection mechanisms can be 
designed to mask faults or detect errors to ensure fail-safe 
operation of the system.

There are three main concepts related to error propagation 
[5]. A failure is an incorrect system function, i.e., an observable 
incorrect state. An error is a latent incorrect state that has no 
observable effects yet. Finally, a fault is the cause of a failure, 
which can be either some kind of defect (physical or design) or 
the failure of a related subsystem.

During error propagation, an activated fault can cause an 
error, which will turn into a failure once it becomes observable 
(e.g., by crossing an interface). FMEAs are usually performed 
on many levels during the design of a system, so a failure of 
a component is often a fault on another level. FMEA usu-
ally assumes that only a single failure mode exists at a time. 
Examples for safety analysis techniques analyzing error propa-
gation include the HIPS-HOPS [21] and FPTC [25] techniques, 
where components are analyzed in isolation from the system to 
model their failure behavior, enabling the estimation of fault 
propagation in the whole system.

Fault-tolerance of the final system is often demonstrated by 
hardware fault injection and intentional corruption of inputs 
or memory [10]. This process can be regarded as the testing 
of the mechanisms designed during the FMEA process, but 
can also serve as an automated way to discover the effects of 
different faults.

2.1.1 Software FMEA
Fault injection with software was initially introduced to 

emulate hardware faults, an approach commonly referred 
to as Software Implemented Hardware Fault Injection [10]. 
However, when performing FMEA on software components, it 
is interesting to consider failure modes caused by programming 
(or configuration) faults. The challenge of analyzing these is 
twofold. First, it is very hard to come up with a realistic set of 
programming faults (called a fault model). The source of bugs 
is almost always a human, and the most typical faults highly 
depend on the programming language and the domain as well. 
Various studies tried to identify the most common types of 
software faults (e.g. [13]). Studies also revealed that it is very 
hard to accurately simulate real-life faults with fault injection 
[17]. Constructing a realistic fault model is even harder in case 
only a design model is available. The second challenge lies in 
the difficulty of tracking the effects of a bug as it evolves in a 
complex system.
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This paper focuses on the challenge of analyzing the effects 
of programming faults. The problem of designing proper fault 
models is not discussed here, we refer to the fact that it is also 
an important challenge in the field of mutation-based testing. 
For an extensive overview of mutation-based testing and fault 
models, the reader should refer to [16]. More studies about the 
various aspects of software fault injection and fault models can 
be found in [12, 13, 17, 24].

Most of the previous approaches to SW-FMEA build on 
software testing (e.g., [22]), injecting faults directly into the 
program code and running a set of tests to see any possible 
global effects. There are mixed approaches, where experi-
ments are combined with analytical models to measure fault-
tolerance (e.g., [4]). Using fault injection to compute the risk 
associated with different (often off-the-shelf) components is 
thoroughly discussed in [20]. These methods are mostly useful 
once an implementation already exists. However, FMEA and 
the design of fault-tolerance mechanisms should happen in an 
earlier development phase, therefore model-based approaches 
are necessary.

Model-based SW-FMEA in this sense has been proposed 
recently [14, 9]. Executable models enable the analysis of soft-
ware behavior either by simulation, where potential execution 
traces are sampled and analyzed, or by exhaustive and sys-
tematic analysis of the whole state space. The work in [9] is 
based on the simulation of executable software models with 
model-level fault injection. An earlier approach, similar to the 
one presented in this paper, uses model checking (a technique 
for systematic formal analysis) to detect the violation of the 
system-level specification in case active faults are present 
[14]. Similar techniques are used for the analysis of fault tol-
erance mechanisms. The work described in [6] uses equiva-
lence checking to prove that a fault tolerance mechanism really 
masks the faults of a fault model, i.e., they check if the fault- 
free reference model and the faulty system integrated with the 
mechanism are equivalent. This approach is extended with 
temporal logic specifications in [7].

The common features of these approaches include a prede-
fined set of faults injected into the code or model, a specifica-
tion of system-level failures/hazards, and some sort of execu-
tion (either testing, simulation, model checking or equivalence 
checking) to generate traces connecting the first two. The 
method presented in this paper (in Section 5) refines them by 
using monitors to define a sort of equivalence relation from the 
viewpoint of an engineer, as well as by optimizing the model 
checking process for the efficient handling of nondeterministic 
fault activations.

2.2 Model Checking
Model checking is an automated formal verification tech-

nique used to verify whether a system satisfies a requirement 
or not. Precisely, given a formal specification φ and a formal 

behavioral model M of the system, a model checker has to 
prove or disprove M ϕ  by systematically (and typically 
exhaustively) analyzing the states and/or possible behaviors of 
the system model (i.e., the state space).

Models are usually given in various high-level formalisms 
that have to be translated into state-graphs in order to effi-
ciently traverse and analyze them. This process is called state 
space generation or state space exploration. One of the biggest 
challenges of model checking arises here: the so-called “state 
space explosion problem” denotes the usual combinatorial 
explosion of the size of the state-graph compared to the size of 
the models of concurrent components, meaning that even com-
pact high level models may produce huge state-graphs, often 
exponential in size.

There are many families of model checking algorithms 
described in the literature. An important characterization is 
based on the class of specification to check. The simplest task 
is reachability analysis, where the algorithm has to decide if 
a state satisfying certain constraints can be reached from the 
initial state. Safety properties can be reduced to reachability – 
violating a safety requirement can be demonstrated by a trace 
leading to an unsafe state. The examples throughout this paper 
will use assertions to describe simple safety requirements. 
More complex variants usually check temporal logic specifica- 
tions, the most wide-spread formalisms being linear temporal 
logic (LTL) and computation-tree logic (CTL).

In this work, the tool SPIN is used as a model checker [15]. 
SPIN is an explicit-state model checker (using an explicitly 
stored graph representation of the state space) capable of reach-
ability analysis and linear temporal model checking. Some of 
its strengths include its maturity, the rich set of configuration 
opportunities and the expressiveness of its input model, given in 
PROMELA (PROcess MEta LAnguage). In this paper, the exam-
ples will be presented as C code that can easily be transformed 
into PROMELA due to the similarity of the two languages.

3 Introduction of the Running Example
Throughout the paper, our approach to SW-FMEA will be 

demonstrated on a running example: a simplified preemp-
tive scheduler (note that on the basis of this example, later it 
will be straightforward to discuss our industrial case study, 
the analysis of a real-time operating system). The implemen-
tation is given as C code in Listings 1–4. The scheduler has 
two functions on its interface: activate and stop. The third 
method preempt is an internal function used by activate 
(see below). For the example, assume that the variable current 
is part of the interface as read-only data, but the Boolean arrays 
idle, waiting and running are for internal use only.

The code is assumed to be called from a single thread of 
another component of the OS responsible for the coordina-
tion and running of the processes. The number of processes is 
given by the constant PROC COUNT – in this case, we will use 
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three processes. Every process is assumed to have a unique ID 
ranging from 0 to PROC COUNT − 1, which is also interpreted 
as their priority, the higher value indicating more importance. 
Every process can be in three states: Idle, Running and Waiting. 
For the possible state-transitions, see Fig. 1.

Fig. 1 State machine of a single process.

The global variables encode the state of the scheduler. The 
variable current identifies the running process, or equals −1 
if every process is idle. The Boolean arrays encode the states of 
the processes: the element corresponding to a given process is 
true if it is in the state corresponding to the array.

When a client calls the function activate (Listing 2) with 
the ID of a process, the scheduler first checks whether there is 
a running process or not. If not, then the process is started: it 
is moved to the Running state by setting the Boolean variables 
accordingly and the variable current is set to the parameter 
pid. If another process is running, the internal function 
preempt gets called with the same parameter pid. The return 
value indicates the success of activating the process.

The function preempt (Listing 3) handles the priorities of 
processes and ensures that the process with the higher prior-
ity gets the right of execution. In case the received parameter 
pid indicates that a process with higher priority wants to run, it 
moves the current process to the Waiting state (note that only the 
relevant Boolean variables are set), as well as it activates the new 
process and updates the variable current. In case pid belongs 
to a process with lower priority, it is moved into a Waiting state 
and current is left unchanged. Again, the return value indi-
cates the success of activating the process belonging to pid.

The function stop (Listing 4) deactivates the process 
belonging to pid (note that there is no other way a process 
can return to the Idle state). To do this, it updates the internal 
Boolean arrays accordingly. In addition, if the stopped process 
was the one running, the function also has to set the variable 
current to −1 and then activate a waiting process, if any. 
Thus, the function loops through the set of waiting processes in 

a reverse order with respect to their priorities to find the process 
with the highest priority and activate it. If no such process is 
found, the value of current remains −1 to indicate that cur-
rently there is no running process.

This example is inspired by the OSEK API [1], a common 
interface definition for safety-critical embedded operating sys-
tems (see Section 6 for the description of a pilot project apply-
ing the techniques presented in this paper to a PROMELA 
model of the OSEK API). Throughout the paper, the running 
example will be referred to as “SimpleScheduler ”.

4 Model Checking-based Software FMEA
The approach presented in this paper focuses on the “Effect 

Analysis” part of FMEA. Assuming a set of possible faults (fail-
ure modes on component level) in the software and a characteri-
zation of system-level failures, it examines an executable model 
of the system to generate traces leading to system-level failures.

The process (shown in Fig. 2) starts with fault injection into 
the system model (often called as model mutation), when the 
input model is transformed into an analysis model containing 
faults that can be activated (or deactivated). It is assumed that 
there is an oracle model that allows the detection of system 
level failures (see Section 4.2 for details), so the model checker 
can explore the state space of the analysis model to check if 
any fault can cause a system-level failure. The output is a set 
of traces that lead from every relevant fault activation to reach-
able system-level failures.

Fig. 2 Overview of the presented approach.

4.1 Fault Injection
The method requires a fault model in terms of the modeling 

language. Here, a fault model is assumed to be a set of altera-
tions (mutations) that can be activated in the model. The acti-
vation is controlled by a trigger variable, i.e., with the trigger 
variable set to false, the model should behave correctly, while 
a value of true should activate the corresponding alteration and 
thus cause an erroneous state when the affected part is exe-
cuted. Note that trigger variables become part of the system as 
auxiliary state variables.

Example 1 For the C language there are numerous well-known 
mutation operators that can inject common coding errors into 
C programs (e.g., see [23] for a set of traditional syntax-based 
operators or [13] for the most common software faults). For the 
sake of simplicity, let us consider four custom operators that 
resemble some of the most common faults in [13] (also used 
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Listing 1 Global declarations.

1
2
3
4
5
6
7

const int PROC_COUNT = 3;
//Internal variables
bool [PROC_COUNT] idle = { true, true, true };
bool [PROC_COUNT] waiting = { false, false, false };
bool [PROC_COUNT] running = { false, false, false };
//Interface variables
int current = -1;

Listing 2 The activate function.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

bool activate (int pid)
{
if (current < 0) //System idle
{

//State of process: Running
idle [pid] = false;
waiting [pid] = false;
running [pid] = true;
//Update current process
current = pid;
return true;

}
else
{

//Choose process to run
return preempt (pid);

}
}

Listing 3 The preempt function.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

bool preempt (int pid)
{
if (pid > current) //Preempting
{

//Running process goes Waiting
if (current >= 0)
{

waiting [current] = true;
running [current] = false;

}
//State of process: Running
idle[pid] = false;
waiting[pid] = false;
running[pid] = true;
//Update current process
current = pid;
return true;

}
else
{

//State of process: Waiting
idle[pid] = false;
waiting[pid] = true;
running[pid] = false;
return false;

}
}

Listing 4 The stop function.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

void stop (int pid)
{
//State of process: Idle
idle[pid] = true;
waiting[pid] = false;
running[pid] = false;
if ( current == pid ) // Was running
{

current = -1;
//Choose highest priority waiting
int i = PROC_COUNT - 1;
while (current < 0 && i >= 0)
{

if (waiting[i])
{
current = i;
//New process goes Running
waiting[current] = false;
running[current] = true;

}
i--;

}
}

}
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in  [20]), with the addition of the trigger variable described 
above. The operators are defined as C preprocessor macros. The 
macros, as well as simple examples illustrating each operator 
are presented in Listings 5–8.

Listing 5 shows the simplest fault in our example fault 
model: if the trigger variable is set, the operand of the OM 
operator is not executed. A similar, but more general fault is 
presented in Listing 6, where the ALTSTMNT operator sub-
stitutes the original statement with an altered one. We will use 
two addi- tional operators in the example: the NEG operator, 
which negates a Boolean expression if activated (Listing 7) and 
the ALTEXP operator (Listing 8), which substitutes an expres-
sion with a mutated one of the same type.

Using the trigger variables, a number of different fault types 
can be modeled. First, a fault can be permanent (only nondeter-
ministic false → true transitions change the value of the trigger 
variable) or transient (nondeterministic true → false transitions 
are also present). Although in case of software bugs, the faults 
are usually permanent, it is often useful to have transient faults 
to simulate the effects of hardware faults as well. Second, it is 
sometimes desired to restrict the number of faults in the system 
to at most one, or in some cases at most two, which constrains 
how the values of trigger variables are allowed to change.

By injecting the fault activation mechanism into the model 
and having the trigger variables as auxiliary state variables, a 
model checker is free to choose which fault to activate by set-
ting the trigger variables as long as it meets the restrictions.

Example 2 For example in PROMELA, it is possible to set a 
variable nondeter- ministically. By injecting a series of such 
statements into the beginning of the main process definition 
(i.e., the entry point of the executable model), a model checker 
is free to choose any valuation of the trigger variables and can 
explore the behavior of the model accordingly. Restrictions can 
be applied either by constraining the valuations in the model, or 
by using an implication in the specification to be checked (valid 
valuation ⇒ correct behavior).

4.2 Failure Detection
The traditional approach in model checking is to provide a 

formal specification of the system to be verified. Automated 
FMEA can then check if the specification still holds in the pres-
ence of faults (as described in [14]).

In this work, we suggest an alternative approach that is closer 
to a safety engineer ’s viewpoint. Instead of specifying a failure 
(or the correct behavior), it is often easier to include in the model 
an explicit monitor component to detect and signal requirement 
violations. Such a monitor can be idealistic (e.g., it may observe 
every detail of the system or have infinite memory), since its 
only role is to provide a definition for system-level failures, and 
it does not have to be implemented in the real system. Due to 
these properties, we will call this idealistic component an oracle 

(in a similar sense to oracles in testing [26]). Depending on the 
goals and the domain, an oracle can be a fault-free reference 
model to compare its behavior with that of the analysis model, 
a more permissive abstract contract, or even the set of expected 
outputs for a predefined workload (i.e., a set of test cases). 
Example oracles will be presented in Section 5.1.

Example 3 The C language provides a simple mechanism for 
describing invariant properties of a program: assertions. An 
assertion expresses that at the point of executing an assert state-
ment, its operand must be true. Assertions are not meant to be 
used for error handling, they rather belong to the specification 
of the problem. In this sense, a set of assertions can be regarded 
as an oracle.

In our running example, we will use assertions to specify 
certain safety properties of the SimpleScheduler program. 
While the code currently does not contain assertions, we will 
use the workload shown in Listing 9 having an assertion after 
every function call to check if the implementation behaves as 
specified (this can again be regarded as an oracle). Note that 
the assertions only check the variable current and the return 
value of the functions, as we specified only those as part of 
the interface and the observable inner state. The workload and 
the expected behavior (including the values of internal Boolean 
arrays) is visualized in Fig. 3.

Examples in Section 5 will also use assertions to state when 
a monitoring component would raise an error. The monitors 
described in that section can also be regarded as oracles.

Fig. 3 Timing diagram illustrating the workload and the expected behavior of 
the scheduler. The value of current is denoted with the red lines.

4.3 Failure traces
From the mutated model and the oracle, the model checker 

will be able to generate a set of traces leading from activated 
faults to system-level failures. From each trace, we can extract 
the values of the trigger variables (i.e., which faults were acti-
vated) and the location of the system-level failure detected by 
the oracle. If the oracle can classify the failure (e.g., based on 
some general failure classification such as in [18] or [20]), this 
information can also be retrieved.
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Listing 5 Omission of a statement.

1
2
3
4
5
6
7
8
9

10
11
12

//Macro definition for the operator
#define OM(stmnt, trigger) \
if (!trigger) {stmnt;}
//Original code
current = pid;
//Injected operator
bool FAULT_OM = false;
OM(current = pid, FAULT_OM);
//Expanded operator
bool FAULT_OM = false;
if (!FAULT_OM)
current = pid ;

Listing 6 Alternative statement.

1
2
3
4
5
6
7
8
9

10
11
12
13

//Macro definition for the operator
#define ALTSTMNT (stmnt, alt, trigger) \
if (trigger) {stmnt;} \
else {alt;}
//Original code
current = i;
//Injected operator
bool FAULT_ALTSTMNT = false;
ALTSTMNT (current = i, current = pid, FAULT_ALTSTMNT);
//Expanded operator
bool FAULT_ALTSTMNT = false;
if (FAULT_ALTSTMNT) { current = pid; }
else { current = i; }

Listing 7 Negation of a Boolean expression.

1
2
3
4
5
6
7
8
9

10
11
12

//Macro definition for the operator
#define NEG(exp, trigger) \
(trigger ? !(exp) : (exp))
//Original code
waiting[current] = true;
//Injected operator
bool FAULT_NEG = false;
waiting[current] = NEG(true, FAULT_NEG);
//Expanded operator
bool FAULT_NEG = false;
waiting[current] =
(FAULT_NEG ? !(true) : (true));

Listing 8 Alternative expression.

1
2
3
4
5
6
7
8
9

10
11
12
13

//Macro definition for the operator
#define ALTEXP(exp, alt, trigger) (trigger ? (alt) : (exp))
//Original code
if (pid > current)
{ ... }
//Injected operator
bool FAULT_ALTEXP = false;
if (ALTEXP (pid > current, pid > current, FAULT_ALTEXP)
{ ... }
//Expanded operator
bool FAULT_ALTEXP = false;
if (FAULT_ALTEXP ? pid < current : pid > current)
{ ... }
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Example 4 Assume that the operating system using the 
SimpleScheduler will observe the variable current to determine 
which process to run, while the return value of the functions is 
only a secondary information used for administrative purposes 
(e.g., logging). In this setting, the incorrect value of the variable 
current is a severe system-level failure, while a wrong return 
value is more moderate and has less severe consequences.

Considering a NEG-mutation of the return statement in 
activate (line 11 in Listing 2), running the workload 
(Listing 9) will produce an assertion failure immediately after 
the first activate call, providing a trace leading from a fault- 
activation (setting the corresponding trigger variable to true) 
to the system-level failure (the failed assertion). From the trace, 
it is easy to obtain the activated fault, and also the failed asser-
tion, which will classify the failure as moderate.

The described process can be repeated for every fault, which 
takes us back to simulation-based SW-FMEA [9]. With a model 
checker, however, it is possible to analyze the effects of every 
fault together, which allows us to greatly speed up the process.

4.4 Efficiency and Lazy Evaluation
This section presents a method that can advance model 

checking-based SW-FMEA beyond a set of automated simu-
lations. The presented method can be implemented either by 
altering the model to achieve the desired effect, or by adapting 
the model checker to apply the method automatically.

From the technical point of view, the problem is that model 
checking is highly sensitive to the size and potential values of 
the state vector. Unfortunately, adding a set of nondeterministic 
boolean variables (here the trigger variables) increases the number 
of potential states exponentially. Moreover, if permanent faults 
are modeled in such a way that the initial activation is random, 
the number of initial states immediately blows up exponentially.

In order to avoid the combinatoric explosion, in our method 
we suggest a “lazy” strategy to evaluate fault activations. Let 
the trigger variables have ternary values, with the third value 
being undefined, also being the initial value. By injecting addi-
tional logic to access and evaluate the value of trigger variables, 
it is possible to defer the valuation and have identical states for 
multiple fault configurations up to an actual fault activation, 
from which point the error will propagate separately.

This effect is illustrated in Fig. 4. Assume that every branch 
in the state space is the result of deciding fault activations. When 
trigger variables are evaluated in an “eager ” way, there is only a 
single decision at the beginning of the program, setting at most 
one trigger to true. The rest of the execution is deterministic, 
therefore the shape of the state space is similar to the left figure.

In case of lazy evaluation, the activation of a fault is not 
decided until the corresponding code is executed. This means 
that when the first alteration is hit, a binary decision will occur: 
should the fault become activated or not? If it is activated, the 
program is again deterministic under the single fault assump-
tion. Otherwise, the program is run to the next decision point, 

Fig. 4 Shape of the state space with eager and lazy evaluation.

Listing 9 The workload and the expected behavior.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

int main()
{
bool ret;
ret = activate(0);	 assert(current == 0 && ret == true);
ret = activate(2);	 assert(current == 2 && ret == true);
ret = activate(1);	 assert(current == 2 && ret == false);
stop(2);		  assert(current == 1);
ret = activate(2);	 assert(current == 2 && ret == true);
stop(1);		  assert(current == 2);
stop(2);		  assert(current == 0);
ret = activate(1);	 assert(current == 1 && ret == true);
stop(0);		  assert(current == 1);
ret = activate(2);	 assert(current == 2 && ret == true);
stop(2);		  assert(current == 1);
stop(1);		  assert(current == -1);

}
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Listing 10 Lazy evaluation of triggers.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

//Ternary trigger type, the default value should be Undefined
enum t_trigger { Undefined, True, False }
//Any fault activated?
bool faulty = false;

//Lazy evaluation of the ternary trigger
#define EVAL(trigger) \
((trigger == Undefined ? \
trigger = (faulty ? False : nondet_val (True, False)) : \
trigger), \

(faulty = faulty || trigger), \
(trigger == True ? true : false))

//Implemented as a function (with C ++ reference type)
bool EVAL(t_trigger & trigger)
{
if (trigger == Undefined)

if (faulty)
trigger = False;

else
trigger = nondet_val(True, False);

faulty = faulty || trigger;
if (trigger == True)

return true;
else

return false;
}

//The omission operator
#define OM(stmnt, trigger) \
if (!(EVAL(trigger)) {stmnt;}

//The alternative statement operator
#define ALTSTMNT(stmnt, alt, trigger) \
if (EVAL(trigger)) {stmnt;} \
else {alt;}

//The negation operator
# define NEG(exp, trigger) \
((EVAL(trigger)) ? !(exp) : (exp))

//The alternative expression operator
#define ALTEXP(exp, alt, trigger) ((EVAL(trigger)) ? (alt) : (exp))

where the process repeats. The shape on the right of Fig. 4 is the 
result of not distinguishing between an activated and an inactive 
fault until the point this distinction becomes important, i.e., then 
the affected code is executed and an error is caused.

Example 5 To implement the lazy evaluation method by 
altering the model, the macros defined in Listings 5–8 can be 
extended. Since C does not include any constructs to describe 
nondeterministic choice and value assignment (for obvious 
reasons), let us assume that the function nondet_val(...) 
returns one of its arguments in an unpredictable (nondetermin-
istic) way. From a programmer point of view, such a func-
tion can be regarded as external input, but in formal modeling 
languages, such as PROMELA, nondeterministic behavior 
can be expressed and analyzed. Using this artificial function 
and an enum type instead of the Boolean trigger variables, 
the extended macros are shown in Listing 10. The presented 
version enforces that at most one fault can be activated in a 

permanent (non-transient) way. The evaluation mechanism is 
given both as C macro and as a C++ function for the sake of 
clarity (both of them can be translated to PROMELA).

4.5 Example: Analyzing the SimpleScheduler
The previous sections presented the general idea of our 

approach, along with detailed examples describing the specific 
application of the process on the SimpleScheduler example. To 
demonstrate the benefits of our automated SW-FMEA frame-
work, this section combines the previous examples to complete 
the analysis of the SimpleScheduler.

So far, we have seen four mutation operators defined as 
C-style macros (also available in PROMELA), implementing 
the lazy evaluation strategy and the constraint of having at most 
one (permanent) fault activation. To evaluate the fault effects 
in case of the SimpleScheduler (which is not yet prepared to 
handle any faults), we need to instantiate the mutation opera-
tors for the code shown in Listings 1–4.
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For the example, we chose to automatically instantiate 
an OM mutation for every simple instruction and a NEG 
mutation for every Boolean expression. The only exception 
is the condition on line 3 of preempt, where instead of a 
NEG mutation, we applied the ALTEXP operator to mimic the 
semantic fault of using the wrong relation operator (e.g., ‘<’ 
instead of ‘>’). We also used two instances of the ALTSTMNT 
operator: once on line 16 of the activate function to call 
the preempt function with the variable current instead 
of the parameter pid, and in the other case to use a forward 
loop instead of the correct backward loop on lines 11–22 of 
the stop function. Every alteration was assigned an identifier 
in the form <function name>_<mutation operator>_<affected 
line(s)> (for example, a NEG operator affecting the expression 
on line 3 of the activate function has the identifier 
ACTIVATE_NEG_3.

We will use the workload defined in Listing 9 together with 
the specified oracle (the assertions), this time not differenti-
ating between the various assertion violations. After running 
SPIN on the generated PROMELA model with the injected 
mutations, the tool returned a set of traces leading to asser-
tion violations. As the only nondeterminism in the model is 
introduced by the permanent fault activations, there could be 
a single trace for each fault that causes an assertion failure. 
For each trace, the last values of trigger variables can tell 

which fault activation the trace belongs to – this information is 
extracted into Table 1.

It is interesting to discuss the faults that did not cause an 
assertion failure. Only NEG and OM operators introduced non-
critical faults (i.e., faults that did not cause a failure), all of 
which affected lines setting the internal variables encoding the 
states of the processes. Only the variable encoding the Waiting 
state seems to be critical, as its wrong or missing assignment 
still causes some failures (and setting it to true seems to be 
more important). This should not be surprising, since only the 
value of this variable is read and used in the functions, specifi-
cally in the function stop.

Even in this small example, it is worth to analyze and inter-
pret the results. Constructs like the encoding of process states 
– that look natural at first – may turn out to be redundant or 
surprisingly critical. This is even more so if the system is large 
(thus the effects of a design decision are not easy to compre-
hend), so the techniques used here also get more beneficial as 
complexity grows.

5 Evaluation of Fault Tolerance Mechanisms and 
Error Detectors

Section 4 outlined a general approach to model checking-
based automated SW-FMEA. In this section, we present 
two applications of the method to evaluate fault tolerance 

Table 1 Results of SW-FMEA on the SimpleScheduler. The marked faults can cause a system-level failure.

ID of activated fault Failure ID of activated fault Failure

ACTIVATE_NEG_3 X PREEMPT_OM_9

ACTIVATE_ALTSTMNT_16 X PREEMPT_OM_12

ACTIVATE_NEG_6 PREEMPT_OM_13

ACTIVATE_NEG_7 PREEMPT_OM_14

ACTIVATE_NEG_8 PREEMPT_OM_16 X

ACTIVATE_NEG_11 X PREEMPT_OM_22

ACTIVATE_OM_6 PREEMPT_OM_23 X

ACTIVATE_OM_7 PREEMPT_OM_24

ACTIVATE_OM_8 STOP_NEG_7 X

ACTIVATE_OM_10 X STOP_ALTSTMNT_11_22 X

ACTIVATE_OM_16 X STOP_NEG_4

PREEMPT_ALTEXP_3 X STOP_NEG_5 X

PREEMPT_NEG_8 X STOP_NEG_6

PREEMPT_NEG_9 STOP_NEG_14 X

PREEMPT_NEG_12 STOP_NEG_18

PREEMPT_NEG_13 STOP_NEG_19

PREEMPT_NEG_14 STOP_OM_4

PREEMPT_NEG_17 X STOP_OM_5 X

PREEMPT_NEG_22 STOP_OM_6

PREEMPT_NEG_23 X STOP_OM_9 X

PREEMPT_NEG_24 STOP_OM_16 X

PREEMPT_NEG_25 X STOP_OM_18

PREEMPT_OM_8 X STOP_OM_19
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mechanisms and error detectors. Once the effects of a fault are 
discovered and understood, the next step (usually also part of 
the FMEA) is to design a mechanism for the detection and the 
mitigation of errors caused by the activation of the fault [18]. 
Using such mechanisms, it is possible to wrap “risky” compo-
nents to raise the overall reliability of the system [3]. Naturally, 
it is therefore equally important to evaluate the chosen tech-
niques. The goal of this section is to provide a measure for the 
efficiency of error detection and fault-tolerance mechanisms by 
analyzing how many and what type of faults they can detect or 
mask, respectively.

For an “absolute” measure, one can use an idealistic oracle 
(like the oracle we suggested in Section 4.2) as a baseline and 
“upper bound” on the efficiency of realistic approaches. In case 
of error detectors, it is also possible to compute the relative 
efficiency of two solutions, i.e., how much “better ” or “worse” 
is one of them compared to the other.

The measurement setting is the following. In case of error 
detectors, we first run a check with the oracle to get the total 
number of traces leading to observable failures (denoted T 
as total), then we measure the same number (denoted D as 
detected) with the evaluated detector (Fig. 5). Relative effi-
ciency is obtained by using another error detector as reference 
(to compute T) instead of the oracle. In case of fault toler-
ance mechanisms, both steps use the oracle, with the mecha-
nism integrated with the system in the second step (Fig. 6). 
Efficiency is then defined as follows.

•	 In case of error detectors, the efficiency is E = D/T.
•	 In case of fault tolerance mechanisms, the efficiency is 

E = (T − D)/T.

Fig. 5 Measurement setting for error detectors.

Fig. 6 Measurement setting for fault tolerance mechanisms.

Efficiency can also be defined for each fault type (or failure 
mode), giving a more detailed picture about the evaluated 
technique. By obtaining a number describing the efficiency 
of different approaches, we hope to help design decisions 
concerning what error detectors and fault tolerance mechanisms 
to use (possibly in some combination).

The following sections present detailed examples of applying 
and computing the introduced measures with the motivation of 
giving the reader a clear picture of the details and the benefits 
of using our approach. Readers not interested in the details of 
application are advised to skip the rest of Section 5 and continue 
with Section 6 where our industrial case study is described.

5.1 Example: Error Detectors
To illustrate the use of model checking-based SW-FMEA for 

the evaluation of error detectors, we have designed monitors for 
the SimpleScheduler example. This section shortly summarizes 
the implemented monitors to give some ideas about potential 
error detection techniques, then the results of the comparison – 
the efficiencies – are presented with detailed explanation.

5.1.1 The Master-Checker Monitor
The Master-Checker architecture uses a replica of the system 

to perform the same computation. The replica is often called a 
“Checker”, because its output is used to check the validity of 
the “Master” implementation – if they do not agree, the system 
signals and error. In this paper, we will refer to the “Checker” 
as the fault-free Reference Model (abbreviated as REF).

The Reference Model will be the same code (the imple-
mentation of the SimpleScheduler), but without any muta-
tions injected. The Master-Checker monitor code first runs the 
Master code, then the Checker, after which it compares the 
return values and the values of interface and internal variables. 
If any deviation is detected, the monitor signals an error, i.e., an 
assertion failure will occur.

Note that in this form, the Reference Model is an appropriate 
choice to measure the upper bound of detectable faults.

5.1.2 The State Machine Monitor
The State Machine monitor (abbreviated as SM) checks con-

formance with a more abstract version of the state machine shown 
in Fig. 1. Information about priorities and other processes are not 
taken into account, resulting in the state machine presented in 
Fig. 7 (for the sake of simplicity, transitions triggered by the two 
functions activate and stop are depicted separately).

The State Machine monitor maintains internal Boolean var-
iables to store the last state of the processes. After each call 
and for every process, it checks 1) if the process is in a valid 
state (i.e., only one of the corresponding Boolean variables is 
true), and 2) if there is an allowed transition between the last 
and the current state.

5.1.3 The Interface Contract Monitor
The Interface Contract monitor (abbreviated as IC) checks a 

set of requirements after each function call:
•	 After activate, if the process to be activated has higher 

priority than the process running before the call, it must 
be the one currently running.
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•	 After activate, the return value is true iff  the activated 
process has higher priority than the process running be-
fore the call.

•	 After stop, the new running process (if any) cannot have 
a higher priority than the one previously running (other-
wise there would have been a priority inversion, since the 
currently running process would have been waiting for 
another process with lower priority).

The monitor requires a single integer variable storing the ID 
of last running process, which is updated after each call.

5.1.4 The Priority Checker Monitor
The Priority Checker monitor (abbreviated as PC) performs 

the same check after each function call: there should be no pro-
cess that is in the Waiting state and has a higher priority than 
the currently running process.

The main difference between the Interface Contract and the 
Priority Checker is that the Interface Contract uses only the 
information available on the interface (i.e., the return value and 
the public variable current), while the Priority Checker observes 
the global state of the scheduler to monitor priority inversions.

5.1.5 Results
The results of running the model checker with the measure-

ment setting presented in Fig. 5 and analyzing the generated 
traces is shown in Table 2.

The first column shows the ID of the fault as introduced in 
Section 4.5. The second column belongs to the Master-Checker 
oracle (or Reference Model), which also serves as the baseline 
of comparison (T), while the remaining columns show results 
for the other three detectors and their combination (abbreviated 

as CMB). A cross in a cell denotes that the corresponding detec-
tor generated an error signal when the corresponding fault was 
activated. The two bottom rows summarize the performance of 
detectors with the number of faults detected and the efficiency 
computed with REF as the baseline.

The table has a number of interesting implications:
•	 The Reference Model (REF) failed to detect the activa-

tion of three faults: the omission of line 7 in activate 
and lines 13 and 24 in preempt. Both of these instruc-
tions set an internal Boolean variable that corresponds 
to a state that is neither left nor entered in that particular 
call, so it is not surprising that their omission does not 
cause a system-level failure – indeed it is safe to say that 
they are redundant.

•	 The State Machine monitor (SM) detected most of the 
faults related to the internal Boolean variables associated 
with the states of the processes.

•	 The Interface Contract (IC) detected most of the faults 
affecting the han- dling of variable current, but had no 
success with the stop function. This is due to the fact 
that the interface does not provide enough information to 
constrain the next running process.

•	 The Priority Checker (PC) detected problems related to 
the usage of variable current, the setting of the Boolean 
variable corresponding to the Waiting state, and the 
selection of the next process after stopping one.

•	 The combination of simpler detectors (CMB) is almost 
as efficient as the idealistic Reference Model. It fails to 
detect only the omission of line 16 in stop, which sets the 
variable current to the selected new process. Note that the 
combination of error detectors detects an error iff one of 
the constituent detectors can detect it.

(a) Allowed for activate calls (b) Allowed for stop calls.

Fig. 7 Transitions allowed by the SM monitor.
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Table 2 Efficiency of error detectors. More detected errors is better.

ID REF SM IC PC CMB

ACTIVATE_NEG_3 X X X

ACTIVATE_ALTSTMNT_16 X X X X X

ACTIVATE_NEG_6 X X X

ACTIVATE_NEG_7 X X X X

ACTIVATE_NEG_8 X X X

ACTIVATE_NEG_11 X X X

ACTIVATE_OM_6 X X X

ACTIVATE_OM_7 – – – – –

ACTIVATE_OM_8 X X X

ACTIVATE_OM_10 X X X

ACTIVATE_OM_16 X X X X

PREEMPT_ALTEXP_3 X X X X

PREEMPT_NEG_8 X X X

PREEMPT_NEG_9 X X X

PREEMPT_NEG_12 X X X

PREEMPT_NEG_13 X X X X

PREEMPT_NEG_14 X X X

PREEMPT_NEG_17 X X X X

PREEMPT_NEG_22 X X X

PREEMPT_NEG_23 X X X

PREEMPT_NEG_24 X X X

PREEMPT_NEG_25 X X X

PREEMPT_OM_8 X X X

PREEMPT_OM_9 X X X

PREEMPT_OM_12 X X X

PREEMPT_OM_13 – – – – –

PREEMPT_OM_14 X X X

PREEMPT_OM_16 X X X X

PREEMPT_OM_22 X X X

PREEMPT_OM_23 X X X

PREEMPT_OM_24 – – – – –

STOP_NEG_7 X X X

STOP_ALTSTMNT_11_22 X X X

STOP_NEG_4 X X X

STOP_NEG_5 X X X X

STOP_NEG_6 X X X

STOP_NEG_14 X X X X

STOP_NEG_18 X X X X

STOP_NEG_19 X X X

STOP_OM_4 X X X

STOP_OM_5 X X X X

STOP_OM_6 X X X

STOP_OM_9 X X X

STOP_OM_16 X

STOP_OM_18 X X X X

STOP_OM_19 X X X

Total detected [D]: 43[=T] 33 9 13 42

Efficiency [D/T]: 100% 76.7% 20.9% 30.2% 97.7%
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It is beneficial to investigate the missed fault of the com-
bined detector a bit further. The problem is that the SM moni-
tor does not see the value of current, the IC does not have 
enough information to constrain the new value (which will be 
-1 if line 16 is omitted) and since current is never changed, 
the loop will set every waiting process to the Running state 
which will cause the PC to detect no waiting processes at all.

In this case, it is now obvious that the SM monitor (or a new 
one) should also check if at most one process is running, but 
this was not clear before running the analysis. Indeed, one of 
the main benefits of applying our method is the better under-
standing of the system and the monitors, facilitating an iterative 
process that constantly raises the quality of the system.

5.2 Example: Fault Tolerance Mechanisms
We have also designed fault tolerance mechanisms for the 

SimpleScheduler example to illustrate the notion of efficiency 
in this case. These mechanisms are implemented as compo-
nents whose job is to mask the effects of faults before they 
propagate to other components [3]. To do this, they can alter 
the output and internal state of the system to maintain the most 
critical properties that must be satisfied.

The work published in [8] call this type of component a 
shield, because it protects the system from the most critical 
failures at the cost of sacrificing less important properties and 
functions. There are other, more heavyweight approaches, such 
as N-version programming [11], which does not sacrifice any 
behavior, but reduces failures by the means of voting. The fol-
lowing examples are similar to shields, but in a less formal way 
than described in [8].

5.2.1 Fixing Priority Problems
This component (abbreviated as FIXP) attempts to repair 

priority inversions by modifying the variable current if any 
problem is detected. Specifically:

•	 if after activation of a process, the currently running one 
has a lower priority than the one to have been activated, 
it modifies the variable current and the return value to re-
flect that the newly activated process should be running;

•	 if after activation, the currently running process has a 
lower priority than the previous one (if any), the previous 
process is restored as running and the return value is set 
to false to reflect that the new process should not have 
been activated;

•	 if after stopping a process, it is still set as currently run-
ning, the waiting process with highest priority is selected 
and the variable current is set to its ID.

Note that this shield is only concerned about the publicly 
accessible interface and does not alter the internal variables. 
The idea behind such a component is that its code is simple, 
reducing the chance of implementation errors, so it is usually 
safe to assume it functions correctly.

5.2.2 Synchronizing Variables and States
Another method to mask faults can be the synchronization 

of variables and states (abbreviated as SYNC). The variable 
current and the internal Boolean variables are not 
independent, so it is sometimes possible restore the states of 
the processes. The component has two goals:

•	 move the process identified by the variable current to 
the Running state by setting the corresponding Boolean 
variable (and unset it for every other process);

•	 make sure the encoding is valid for every process by 
unsetting variables that have not become true after the 
activate call (prioritizing the Running state in case of 
a conflict).

To do this, the component maintains a copy of the internal 
Boolean variables to store the last state of the processes (this 
enables the detection of what changed during the function 
call). Note that this strategy relies on the assumption of having 
at most one fault, as this way, it is not possible to achieve 
a different, but valid state for a process (it requires two 
instructions to unset the Boolean variable encoding the old 
state and then to set the new one).

5.2.3 Combined Strategy
We have also evaluated the combination of the FIXP and 

SYNC strategies (abbreviated as COMB), because they address 
different parts of the system. The combined component first 
runs the FIXP strategy to restore the currently running process 
based on priorities, then it applies the SYNC strategy to adjust 
the internal Boolean variables accordingly.

5.2.4 Results
The results of running the model checker with the measure-

ment setting presented in Fig. 6 and analyzing the generated 
traces is shown in Table 3.

The first column again shows the ID of the fault as introduced 
in Section 4.5. The second column still belongs to the Reference 
Model oracle, which will again serve as the baseline of 
comparison (T). The remaining columns show the faults that the 
Reference Model could not detect anymore when the system 
was integrated with a certain fault tolerance mechanism. A check 
mark in a cell denotes that the Reference Model did not generate 
an error signal (assertion violation) when the corresponding 
fault was activated, meaning that the given mechanism did its 
job – the goal is to mask the effect of as many faults as possible. 
The two bottom rows summarizes the performance of detectors 
with the number of faults masked (compared to the Reference 
Model) and the corresponding efficiency.

The implications of Table 3 are as follows:
•	 The FIXP strategy does not seem to be efficient on its 

own. It can mask only two faults: both of them are the 
omission of the setting of the variable current to the 
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Table 3 Efficiency of fault tolerance mechanisms. More mitigated faults is better.

ID REF FIXP SYNC COMB

ACTIVATE_NEG_3 X

ACTIVATE_ALTSTMNT_16 X

ACTIVATE_NEG_6 X ✓  ✓

ACTIVATE_NEG_7 X

ACTIVATE_NEG_8 X ✓ ✓ 

ACTIVATE_NEG_11 X

ACTIVATE_OM_6 X  ✓ ✓ 

ACTIVATE_OM_7 – – – –

ACTIVATE_OM_8 X ✓ ✓ 

ACTIVATE_OM_10 X ✓ ✓

ACTIVATE_OM_16 X

PREEMPT_ALTEXP_3 X

PREEMPT_NEG_8 X

PREEMPT_NEG_9 X ✓ ✓ 

PREEMPT_NEG_12 X  ✓ ✓ 

PREEMPT_NEG_13 X

PREEMPT_NEG_14 X ✓ ✓ 

PREEMPT_NEG_17 X

PREEMPT_NEG_22 X ✓ ✓ 

PREEMPT_NEG_23 X

PREEMPT_NEG_24 X ✓ ✓ 

PREEMPT_NEG_25 X

PREEMPT_OM_8 X

PREEMPT_OM_9 X  ✓ ✓

PREEMPT_OM_12 X  ✓ ✓ 

PREEMPT_OM_13 – – – –

PREEMPT_OM_14 X  ✓ ✓ 

PREEMPT_OM_16 X ✓  ✓

PREEMPT_OM_22 X  ✓  ✓

PREEMPT_OM_23 X

PREEMPT_OM_24 – – – –

STOP_NEG_7 X

STOP_ALTSTMNT_11_22 X

STOP_NEG_4 X

STOP_NEG_5 X  ✓

STOP_NEG_6 X  ✓  ✓

STOP_NEG_14 X

STOP_NEG_18 X  ✓  ✓

STOP_NEG_19 X  ✓  ✓

STOP_OM_4 X

STOP_OM_5 X  ✓  ✓

STOP_OM_6 X  ✓  ✓

STOP_OM_9 X  ✓

STOP_OM_16 X

STOP_OM_18 X  ✓  ✓

STOP_OM_19 X ✓  ✓

Total mitigated [T − D]: 0 2 20 24

Efficiency [(T − D)/T]: 0% 4.7% 46.5% 55.8%
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ID of the new process (lines 10 and 16 in activate and 
preempt, respectively). Note though, that these faults 
would cause immediate and serious failures.

•	 The SYNC strategy masks most of the faults related to the 
management of internal Boolean state variables, except 
those that correspond to setting a variable to false instead 
of true. This is because the component relies on the detec-
tion of changing a value of false to true. Nevertheless, 
46.5% of the faults were masked, which is almost ten times 
better than the efficiency of the FIXP strategy.

•	 The combined strategy (COMB) masks everything the 
two constituent strategies can mask, and even more. 
Note the masking of STOP_NEG_5 (line 5 in stop) and 
STOP_OM_9 (line 9 in stop), which were not masked by 
either strategy, but the combination is now able to negate 
their effects.

Again, it is beneficial to investigate these last two masked 
faults, this time by analyzing the sequence of actions after trig-
gering the fault. In case of STOP_NEG_5, the following will 
happen.

1.	 The fault STOP_NEG_5 is the wrong assignment of the 
Boolean variable corresponding to the Waiting state, 
which will cause the stopped process to be idle and wait-
ing at the same time.

2.	 This will cause to loop to find process just stopped as 
the waiting process with the highest priority, setting it 
as the currently running process and moving it from 
the Waiting state to the Running state (not changing the 
active Idle state).

3.	 The FIXP strategy notices that the same process is still 
running after stopping it, so it performs the selection it-
self (this time correctly).

4.	 At this point, the Reference Model would still signal 
an error, because the current process is in the Idle and 
Running state at the same time, and the Boolean state 
variables of the selected process is not adjusted by the 
FIXP strategy.

5.	 However, the SYNC strategy will now fix the state encod-
ing of each process, removing the stopped process from 
the Running state and leaving the Idle state active (be-
cause it indeed changed its value).

The effect of STOP_OM_9 is very similar.

1.	 The activation of STOP_OM_9 will cause the variable 
current to not reset to -1. For this reason, the loop will 
never start, leaving the stopped process as the one cur-
rently running.

2.	 The FIXP strategy again notices that the same process is 
still running after stopping it, so it performs the selection 
itself.

3.	 At this point, the Reference Model would again signal an 
error, because the Boolean state variables of the selected 
process is not adjusted by the FIXP strategy.

4.	 By applying the SYNC strategy as well, the state encod-
ing of each process is again fixed, adjusting the state of 
the newly activated process.

This example again showed that, in addition of assessing 
the efficiency of different methods, the analysis of fault tol-
erance mechanisms together with the system helps in under-
standing the behavior of the system itself and the strategies 
applied to mask errors.

6 OSEK API – An Industrial Case Study
In addition to the detailed running example, we also started 

to conduct a more realistic case study. To demonstrate the mer-
its of the proposed approach to industrial partners, we used the 
model of the OSEK API [1], a common interface definition for 
safety-critical embedded operating systems. In a related project1, 
an OSEK-compliant real-time operating system targeting the 
automotive industry was investigated to add fault tolerance and 
monitoring techniques addressing potential programming faults, 
both from the side of the OS and client applications. To aid design 
decisions, we have employed the presented approach to evaluate 
different solutions still in the modeling phase. For the analysis, 
we used a model of the OSEK API and a set of test programs 
(both correct and incorrect) as workload taken from [27] and a 
set of error detectors with assertions providing the “error signals”.

The OSEK API provides a set of interface functions with 
their syntaxes and also the semantics of the implemented OS 
primitives. The API defines primitives for task handling and 
scheduling; resource, interrupt and event handling; semaphores 
and messaging; as well as timers and alarms. For the case 
study, we used a model describing the Task API, the Resource 
API and the Event API. The SimpleScheduler running example 
can be regarded as a simplified version of this model, without 
events, resources, and a simplified internal behavior.

We have modeled two types of error detectors: as the ideal-
istic baseline oracle, a (fault-free) Reference Model that was 
compared to the state of the OSEK model after each interface 
call (see Section 5.1.1 for the main idea); as well as a Priority 
Checker that observes only the priorities of scheduled tasks 

1 This work has been partially supported by the CECRIS project, FP7–Marie 
Curie (IAPP) number 324334.
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(similar to the combination of the IC and PC monitors pre-
sented in Sections 5.1.3 and 5.1.4). The Priority Checker could 
detect if the scheduler violated the priorities, for example by 
preempting a task to run another one with lower priority.

6.1 Implementation of Automated SW-FMEA
Like in the case of the SimpleScheduler example, we have 

implemented the ap- proach described in Section 4 based on the 
model checker SPIN. Fault injection was performed by an aux-
iliary program that parsed the PROMELA model of the OSEK 
API and altered the code. For this first stage, we used a simple 
fault model: only OM-type mutations were injected into the 
model (see Section 4.1). We assumed a single, permanent fault 
that is activated in the initial state (with lazy evaluation built 
into the model as before).

SPIN was configured to perform a bounded depth-first 
search optimized for safety checking and enumerating every 
violating trace. The tool looked for assertion violations (errors 
detected by the evaluated error detectors) and also invalid end 
states (i.e. deadlocks). Once the model checking finished, the 
path was replayed to obtain the last (violating) state, containing 
the values of the trigger variables and the location of the error 
signal. This information was aggregated for all traces, resulting 
in the number of violating traces for each different fault-type.

We have measured the net time of model checking during 
the analysis process to evaluate the effects of lazy evaluation. 
Without lazy evaluation, the model checker ran for a total 
of 590.52 seconds, while the optimized model took 257.81 
seconds to check, 56.34% less than before. This gain varied 
between 12.84% (from 5.2s to 4.5s) and 76.27% (from 85s 
to 20s) depending on the workload, with a general tendency 
that workloads producing a higher run time benefit more from 
lazy evaluation (see Fig. 8 for a comparison of lazy and eager 
evaluation execution times for every test case). This is in line 
with our expectations, that is, with more trigger variables and 
more complex workloads (which is unavoidable with real-life 
projects), the speedup is greater.

Fig. 8 Comparison of lazy and eager evaluation in terms of execution time 
with logarithmic scales. The dashed line denotes the diagonal.

6.2 Results
Running the analysis with the two detectors showed the rela-

tive efficiency of the Priority Checker compared to the more 
“heavyweight” and rather idealistic Reference Model. The 
diagram in Fig. 9 illustrates the efficiency for each fault type 
(alteration in the API model) separately, also grouping them 
based on the related API. In this study, multiple test cases were 
used, so it is possible to compute the efficiency for every muta-
tion instance.

Although the fault model is simple, the diagram highlights 
that the Priority Checker can barely detect faults in the resource 
handling or task termination primitives, but it is comparable to 
the Reference Model for most of the faults related to reschedul-
ing (starting tasks and handling events).

In a real world example, analysis of the characteristics of 
different detectors could help in understanding their efficiency 
(or coverage) better. Both in this study and the running example, 
the monitoring solutions have different complexity and cost. 
By knowing the costs of a solution and its characteristics 
(revealed by the proposed analysis approach), it should be 
easier for engineers to find a cost-optimal solution with the 
highest possible benefits.

Fig. 9 Efficiency of the Priority Checker compared to the Reference Model
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7 Conclusion and Future Work
This paper presented a method for automated SW-FMEA 

based on model checking, applying the approach in the evalu-
ation of fault-tolerance mechanisms and error detectors. All of 
the concepts and techniques were demonstrated on a running 
example derived from the OSEK API definition, proving the 
benefits and the feasibility of the proposed approach, as well 
as providing enough details about the main ideas to help in 
their adaptation.

The main idea of the model checking-based method is to 
1) use model-level fault injection (or model mutations) with 
trigger variables to augment the system model with faults that 
can be activated, then 2) use formal specification or an oracle 
model to characterize system-level failures so that 3) the model 
checker can generate traces leading from a fault activation to a 
failure. This approach is improved by lazy evaluation, which is 
a technique to reduce the size of the state space.

Evaluation of fault-tolerance mechanisms and error detec-
tors is based on the notion of (relative) efficiency that describes 
the number of masked/revealed errors compared to an oracle or 
another technique (respectively). To the best of our knowledge, 
there is no other work addressing the evaluation of such tech- 
niques in a model-based FMEA setting. We have showed how 
this additional information can aid safety-engineers in early 
design decisions.

The main contribution of this paper is the outline of a gen-
eral idea. In order to adapt it to a certain problem, there are a 
number of concerns to be considered case by case, including 
the modeling language, the mutation operators used, and the 
type of model checker to employ. We hope to help this process 
by having provided the most important concepts and points of 
interests through a detailed running example.

We have identified several topics for future work. First, the 
fault model for executable software models has a great impact 
on the validity of the re- sults, so a fine-tuned and validated 
fault model is necessary. We plan to use completed projects 
with code-level fault injection to statistically compare the 
effects of model-level and code-level faults, similarly to [17], 
where code-level fault injection was compared to real software 
faults. Secondly, a specific model checking algorithm could 
inherently optimize the structure of the state space without lazy 
evaluation injected into the model (see Section 4.4). This could 
be further supported with specific programming/modeling lan-
guages, for ex- ample by extending C with nondeterministic 
choice and assignment, or by annotations marking fault injec-
tion points in the code. Thirdly, the OSEK case study presented 
here is only in a preliminary phase – modeling other aspects of 
the OSEK API and additional error detectors or fault-tolerance 
mechanisms will be necessary.
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