
Period. Polytech. Elec. Eng. Comp. Sci.� T. Tóth, I. Majzik

Formal Verification of Real-Time
Systems with Data Processing

Tamás Tóth1*, István Majzik1

Received 19 July 2016; accepted after revision 16 October 2016

Abstract
The behavior of practical safety critical systems often com-
bines real-time behavior with structured data flow. To ensure
correctness of such systems, both aspects have to be modeled
and formally verified. Time related behavior can be efficiently
modeled and analyzed in terms of timed automata. At the same
time, program verification techniques like abstract interpreta-
tion and software model checking can efficiently handle data
flow. In this paper, we describe a simple formalism that rep-
resents both aspects of such systems in a uniform and explicit
way, thus enables the combination of formal analysis methods
for real-time systems and software using standard techniques.

Keywords
model checking, abstract interpretation, abstraction refinement,
timed automata, control flow automata

1 Introduction
Ensuring the correctness of safety critical systems using

formal verification is a challenging task as it requires formal
modeling of the system in question, as well as the application
of formal analysis techniques. Usually, the behavior of prac-
tical safety critical embedded systems exhibits both real-time
aspects (e.g. switching to an error state after a certain amount
of time has passed since the last event occurred) and data flow
(e.g. branching on the value of a program variable or initializ-
ing a loop counter).

Time-related behavior can be conveniently modeled in terms
of timed automata [1]. Model checkers for timed automata
like Uppaal [2] and Kronos [3] can efficiently verify models
using dedicated data structures that represent abstractions over
real-valued clock variables.

On the other hand, state-of-the-art program verifiers [4] are
designed to handle complex data flow, described in terms of a
control flow automaton, and often use abstraction-refinement
techniques [5] to handle variables of possibly infinite domains.

In this paper, to enable integration of verification techniques
used in real-time verification and program verification, we
define a formalism, Timed Control Flow Automata (TCFA),
that is an extension of Control Flow Automata (CFA) used in
program verification, with notions of Timed Automata (TA),
the prominent formalism of real-time verification. Its main
advantage is that it represents both data flow and timing uni-
formly, explicitly and in a way that is similar to the original
formalisms, thus enables the application and combination of
analyses that fit to the respective aspects. We define the syntax
and semantics of the formalism, and describe how it relates to
CFAs and TAs. Furthermore, we outline how analyses for the
two formalisms can be combined using standard techniques to
obtain efficient modular verifiers for TCFAs.

This paper is an extended version of [6]. Among a more
detailed description of the concepts outlined there, it contains
the description of an implementation of a verifier based on
those concepts. Moreover, the paper contains the evaluation
of said verifier on examples, including the verification of an
industrial SCADA system.

1 Budapest University of Technology and Economics,
Department of Measurement and Information Systems
Fault Tolerant Systems Research Group
* Corresponding author, e-mail: totht@mit.bme.hu

61(2), pp. 166-174, 2017
https://doi.org/10.3311/PPee.9766

Creative Commons Attribution b

research article

PPPeriodica Polytechnica
Electrical Engineering
and Computer Science

166

mailto:totht@mit.bme.hu
https://doi.org/10.3311/PPee.9766

Formal Verification of Real-Time Systems with Data Processing� 2017 61 2

1.1 Related Work
Timed automata [1] is a widely used formalism for the

modeling and verification of real-time systems. Dedicated
model checkers for timed automata like Uppaal [2] and Kro-
nos [3] usually use zone based abstractions [7-9] and efficient
data structures like difference bound matrices [10] as their
implementation to represent the infinite state space induced
by real-valued clock variables. Abstraction-refinement tech-
niques have also been developed for timed automata [11-13]
to reduce size of the search space or the number of clocks vari-
ables considered.

A different line of work addresses the problem of real-time
verification by using general infinite state model checking
techniques based on satisfiability modulo theories (SMT) [14]
solving, either directly or by tailoring them to timed autom-
ata. Proposed approaches include predicate abstraction with
counterexample guided abstraction refinement [15, 16], sym-
bolic backward search [17, 18], bounded model checking [19],
k-induction [20], abstraction refinement using Craig interpola-
tion [21], property directed reachability [20, 22-24] and Horn
clause solving [22, 25].

While the formalization we propose allows for the utiliza-
tion of both approaches for the formal verification of real-time
systems, it naturally enables the application of a combined
approach, where timed aspects are handled by dedicated algo-
rithms for real-time, and data manipulation is addressed by the
use of SMT-based infinite state model checking techniques.

1.2 Organization of the Paper
In Section 2, we define the notations used throughout the

paper, and present the theoretical background of our work. In
Section 3, we introduce the formalism of Timed Control Flow
Automata, an extension of Control Flow Automata with notions
of Timed Automata, and describe how verifiers for data flow
and timing can be combined using standard combination meth-
ods to obtain efficient modular verifiers for the formalism. Sec-
tion 4 describes our implementation of the formalism and corre-
sponding analyses, and the evaluation of our implementation on
examples. Finally, conclusions are given in Section 5.

2 Background and Notations
In this section, we define the notations used throughout the

paper, and outline the theoretical background of our work.

2.1 General notions
Types. Let Type denote a set of types and Dom a map-
ping from types to their semantic domains. We assume
{bool, int, real} ⊆ Type such that Dom (bool) =  ,
Dom (int) = Z and Dom (real) = R .

Variables. Let Var be a set of program variables. Variables
have types, expressed as function type : Var → Type . We

abbreviate Dom (type (v)) by Dom (v). The set of variables of
type τ  Type is denoted by Var (τ) = {v  Var | type(v) = τ }.

Expressions. Let Expr be a set of well-typed expressions over
Var. An expressions can contain program variables v  Var ,
logical connectives (true, false, ¬ , ∨ , ∧ , → , ↔), quantifiers
("x : τ ∙ φ , ∃x : τ ∙ φ) and logical variables, interpreted func-
tion symbols (e.g. 0. +, ∙

), interpreted predicate symbols

(e.g.  , < , ≤), uninterpreted function and predicate sym-
bols, and type constructors and accessors in case the type
system supports complex data types. Given an expression
e  Expr and a type τ  Type , we denote by e : τ iff e has
type τ . Naturally, v : τ iff type (v) = τ for all variables
v  Var and types τ  Type . The set of formulas is denoted by
Form = {φ  Expr | φ : bool } .

States. A concrete data state   State is a mapping from
variables to values such that  (x)  Dom (x) for all x  Var .
We also extend this notion to arbitrary expressions. For a state
  State and formula φ  Expr , we denote by   φ iff
 (φ) = 1.

2.2 Transition Systems
Transition systems are widely used for the formal modeling

of the behavior of reactive systems.

Syntax. Formally, a labeled transition system is a tuple
TS = (S, Act, →, I) where

•	 S is a set of states,
•	 Act is a set of actions,
•	 → ⊆ S × Act × S is a transition relation and
•	 I ⊆ S is the set of initial states.

For convenience, we denote by s sα → ′ iff (s, α, s')  →.

Semantics. A finite execution fragment of a transition sys-
tem is an alternating sequence of states si  S and actions
αi  Act of the form s0α1s1α2 … αnsn such that s si i

iα + → +
1

1 for all
0 ≤ i <n . An execution fragment is initial iff s0  I . We say
that a state s  S is reachable in a transition system iff there
exists a finite initial execution fragment for the system such
that s = sn .

2.3 Timed Automata
Timed automata [1] is the most prevalent formalism for

modeling real-time systems.

Syntax. A timed automaton is a tuple

TA = (Loc, Clock, ↪ , Inv, 0)

where
•	 Loc is a finite set of locations,

167

Period. Polytech. Elec. Eng. Comp. Sci.� T. Tóth, I. Majzik

•	 Clock is a finite set of clock variables such that x : real≥0
for all x ∈ Clock ,

•	 ↪ ⊆ Loc × ClockConstr × (Clock) × Loc is a set of
transitions where given a transition (, g, R, ')  ↪ ,
g ∈ ClockConstr is a guard and R  Clock is a set con-
taining clocks to be reset,

•	 Inv : Loc → ClockConstr is a function that maps to each
location an invariant condition over clocks, and

•	 0  Loc is the initial location.

Here, ClockConstr ⊆ Form denotes the set of clock con-
straints, that is, formulas of the restricted form

ϕ ϕ ϕ::= | | − | ∧true x c x x ci i j 

1 2

where xi , xj  Clock , ~  {<, ≤, >, ≥, =} and c is an integer
literal.

Semantics. The operational semantics of a timed automaton can
be defined as a labeled transition system (S, Act, →, I) where

•	 S = Loc × State ,
•	 I = {0 } × {  State |  (x) = 0 for all x  Clock and

  Inv (0) },
•	 Act = ≥0 È {τ},
•	 and a transition t  → of the transition relation

→ ⊆ S × Act × S is either a delay transition that increases
all clocks with a value δ ≥ 0 :

 

 

∈ ≥ ′ = ,() ′ ()
,() → , ′()

Loc Delay Invδ δ
δ

0 S S S �
S S

or a discrete transition:

�
g,R
↪−−→ �′ S |= g S ′ = Reset(S, R) S ′ |= Inv(�′)

(�, S) −τ→ (�′, S ′)

Here, Delay : State × ≥0 → State assigns to a state   State
and a real number δ ≥ 0 a state Delay (, δ) such that

Delay v
v v Clock
v





,()() = () + ∈

()





δ

δ if

otherwise

Moreover, function Reset : State × (Clock) → State mod-
els the effect of resetting clocks in R to 0 in state   State:

Reset R v
v R

v



,()() =

∈

()




0 if

otherwise

Example. Fig. 1 shows the timed automaton of a simple timed
switch, that after switched on, remains in that state for at least
one and at most two time units. On the figure, edges are labeled
by clock resets and guards, and locations are labeled by invari-
ants, in accordance with the syntax.

Fig. 1 Timed switch as a TA

2.4 Control Flow Automata
In software model checking, programs are often modeled in

terms of control flow automata.

Syntax. A control flow automaton is a tuple

CFA = (Loc, Var, ↪ , 0)

where
•	 Loc is a finite set of program locations,
•	 Var is a set of program variables,
•	 ↪ ⊆ Loc × Stmt × Loc is a set of control flow edges, and
•	 0  Loc is the initial location.

Here, Stmt denotes the set of statements. Although our for-
malization admits arbitrary structured statements, for the sake
of simplicity we assume that statements are of the form

s v e v s s::= []| := | | ;ϕ havoc

where v  Var , e  Expr and φ  Form . Statement [φ] is an
assume statement, v := e is an assignment of e to v , havoc v
is an assignment of an arbitrary value of a suitable type to v ,
and s ; s is a sequential statement.

Semantics. The operational semantics of a control flow autom-
aton can be conveniently expressed in terms of a labeled transi-
tion system (S, Act, →, I) where

•	 S = Loc × State ,
•	 I = {0 } × State ,
•	 Act = Stmt ,
•	 and the transition relation → ⊆ S × Act × S is defined

by the rule

�
s
↪−→ �′ S ′ ∈ Succ(S, s)

(�,S) s−→ (�′,S ′)

Here, Succ : State × Stmt → (State) is the (not necessarily
total) semantic function that assigns to a state   State and a
statement s  Stmt a set of successor states Succ (, s) . It can
be defined as the smallest relation satisfying the following rules:

s
Succ s

= []
∈ ,()
ϕ ϕS �

S S

s v e v e
Succ s

= :=() ′ = () 
′∈ ,()
S S S

S S

�

168

Formal Verification of Real-Time Systems with Data Processing� 2017 61 2

s v x Dom v v x
Succ s

= ∈ () ′ = []
′∈ ,()

havoc S S
S S

 �

s s s Succ s Succ s
Succ s

= ;() ′∈ ,() ′′∈ ′,()
′′∈ ,()

1 2 1 2
   

 

Example. As a simple example, Fig. 2 shows the CFA model
for the Euclidean algorithm for computing the greatest com-
mon divisor for two integers a and b.

Fig. 2 Euclidean algorithm as a CFA

2.5 Abstraction
To ensure termination or efficiency, program analyzers and

modern model checkers check abstractions of systems [26],
expressed in terms of abstract domains.

Abstract domain. An abstract domain is a triple  = (S ,  , γ)
where

•	 S is the set of concrete states, also called the concrete
domain,

•	  = (E ,  , ^ ,  , ) is a semi-lattice over the set of
abstract states E with a top element  ∈ E , a bottom
element ^  E , a preorder  ⊆ E × E and a join opera-
tor  : E × E → E , and

•	 γ : E ® (S) is the concretization function that assigns
to each abstract state the set of concrete states it repre-
sents. It satisfies the following properties:
-	 γ (^) = Æ,
-	 γ () = S and
-	 γ (e1) È γ (e2) ⊆ γ (e1  e2) for all e1, e2  E

Abstract semantics. Given a transition system (S, Act, →, I)
for the concrete semantics, the abstract semantics of the system
w. r. t. abstract domain (S ,  , γ) can be expressed as a transi-
tion system (E, Act, , E0) . Here,  is the abstract transition
relation (also called a transfer relation) and E0 is the set of
initial abstract states. For soundness of the abstraction, the fol-
lowing properties must hold:

•	 I e
e E

⊆ ()
∈0 0

0

γ and

•	
s e e e

s S s s e
∈ ′

′∈ |  → ′() ⊆ ′()
γ

α α γ
()

  
 for all e ∈ E

and α  Act .

A verifier for the reachability of error states can then analyze
the system by exploring the abstract state space and applying
abstraction refinement [5] in case of a spurious counterexample
that cannot be simulated according to the concrete semantics.

Combining abstractions. A modular way for constructing
complex abstractions is by combining simpler abstract domains
[27]. Known methods for combination of abstract domains in-
clude direct and reduced product [27], and logical product [28]
constructions.

Although in general weaker than the other two methods, for
simple cases where the component analyses refer to completely
independent aspects of the system, even the direct product con-
struction provides the strongest combination. Due to this fact
and for ease of exposition, we restrict presentation to direct
products, indicating that methods outlined later can be general-
ized directly to more involved combinators as well.

Given two abstract domains 1 = (S , 1 , γ1) and
2 = (S , 2 , γ2) , their direct product is 1 × 2 = (S ,  , γ) where
 = 1 × 2 and γ ((e1 , e2)) = γ1 (e1) Ç γ2 (e2) for all e1 ∈ E1
and e2 ∈ E2 . Moreover, given two transfer relations 1 and
2 for the respective domains over a common set of actions
Act , their direct product is defined as the strongest relation
 = 1 × 2 such that the following property holds:

e e e e
e e e e

1 1 1 2 2 2

1 2 1 2

� �
�
′ ′

,() ′, ′()
α α

α

Hence, the direct product abstraction tracks the „conjunc-
tion” of the information that can be obtained by running the
component analyses independently.

Examples. Predicate abstraction [29] is a well known tech-
nique for obtaining finite abstractions of system with a po-
tentially infinite state space (e.g. sequential programs). Here,
given a set of predicates {p1 , p2 , … pn } (the precision), each
one of the at most 2n possible consistent valuations of the pred-
icates corresponds to an abstract state. Predicate abstraction is
well suited to counterexample-guided abstraction refinement
[5], where the precision is augmented by additional predicates
in case the current abstraction is not strong enough to exclude
a spurious counterexample.

Zone abstraction (see e.g. [7]) is widely used for the veri-
fication of timed systems. In zone abstraction, abstract states
are zones, that is, sets of interpretations of clock constraints (or
in general, conjunctions of difference constraints). Over timed
automata, zone abstraction is exact for both forward and back-
ward search. To ensure termination however, extrapolation is
used as the number of reachable zones of an automaton is not
necessarily finite.

169

Period. Polytech. Elec. Eng. Comp. Sci.� T. Tóth, I. Majzik

3 Timed Control Flow Automata
In this section, we introduce timed control flow automata,

an extension of control flow automata with notions of timed
automata. The formalism models both data flow and timing
uniformly, explicitly and in a way that is similar to the orig-
inal formalisms. As a consequence, the formalism enables the
creation of efficient, modular verifiers by the combination of
abstractions for the respective aspects using standard combina-
tion techniques.

3.1 Modeling formalism
Syntax. A timed control flow automaton is a tuple

TCFA Loc Urg Var Clock Inv= , , , , , ,() ↪ �0

where
•	 (Loc, Var, ↪ , 0) is a CFA,
•	 Urg ⊆ Loc is a set of urgent locations [2] that model

locations where time shouldn’t pass,
•	 Clock ⊆ Var is the set of clock variables, and
•	 Inv : Loc → Form is a function that maps invariants to

locations.

As can be seen from the definition, a TCFA can either be
considered a CFA extended with clock variables, urgent loca-
tions and location invariants, or alternatively, as a generalized
TA with urgent locations where guards and clock resets are rep-
resented as statements.

Semantics. The semantics of a timed control flow automaton is
a transition system (S, Act, →, I) where

•	 S = Loc × State ,
•	 I = {0 } × {0  State | 0  Inv(0 ) }, that is, all vari-

ables (including clocks) have an arbitrary initial value of
the corresponding type that satisfies the invariant of the
initial location,

•	 Act = Stmt È {delay} ,
•	 and a transition t  → of the transition relation

→ ⊆ S × Act × S is either a delay transition that increases
all clocks with a value δ ≥ 0:

 

 

∉ ≥ ′ = ,() ′ ()
,() → , ′()

Urg Delay Invδ δ0 S S S �
S Sdelay

or a discrete transition that models the execution of a statement
s  Stmt :

�
s
↪−→ �′ S ′ ∈ Succ(S, s) S ′ |= Inv(�′)

(�, S) −s→ (�′, S ′)

As it can be seen, the two types of transitions are analogous
to the cases described for timed automata. We note however
that for the analysis of reachability properties, a combined
step semantics [20] can be defined as an alternative where a

transition is a combination of a single delay and a discrete
transition. In this case, finite initial execution fragments that
witness the reachability of a given state are potentially half
as long. This enhances performance of reachability checking
compared to the original formulation, especially for verifiers
based on unrolling of the transition relation or counterexample
guided abstraction refinement.

Example. As an example, Fig. 3 depicts Fischer’s protocol [30]
as a TCFA. Here, a , b and i are constant values of type int.

Fig. 3 Fischer’s protocol as a TCFA

Interleaving of TCFAs. To enable modeling of concurrent
systems, we define the interleaving of two TCFAs. Given

TCFAi = (Loci, Urgi, Var i, Clock i, ↪→i, Inv i, �0,i)

for i Î {1, 2}, their interleaving is defined as

TCFA1 ||| TCFA2 = (Loc, Urg , Var , Clock , ↪→, Inv , �0)

where
•	 Loc = Loc1 × Loc2 ,
•	 Var = Var1 È Var2 ,
•	 0 = (0,1 , 0,2)
•	 Urg = Urg1 × Loc2 È Loc1 × Urg2

•	 Clock = Clock1 È Clock2,
•	 Inv((1 , 2)) = Inv1(1) Ù Inv2(2), and
•	 ↪ is defined by the following rules:

�1
s
↪−→1 �

′
1

(�1, �2)
s
↪−→ (�′1, �2)

and
�2

s
↪−→2 �

′
2

(�1, �2)
s
↪−→ (�1, �′2)

Here, Var1 Ç Var2 are shared variables, and Clock1 Ç Clock2
are shared clocks.

3.2 Connection to TAs and CFAs
The TCFA formulation admits a simple and uniform descrip-

tion of both CFAs and TAs.

TA as TCFA. For any TA = (Loc, Clock, ↪0

, Inv, 0) there

exists a TCFA = (Loc, Ø, Clock, Clock, ↪, Inv, 0) that -
aside from the inital values of clocks and the action labels

170

Formal Verification of Real-Time Systems with Data Processing� 2017 61 2

on transitions - is semantically equivalent to the original TA.
Here, ↪ is defined by the following rule:

�
g,R
↪−−→0 �

′ R = {x1, . . . , xn}

�
[g] ; x1:=0 ; ... ; xn:=0
↪−−−−−−−−−−−−−→ �′

CFA as TCFA. For any CFA = (Loc, Var, ↪, 0 ) , there exists a
semantically equivalent TCFA = (Loc, Loc, Var, Ø, ↪, Inv, 0)
where Inv ( ) = true for all   Loc .

TCFA as CFA. For any TCFA = (Loc, Urg, Var, Clock, ↪0  ,
Inv, 0) such that Inv (0  ) = true , there exists a semantically
equivalent CFA = (Loc, Var, ↪, 0 ) (aside from action labels on
transitions), where ↪ is defined by the following rules:

•	 Simulating discrete transitions:

�
s
↪−→0 �

′ ϕ = Inv(�′)

�
s ; [ϕ]
↪−−−→ �′

•	 Simulating delay transitions:

� ∈/ Urg ϕ = Inv(�)

�
delay ; [ϕ]
↪−−−−−−→ �

Here, delay stands for the statement

havoc δ ; x1 := x1 + δ ; . . . ; xn := xn + δ

where δ : real≥0 is a distinguished delay variable and Clock = {x1, . . . , xn}.

Here, delay stands for the statement

havocδ δ δ; := + ; := +x x x xn n1 1
;

where δ : real≥0 is a distinguished delay variable and
Clock = {x1 , … , xn }.

By applying this simple translation, the application of pro-
gram verifiers become directly available for the analysis of
timed systems. However, as in this case time related behav-
ior becomes implicitly encoded during the translation, such
an approach is expected to be not necessarily complete and
in general less efficient than the use of a dedicated algorithm
(see related work in Section 1) that addresses real-time aspects
directly, especially for models with many clock variables.

3.3 Abstraction for TCFAs
The main advantage of the above formulation is that it

admits verifiers to be built in a modular way. More precisely,
given abstractions data for data variables and time for clock
variables with respective transfer relations data and time ,
by combining the two abstractions (e.g. by taking their direct
product in the simplest case) an analysis can be built that is a
full-fledged verifier for the complete system (we assume that
the control location is explicitly tracked). Here, data essen-
tially realizes an analysis for software that operates on CFAs,
and time realizes an analysis for TAs, expressed over the uni-
form representation of TCFAs.

Example. As a simple example, Fig. 4 illustrates the abstract
state space of Fischer’s protocol where data is predicate ab-
straction over a singleton set of predicates {lock = i} for some
i≠ 0 , time is zone abstraction over a singleton set of clocks
{x} , and the combined abstraction is data × time . On the fig-
ure, abstract states are depicted as rounded rectangles, where
the current location is shown in the left compartment, and the
information tracked by the zone and predicate analyses are de-
picted in the middle and right compartments, respectively. With
both timing and data handled with an appropriate abstraction,
a compact over-approximation of the concrete state space is
obtained that enables sound and efficient reachability analysis
of the system.

Fig. 4 Abstract Reachability Graph for Fischer’s protocol

As hinted earlier, in simple cases like this, the direct product
provides the strongest combination, as statements and atomic
formulas occurring in invariants are pure in the sense that they
do not mix clock and data variables. However, this restriction
doesn’t apply to the formalism itself, and in principle analyses
can be defined for cases where data and clock variables are
in some way interdependent (e.g. a clock is reset to the value
stored in a data variable, the current value of a clock is stored in
a data variable, clocks are allowed to be bound by data values
in assumptions and invariants). Such complex cases are how-
ever out of the scope of this paper.

171

Period. Polytech. Elec. Eng. Comp. Sci.� T. Tóth, I. Majzik

4 Implementation
As a proof of concept, we implemented several analyses in

our verification framework to enable analysis of TCFAs. We
also evaluated our implementation on two models.

4.1 A Framework for Abstract Model Checking
The basis for our implementation is a framework that sup-

ports formal verification based on abstraction and abstraction
refinement. The simplified architecture of the framework is
depicted on Fig. 5.

Our framework provides the following components out-of-
the box:

•	 Abstraction Model Checker. An abstraction model
checker is implemented that builds the abstract reach-
ability tree (ART) of a system w.r.t. a given abstraction
and precision.

•	 Abstraction Refiner. Optionally, the model checker can
be augmented with an abstraction refiner component. The
model checker and the refiner then can be organized to
an abstraction refinement loop. In this case, an abstract
counterexample found by the model checker can be
passed to the refiner to either concretize it, or exclude it
from later search by refining the abstraction. After suc-
cessful refinement, the model checker can continue with
the expansion of the reachability tree.

•	 Abstract Domains. Supported domains include predicate
domain, zone domain and explicit value domain. More-
over, since the framework is not specialized to any par-
ticular formalism, a domain is defined to track the current
control location of an automaton (as in [31]) to enable
flow-sensitive analysis of such formalisms.

•	 Combination of Domains. The generic direct product
construction is implemented both for abstract domains
and transfer relations. Combined domains can optionally
be augmented with a reduction operator, thus providing a
stronger abstraction.

•	 SMT Solvers. The framework defines a common inter-
face for SMT solvers, with support for generation of

interpolants [32]. The solvers can be used for implement-
ing transfer relations or abstraction refiner components.

4.2 Analysis Support for TCFAs
We implemented the modeling formalism of TCFAs as

described in the paper, including the interleaving operator
to support the modeling of networks of TCFAs. Moreover,
to enable the formal verification of TCFAs, we extended the
framework with the following components:
•	 Transfer Relations. Transfer relations for TCFAs interpret

delays and statements over a given abstract domain. We
implemented transfer relations for all the abstract domains
mentioned above.

The framework and the extensions implemented for TCFAs
thus enable abstract model checking for networks of TCFAs,
with several different combinations that differ in the handling
of data and timing (e.g. explicit tracking of values, the appli-
cation of predicates, or both for data variables). As for a given
system some of the many configurations might be more fitting
than others, more efficient verification can be achieved, either
by using selection heuristics based on the input model or by
running diverse configurations in parallel as part of a portfolio.

4.3 Evaluation
We evaluated our implementation of abstractions for net-

works of TCFAs by generating abstract reachability trees over
different abstract domains for two models: Fischer’s mutual
exclusion protocol, and a protocol from an industrial railway
supervisory control and data acquisition (SCADA) system.

Example. For Fischer’s protocol, we compared two combina-
tions of abstractions: predicate abstraction and explicit value
analysis, combined with zone abstraction in both cases. Using
predicate analysis over the single predicate lock > 0 , our im-
plementation generates the ART in 4 seconds for 3 processes,
and reaches the timeout (set to 5 minutes) for 4 processes due
to a large state space. However using explicit value analysis,

Fig. 5 Architecture of the Analysis Framework

172

Formal Verification of Real-Time Systems with Data Processing� 2017 61 2

the generation of the ART takes 1 second for 3 processes, 10
seconds for 4 processes, and results in timeout for 5 processes.
For comparison, our implementation is less efficient yet than
the sophisticated and optimized implementation of Uppaal for-
ward search (without state space reduction and extrapolation),
but the limits are similar: Uppaal is able to generate the state
space of 5 processes in 4 seconds and reaches timeout for 6
processes.

Example. Our other example is a protocol from an industrial
SCADA system. Its primary function is dependable connection
handling between the field and control units of the railway con-
trol system with given timing conditions. For a detailed de-
scription of the protocol, see [33].

We modeled the protocol as a network of TCFAs, under a
fault model that permits the loss of a single message. The for-
malism was well applicable to the task, as in the protocol both
real-time (e.g. sending synchronization messages periodically)
and data related (e.g. storing messages) behavior was present.
Fig. 6 depicts the TCFA model of a component in the protocol.

Due to the presence of clock variables and the small number
of possible values for data variables in the TCFA model of the
protocol, we applied the combination of zone abstraction and
explicit value analysis for its verification. The abstract reach-
ability tree generation for the model executed in one second.

Fig. 6 TCFA Model of SCAN Connection Handling (Field Side)

5 Conclusions and Future Work
In this paper, we described the formalism of timed control

flow automata that is an extension of control flow automata
with notions of timed automata. We compared it to the origi-
nal formalisms, and demonstrated how modular verifiers can
be built for the formalism by combining abstractions used for
CFAs and TAs using standard combination techniques.

The main advantage of the method is that it enables the use
of many different abstraction techniques for both data and tim-
ing, some of which may be more efficient than the others for
the given model. The price of such an approach is the overhead
caused by the indirection introduced for the generic handling
of abstractions.

In the future, we plan to implement further analyses for the
formalism and augment them with abstraction refinement tech-
niques known from the area of software model checking. More-
over, to enable modeling of industrial systems, we plan to inves-
tigate analyses that enable the verification of parametric systems
and cases where clock and data variables are interdependent.

Acknowledgment
This work was partially supported by Gedeon Richter's Talen-

tum Foundation (Gyömrői út 19-21, 1103 Budapest, Hungary).

References
[1]	 Alur, R., Dill, D. L. "A theory of timed automata." Theoretical Computer

Science. 126(2), pp. 183-235. 1994.
	 https://doi.org/10.1016/0304-3975(94)90010-8
[2]	 Behrmann, G., David, A., Larsen, K. G., Håkansson, J., Petterson, P.,

Wang, Y., Hendriks, M. "UPPAAL 4.0." In: Third International Confer-
ence on the Quantitative Evaluation of Systems, Riverside, CA, USA,
Sept. 11-14, 2006, pp. 125-126. https://doi.org/10.1109/QEST.2006.59

[3]	 Bozga, M., Daws, C., Maler, O., Olivero, A., Tripakis, S., Yovine, S.
"Kronos: A model-checking tool for real-time systems." In: Ravn, A.P.,
Rischel, H. (eds.) Formal Techniques in Real-Time and Fault-Tolerant
Systems. FTRTFT 1998. Lecture Notes in Computer Science, Vol. 1486.
Springer, Berlin, Heidelberg. 1998

	 https://doi.org/10.1007/BFb0055357
[4]	 Beyer, D. "Software Verification and Verifiable Witnesses." In: Taier C.,

Tinelli C. (eds.) Tools and Algorithms for the Construction and Analy-
sis of Systems. TACAS 2015. Lecture Notes in Computer Science, Vol.
9035. Springer, Berlin, Heidelberg, 2015.

	 https://doi.org/10.1007/978-3-662-46681-0_31
[5]	 Clarke, E., Grumberg, O., Jha, S., Lu, Y., Veith, H. "Counter example guid-

ed abstraction refinement for symbolic model checking." Journal of the
ACM. 50(5), pp. 752-794, 2003. https://doi.org/10.1145/876638.876643

[6]	 Tóth, T., Majzik, I. "Formal modeling of real-time systems with data pro-
cessing." In: Proceedings of the 23rd PhD Mini-Symposium, pp. 46-49,
2016.

[7]	 Daws, C., Tripakis, S. "Model checking of real-time reachability proper-
ties using abstractions." In: Steffen, B. (eds.) Tools and Algorithms for
the Construction and Analysis of Systems. TACAS 1998. Lecture Notes
in Computer Science, Vol. 1384, Springer, Berlin, Heidelberg, 1998.

	 https://doi.org/10.1007/BFb0054180
[8]	 Behrmann, G., Bouyer, P., Larsen, K. G., Pelánek, R. "Lower and Upper

Bounds in Zone Based Abstractions of Timed Automata." In: Jensen, K.,
Podelski A. (eds.) Tools and Algorithms for the Construction and Analy-
sis of Systems. TACAS 2004. Lecture Notes in Computer Science, Vol.
2988, Springer, Berlin, Heidelberg, 2004.

	 https://doi.org/10.1007/978-3-540-24730-2_25
[9]	 Herbreteau, F., Srivathsan, B., Walukiewicz, I. "Better abstractions for

timed automata." In: Proceedings of the 2012 27th Annual IEEE/ACM
Symposium on Logic in Computer Science, LICS, pp. 375-384, IEEE,
2012. https://doi.org/10.1109/LICS.2012.48

173

https://doi.org/10.1016/0304-3975(94)90010-8
https://doi.org/10.1109/QEST.2006.59
https://doi.org/10.1007/BFb0055357
https://doi.org/10.1007/978-3-662-46681-0_31
https://doi.org/10.1145/876638.876643
https://doi.org/10.1007/BFb0054180
https://doi.org/10.1007/978-3-540-24730-2_25
https://doi.org/10.1109/LICS.2012.48

Period. Polytech. Elec. Eng. Comp. Sci.� T. Tóth, I. Majzik

[10]	 Dill, D. L. "Timing assumptions and verification of finite-state con-
current systems." In Automatic Verification Methods for Finite State
Systems, Lecture Notes in Computer Science, Vol. 407, pp. 197-212,
Springer, Berlin, Heidelberg, 1990.

	 https://doi.org/10.1007/3-540-52148-8_17
[11]	 Dierks, H., Kupferschmid, S., Larsen, K. G. "Automatic Abstraction Re-

finement for Timed Automata." In: Raskin, J. F., Thiagarajan, P. S. (eds.)
Formal Modeling and Analysis of Timed Systems, Lecture Notes in
Computer Science. FORMATS 2007, Vol. 4763, pp. 114-129, Springer,
Berlin, Heidelberg, 2007.

	 https://doi.org/10.1007/978-3-540-75454-1_10
[12]	 Okano, K., Bordbar, B., Nagaoka, T. "Clock Number Reduction Abstrac-

tion on CEGAR Loop Approach to Timed Automaton." In: 2011 Second
International Conference on Networking and Computing, Osaka, 2011,
pp. 235-241. https://doi.org/10.1109/ICNC.2011.42

[13]	 Herbreteau, F., Srivathsan, B., Walukiewicz, I. "Lazy abstractions for
timed automata." In: Sharygina, N., Veith, H. (eds.) Computer Aided
Verification. CAV 2013. Lecture Notes in Computer Science, Vol. 8044.
Springer, Berlin, Heidelberg, 2013.

	 https://doi.org/10.1007/978-3-642-39799-8_71
[14]	 Barrett, C., Sebastiani, R., Seshia, S., Tinelli, C. "Satisfiability modulo

theories." In: Handbook of Satisfiability. Vol. 185 of Frontiers in Artifi-
cial Intelligence and Applications, ch. 26, pp. 825-885, IOS Press, 2009.
https://doi.org/10.3233/978-1-58603-929-5-825

[15]	 Möller, M. O., Rueß, H., Sorea, M. "Predicate abstraction for dense real-
time systems." Electronic Notes in Theoretical Computer Science. 65(6),
pp. 218-237. 2002. https://doi.org/10.1016/S1571-0661(04)80478-X

[16]	 Sorea, M. "Lazy Approximation for Dense Real-Time Systems." In:
Lakhnech, Y., Yovine, S. (eds.) Formal Techniques, Modelling and Anal-
ysis of Timed and Fault-Tolerant Systems. Lecture Notes in Computer
Science, Vol. 3253, Springer, Berlin, Heidelberg, 2004.

	 https://doi.org/10.1007/978-3-540-30206-3_25
[17]	 Carioni, A., Ghilardi, S., Ranise, S. "MCMT in the Land of Parameter-

ized Timed Automata." In: Proceedings of VERIFY, pp. 1-16, 2010.
[18]	 Morbé, G., Pigorsch, F., Scholl, C. "Fully Symbolic Model Checking for

Timed Automata." In: Gopalakrishnan G., Qadeer S. (eds.) Computer
Aided Verification. CAV 2011. Lecture Notes in Computer Science, Vol.
6806. Springer, Berlin, Heidelberg, 2011.

	 https://doi.org/10.1007/978-3-642-22110-1_50
[19]	 Kindermann, R., Junttila, T., Niemela, I. "Beyond Lassos: Complete

SMT-Based Bounded Model Checking for Timed Automata." In: Giese,
H., Rosu, G. (eds) Formal Techniques for Distributed Systems. Lecture
Notes in Computer Science, Vol. 7273. Springer, Berlin, Heidelberg,
2012. https://doi.org/10.1007/978-3-642-30793-5_6

[20]	 Kindermann, R., Junttila, T., Niemela, I. "SMT-based Induction Methods
for Timed Systems." In: Jurdziński, M., Ničković, D. (eds.) Formal Mod-
eling and Analysis of Timed Systems. FORMATS 2012. Lecture Notes in
Computer Science, vol 7595. Springer, Berlin, Heidelberg, 2012.

	 https://doi.org/10.1007/978-3-642-33365-1_13
[21]	 Kemper, S. "SAT-based Abstraction Refinement for Realtime Systems."

Electronic Notes in Theoretical Computer Science. 182, pp. 107-122,
2007. https://doi.org/10.1016/j.entcs.2006.09.034

[22]	 Hoder, K., Bjorner, N. "Generalized Property Directed Reachability." In:
Cimatti, A., Sebastiani, R. (eds.) Theory and Applications of Satisfiabil-
ity Testing – SAT 2012. SAT 2012. Lecture Notes in Computer Science,
Vol. 7317, Springer, Berlin, Heidelberg, 2012.

	 https://doi.org/10.1007/978-3-642-31612-8_13

[23]	 Isenberg, T., Wehrheim, H. "Timed Automata Verification via IC3 with
Zones." In: Merz, S., Pang, J. (eds) Formal Methods and Software Engi-
neering. ICFEM 2014. Lecture Notes in Computer Science, Vol. 8829,
Springer, Cham, 2014. https://doi.org/10.1007/978-3-319-11737-9_14

[24]	 Isenberg, T. "Incremental Inductive Verification of Parameterized Timed
Systems." In: 2015 15th International Conference on Application of
Concurrency to System Design, IEEE, Brussels, 2015, pp. 1-9.

	 https://doi.org/10.1109/ACSD.2015.13
[25]	 Hojjat, H., Rümmer, P., Subotic, P., Yi, W. "Horn Clauses for Communi-

cating Timed Systems." Electronic Proceedings in Theoretical Computer
Science. 169, pp. 39–52. 2014.

	 https://doi.org/10.4204/EPTCS.169.6
[26]	 Cousot, P., Cousot, R. "Abstract interpretation: A unified lattice model

for static analysis of programs by construction or approximation of fix-
points." In: Proceedings of the 4th ACM SIGACT-SIGPLAN Sympo-
sium on Principles of Programming Languages, POPL '77, pp. 238-252,
1977. https://doi.org/10.1145/512950.512973

[27]	 Cousot, P., Cousot, R. "Systematic design of program analysis frame-
works." In: Proceedings of the 6th ACM SIGACT-SIGPLAN Sympo-
sium on Principles of Programming Languages, POPL '79, pp. 269-282,
1979. https://doi.org/10.1145/567752.567778

[28]	 Gulwani, S., Tiwari, A. "Combining abstract interpreters." In: Proceed-
ings of the 27th ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI '06, pp. 376-386, 2006.

	 https://doi.org/10.1145/1133255.1134026
[29]	 Graf, S., Saidi, H. "Construction of abstract state graphs with PVS." In:

Grumberg, O. (ed.) Computer Aided Verification. CAV 1997. Lecture
Notes in Computer Science, Vol. 1254, Springer, Berlin, Heidelberg,
1997. https://doi.org/10.1007/3-540-63166-6_10

[30]	 Lamport, L. "A fast mutual exclusion algorithm." ACM Transactions on
Computer Systems. 5(1), pp. 1-11. 1987.

	 https://doi.org/10.1145/7351.7352
[31]	 Beyer, D., Henzinger, T. A., Théoduloz, G. "Configurable Software Veri-

fication: Concretizing the Convergence of Model Checking and Program
Analysis." In: Damm, W., Hermanns, H. (eds.) Computer Aided Verifica-
tion. CAV 2007. Lecture Notes in Computer Science, Vol. 4590, Spring-
er, Berlin, Heidelberg, 2007.

	 https://doi.org/10.1007/978-3-540-73368-3_51
[32]	 Cimatti, A., Griggio, A., Sebastiani, R. "Efficient interpolant generation

in satisfiability modulo theories." In: Ramakrishnan, C. R., Rehof, J.
(eds.) Tools and Algorithms for the Construction and Analysis of Sys-
tems. TACAS 2008. Lecture Notes in Computer Science, Vol. 4963,
Springer, Berlin, Heidelberg, 2008.

	 https://doi.org/10.1007/978-3-540-78800-3_30
[33]	 Tóth, T., Vörös, A., Majzik, I. "Verification of a real-time safety-critical

protocol using a modelling language with formal data and behaviour se-
mantics." In: Bondavalli, A., Ceccarelli, A., Ortmeier, F. (eds.) Computer
Safety, Reliability, and Security. SAFECOMP 2014. Lecture Notes in
Computer Science, vol 8696. Springer, Cham, 2014.

	 https://doi.org/10.1007/978-3-319-10557-4_24

174

https://doi.org/10.1007/3-540-52148-8_17
https://doi.org/10.1007/978-3-540-75454-1_10
https://doi.org/10.1109/ICNC.2011.42
https://doi.org/10.1007/978-3-642-39799-8_71
https://doi.org/10.3233/978-1-58603-929-5-825
https://doi.org/10.1016/S1571-0661(04)80478-X
https://doi.org/10.1007/978-3-540-30206-3_25
https://doi.org/10.1007/978-3-642-22110-1_50
https://doi.org/10.1007/978-3-642-30793-5_6
https://doi.org/10.1007/978-3-642-33365-1_13
https://doi.org/10.1016/j.entcs.2006.09.034
https://doi.org/10.1007/978-3-642-31612-8_13
https://doi.org/10.1007/978-3-319-11737-9_14
https://doi.org/10.1109/ACSD.2015.13
https://doi.org/10.4204/EPTCS.169.6
https://doi.org/10.1145/512950.512973
https://doi.org/10.1145/567752.567778
https://doi.org/10.1145/1133255.1134026
https://doi.org/10.1007/3-540-63166-6_10
https://doi.org/10.1145/7351.7352
https://doi.org/10.1007/978-3-540-73368-3_51
https://doi.org/10.1007/978-3-540-78800-3_30
https://doi.org/10.1007/978-3-319-10557-4_24

	1 Introduction
	1.1 Related Work
	1.2 Organization of the Paper

	2 Background and Notations
	2.1 General notions
	2.2 Transition Systems
	2.3 Timed Automata
	2.4 Control Flow Automata
	2.5 Abstraction

	3 Timed Control Flow Automata
	3.1 Modeling formalism
	3.2 Connection to TAs and CFAs
	3.3 Abstraction for TCFAs

	4 Implementation
	4.1 A Framework for Abstract Model Checking
	4.2 Analysis Support for TCFAs
	4.3 Evaluation

	5 Conclusions and Future Work
	References

