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Abstract
The behavior of practical safety critical systems often com-
bines real-time behavior with structured data flow. To ensure 
correctness of such systems, both aspects have to be modeled 
and formally verified. Time related behavior can be efficiently 
modeled and analyzed in terms of timed automata. At the same 
time, program verification techniques like abstract interpreta-
tion and software model checking can efficiently handle data 
flow. In this paper, we describe a simple formalism that rep-
resents both aspects of such systems in a uniform and explicit 
way, thus enables the combination of formal analysis methods 
for real-time systems and software using standard techniques.

Keywords
model checking, abstract interpretation, abstraction refinement, 
timed automata, control flow automata

1 Introduction
Ensuring the correctness of safety critical systems using 

formal verification is a challenging task as it requires formal 
modeling of the system in question, as well as the application 
of formal analysis techniques. Usually, the behavior of prac-
tical safety critical embedded systems exhibits both real-time 
aspects (e.g. switching to an error state after a certain amount 
of time has passed since the last event occurred) and data flow 
(e.g. branching on the value of a program variable or initializ-
ing a loop counter). 

Time-related behavior can be conveniently modeled in terms 
of timed automata [1]. Model checkers for timed automata 
like Uppaal [2] and Kronos [3] can efficiently verify models 
using dedicated data structures that represent abstractions over 
real-valued clock variables. 

On the other hand, state-of-the-art program verifiers [4] are 
designed to handle complex data flow, described in terms of a 
control flow automaton, and often use abstraction-refinement 
techniques [5] to handle variables of possibly infinite domains. 

In this paper, to enable integration of verification techniques 
used in real-time verification and program verification, we 
define a formalism, Timed Control Flow Automata (TCFA), 
that is an extension of Control Flow Automata (CFA) used in 
program verification, with notions of Timed Automata (TA), 
the prominent formalism of real-time verification. Its main 
advantage is that it represents both data flow and timing uni-
formly, explicitly and in a way that is similar to the original 
formalisms, thus enables the application and combination of 
analyses that fit to the respective aspects. We define the syntax 
and semantics of the formalism, and describe how it relates to 
CFAs and TAs. Furthermore, we outline how analyses for the 
two formalisms can be combined using standard techniques to 
obtain efficient modular verifiers for TCFAs. 

This paper is an extended version of [6]. Among a more 
detailed description of the concepts outlined there, it contains 
the description of an implementation of a verifier based on 
those concepts. Moreover, the paper contains the evaluation 
of said verifier on examples, including the verification of an 
industrial SCADA system.
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1.1 Related Work
Timed automata [1] is a widely used formalism for the 

modeling and verification of real-time systems. Dedicated 
model checkers for timed automata like Uppaal [2] and Kro-
nos [3] usually use zone based abstractions [7-9] and efficient 
data structures like difference bound matrices [10] as their 
implementation to represent the infinite state space induced 
by real-valued clock variables. Abstraction-refinement tech-
niques have also been developed for timed automata [11-13] 
to reduce size of the search space or the number of clocks vari-
ables considered. 

A different line of work addresses the problem of real-time 
verification by using general infinite state model checking 
techniques based on satisfiability modulo theories (SMT) [14] 
solving, either directly or by tailoring them to timed autom-
ata. Proposed approaches include predicate abstraction with 
counterexample guided abstraction refinement [15, 16], sym-
bolic backward search [17, 18], bounded model checking [19], 
k-induction [20], abstraction refinement using Craig interpola-
tion [21], property directed reachability [20, 22-24] and Horn 
clause solving [22, 25]. 

While the formalization we propose allows for the utiliza-
tion of both approaches for the formal verification of real-time 
systems, it naturally enables the application of a combined 
approach, where timed aspects are handled by dedicated algo-
rithms for real-time, and data manipulation is addressed by the 
use of SMT-based infinite state model checking techniques.

1.2 Organization of the Paper
In Section 2, we define the notations used throughout the 

paper, and present the theoretical background of our work. In 
Section 3, we introduce the formalism of Timed Control Flow 
Automata, an extension of Control Flow Automata with notions 
of Timed Automata, and describe how verifiers for data flow 
and timing can be combined using standard combination meth-
ods to obtain efficient modular verifiers for the formalism. Sec-
tion 4 describes our implementation of the formalism and corre-
sponding analyses, and the evaluation of our implementation on 
examples. Finally, conclusions are given in Section 5.

2 Background and Notations
In this section, we define the notations used throughout the 

paper, and outline the theoretical background of our work.

2.1 General notions
Types. Let  Type  denote a set of types and Dom a map-
ping from types to their semantic domains. We assume 
{bool, int, real} ⊆ Type  such that  Dom (bool) =  , 
Dom (int) = Z  and  Dom (real) = R .

Variables.  Let  Var  be a set of program variables. Variables 
have types, expressed as function  type : Var → Type . We 

abbreviate  Dom (type (v))  by  Dom (v). The set of variables of 
type  τ  Type  is denoted by  Var (τ) = {v  Var | type(v) = τ }. 

Expressions. Let  Expr  be a set of well-typed expressions over 
Var. An expressions can contain program variables v  Var , 
logical connectives (true, false, ¬ , ∨ , ∧ , → , ↔ ), quantifiers 
("x : τ ∙ φ , ∃x : τ ∙ φ ) and logical variables, interpreted func-
tion symbols (e.g. 0. +, ∙

 
), interpreted predicate symbols 

(e.g.   , < , ≤ ), uninterpreted function and predicate sym-
bols, and type constructors and accessors in case the type 
system supports complex data types. Given an expression 
e  Expr  and a type  τ  Type , we denote by  e : τ  iff  e  has 
type  τ . Naturally,  v : τ  iff  type (v) = τ  for all variables 
v  Var  and types  τ  Type . The set of formulas is denoted by 
Form = {φ  Expr | φ : bool } .

States.  A concrete data state    State  is a mapping from 
variables to values such that   (x)  Dom (x)  for all  x  Var . 
We also extend this notion to arbitrary expressions. For a state  
  State  and formula  φ  Expr , we denote by    φ  iff 
 (φ) = 1.

2.2 Transition Systems
Transition systems are widely used for the formal modeling 

of the behavior of reactive systems.

Syntax. Formally, a labeled transition system is a tuple 
TS = (S, Act, →, I )  where 

•	 S  is a set of states, 
•	 Act  is a set of actions, 
•	 → ⊆ S × Act × S  is a transition relation and 
•	 I ⊆ S  is the set of initial states.

For convenience, we denote by  s sα → ′   iff  (s, α, s' )  →.

Semantics. A finite execution fragment of a transition sys-
tem is an alternating sequence of states  si  S  and actions 
αi  Act  of the form  s0α1s1α2 … αnsn  such that s si i

iα + → +
1

1  for all 
0 ≤ i <n . An execution fragment is initial iff  s0  I . We say 
that a state  s  S  is reachable in a transition system iff there 
exists a finite initial execution fragment for the system such 
that  s =  sn .

2.3 Timed Automata
Timed automata [1] is the most prevalent formalism for 

modeling real-time systems.

Syntax. A timed automaton is a tuple

TA = (Loc, Clock, ↪ , Inv, 0 )

where 
•	 Loc  is a finite set of locations, 
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•	 Clock  is a finite set of clock variables such that  x : real≥0  
for all  x ∈ Clock , 

•	 ↪ ⊆ Loc × ClockConstr × (Clock) × Loc is a set of 
transitions where given a transition (, g, R, ')  ↪ , 
g ∈ ClockConstr  is a guard and  R  Clock  is a set con-
taining clocks to be reset, 

•	 Inv : Loc → ClockConstr  is a function that maps to each 
location an invariant condition over clocks, and 

•	 0  Loc  is the initial location.

Here,  ClockConstr ⊆ Form  denotes the set of clock con-
straints, that is, formulas of the restricted form 

ϕ ϕ ϕ::= | | − | ∧true x c x x ci i j 

1 2

where  xi , xj  Clock , ~  {<, ≤, >, ≥, =}  and  c  is an integer 
literal.

Semantics. The operational semantics of a timed automaton can 
be defined as a labeled transition system (S, Act, →, I )  where 

•	 S = Loc × State , 
•	 I = {0 } × {  State |  (x) = 0 for all x  Clock and 

  Inv (0) }, 
•	 Act = ≥0 È {τ}, 
•	 and a transition  t  →  of the transition relation 

→ ⊆ S × Act × S  is either a delay transition that increases 
all clocks with a value  δ ≥ 0 : 

 

 

∈ ≥ ′ = ,( ) ′ ( )
,( ) → , ′( )

Loc Delay Invδ δ
δ

0 S S S �
S S

or a discrete transition: 

�
g,R
↪−−→ �′ S |= g S ′ = Reset(S, R) S ′ |= Inv(�′)

(�, S) −τ→ (�′, S ′)

Here,  Delay : State × ≥0 → State  assigns to a state   State  
and a real number  δ ≥ 0  a state  Delay (, δ)  such that 

Delay v
v v Clock
v





,( )( ) = ( ) + ∈

( )





δ

δ if

otherwise

Moreover, function  Reset : State × (Clock) → State  mod-
els the effect of resetting clocks in R  to 0 in state    State: 

Reset R v
v R

v



,( )( ) =

∈

( )




0 if

otherwise

Example. Fig. 1 shows the timed automaton of a simple timed 
switch, that after switched on, remains in that state for at least 
one and at most two time units. On the figure, edges are labeled 
by clock resets and guards, and locations are labeled by invari-
ants, in accordance with the syntax.

Fig. 1 Timed switch as a TA

2.4 Control Flow Automata
In software model checking, programs are often modeled in 

terms of control flow automata.

Syntax.  A control flow automaton is a tuple

CFA = (Loc, Var, ↪ , 0 )

where 
•	 Loc is a finite set of program locations, 
•	 Var is a set of program variables, 
•	 ↪ ⊆ Loc × Stmt × Loc  is a set of control flow edges, and 
•	 0  Loc  is the initial location.

Here,  Stmt   denotes the set of statements. Although our for-
malization admits arbitrary structured statements, for the sake 
of simplicity we assume that statements are of the form 

s v e v s s::= [ ]| := | | ;ϕ havoc

where  v  Var ,  e  Expr  and  φ  Form . Statement [φ]  is an 
assume statement,  v := e  is an assignment of  e  to  v , havoc v 
is an assignment of an arbitrary value of a suitable type to  v , 
and  s ; s  is a sequential statement.

Semantics. The operational semantics of a control flow autom-
aton can be conveniently expressed in terms of a labeled transi-
tion system  (S, Act, →, I )  where 

•	 S = Loc × State , 
•	 I = {0 } × State , 
•	 Act = Stmt , 
•	 and the transition relation  → ⊆ S × Act × S  is defined 

by the rule 

�
s
↪−→ �′ S ′ ∈ Succ(S, s)

(�,S) s−→ (�′,S ′)

Here,  Succ : State × Stmt → (State)  is the (not necessarily 
total) semantic function that assigns to a state    State  and a 
statement  s  Stmt  a set of successor states  Succ (, s) . It can 
be defined as the smallest relation satisfying the following rules:

s
Succ s

= [ ]
∈ ,( )
ϕ ϕS �

S S

s v e v e
Succ s

= :=( ) ′ = ( ) 
′∈ ,( )
S S S

S S

�
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s v x Dom v v x
Succ s

= ∈ ( ) ′ = [ ]
′∈ ,( )

havoc S S
S S

       �

s s s Succ s Succ s
Succ s

= ;( ) ′∈ ,( ) ′′∈ ′,( )
′′∈ ,( )

1 2 1 2
   

 

Example. As a simple example, Fig. 2 shows the CFA model 
for the Euclidean algorithm for computing the greatest com-
mon divisor for two integers a and b.

Fig. 2 Euclidean algorithm as a CFA

2.5 Abstraction
To ensure termination or efficiency, program analyzers and 

modern model checkers check abstractions of systems [26], 
expressed in terms of abstract domains.

Abstract domain. An abstract domain is a triple   = (S ,  , γ)
where 

•	 S  is the set of concrete states, also called the concrete 
domain, 

•	  = (E ,  , ^ ,  , )  is a semi-lattice over the set of 
abstract states  E  with a top element   ∈ E , a bottom 
element  ^  E , a preorder   ⊆ E × E  and a join opera-
tor   : E × E → E , and 

•	 γ : E  ® (S)  is the concretization function that assigns 
to each abstract state the set of concrete states it repre-
sents. It satisfies the following properties: 
-	 γ (^) = Æ, 
-	 γ () = S  and 
-	 γ (e1) È γ (e2) ⊆ γ (e1  e2 ) for all  e1, e2  E

Abstract semantics. Given a transition system (S, Act, →, I )  
for the concrete semantics, the abstract semantics of the system 
w. r. t. abstract domain  (S ,  , γ)  can be expressed as a transi-
tion system  (E, Act, , E0 ) . Here,    is the abstract transition 
relation (also called a transfer relation) and  E0  is the set of 
initial abstract states. For soundness of the abstraction, the fol-
lowing properties must hold: 

•	 I e
e E

⊆ ( )
∈0 0

0

γ  and 

•	
s e e e

s S s s e
∈ ′

′∈ |  → ′( ) ⊆ ′( )
γ

α α γ
( )

  
 for all  e ∈ E  

and  α  Act .

A verifier for the reachability of error states can then analyze 
the system by exploring the abstract state space and applying 
abstraction refinement [5] in case of a spurious counterexample 
that cannot be simulated according to the concrete semantics.

Combining abstractions. A modular way for constructing 
complex abstractions is by combining simpler abstract domains 
[27]. Known methods for combination of abstract domains in-
clude direct and reduced product [27], and logical product [28] 
constructions. 

Although in general weaker than the other two methods, for 
simple cases where the component analyses refer to completely 
independent aspects of the system, even the direct product con-
struction provides the strongest combination. Due to this fact 
and for ease of exposition, we restrict presentation to direct 
products, indicating that methods outlined later can be general-
ized directly to more involved combinators as well. 

Given two abstract domains  1 = (S , 1 , γ1 )  and 
2 = (S , 2 , γ2 ) , their direct product is  1 × 2 = (S ,  , γ )  where 
 = 1 × 2  and  γ ((e1 , e2 )) = γ1 (e1) Ç γ2 (e2)  for all  e1 ∈ E1  
and  e2 ∈ E2 . Moreover, given two transfer relations  1  and  
2  for the respective domains over a common set of actions 
Act , their direct product is defined as the strongest relation 
 = 1 × 2  such that the following property holds: 

e e e e
e e e e

1 1 1 2 2 2

1 2 1 2

� �
�
′ ′

,( ) ′, ′( )
α α

α

Hence, the direct product abstraction tracks the „conjunc-
tion” of the information that can be obtained by running the 
component analyses independently.

Examples. Predicate abstraction [29] is a well known tech-
nique for obtaining finite abstractions of system with a po-
tentially infinite state space (e.g. sequential programs). Here, 
given a set of predicates  {p1 , p2 , … pn }  (the precision), each 
one of the at most 2n possible consistent valuations of the pred-
icates corresponds to an abstract state. Predicate abstraction is 
well suited to counterexample-guided abstraction refinement 
[5], where the precision is augmented by additional predicates 
in case the current abstraction is not strong enough to exclude 
a spurious counterexample. 

Zone abstraction (see e.g. [7]) is widely used for the veri-
fication of timed systems. In zone abstraction, abstract states 
are zones, that is, sets of interpretations of clock constraints (or 
in general, conjunctions of difference constraints). Over timed 
automata, zone abstraction is exact for both forward and back-
ward search. To ensure termination however, extrapolation is 
used as the number of reachable zones of an automaton is not 
necessarily finite.
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3 Timed Control Flow Automata
In this section, we introduce timed control flow automata, 

an extension of control flow automata with notions of timed 
automata. The formalism models both data flow and timing 
uniformly, explicitly and in a way that is similar to the orig-
inal formalisms. As a consequence, the formalism enables the 
creation of efficient, modular verifiers by the combination of 
abstractions for the respective aspects using standard combina-
tion techniques.

3.1 Modeling formalism
Syntax. A timed control flow automaton is a tuple 

TCFA Loc Urg Var Clock Inv= , , , , , ,( ) ↪ �0

where 
•	 (Loc, Var, ↪ , 0 )  is a CFA, 
•	 Urg ⊆ Loc  is a set of urgent locations [2] that model 

locations where time shouldn’t pass, 
•	 Clock ⊆ Var  is the set of clock variables, and 
•	 Inv : Loc → Form  is a function that maps invariants to 

locations.

As can be seen from the definition, a TCFA can either be 
considered a CFA extended with clock variables, urgent loca-
tions and location invariants, or alternatively, as a generalized 
TA with urgent locations where guards and clock resets are rep-
resented as statements.

Semantics. The semantics of a timed control flow automaton is 
a transition system  (S, Act, →, I )  where 

•	 S = Loc × State , 
•	 I = {0 } × {0  State | 0  Inv(0 ) }, that is, all vari-

ables (including clocks) have an arbitrary initial value of 
the corresponding type that satisfies the invariant of the 
initial location, 

•	 Act = Stmt È {delay} , 
•	 and a transition  t  →  of the transition relation 

→ ⊆ S × Act × S  is either a delay transition that increases 
all clocks with a value  δ ≥ 0: 

 

 

∉ ≥ ′ = ,( ) ′ ( )
,( ) → , ′( )

Urg Delay Invδ δ0 S S S �
S Sdelay

or a discrete transition that models the execution of a statement   
s  Stmt : 

�
s
↪−→ �′ S ′ ∈ Succ(S, s) S ′ |= Inv(�′)

(�, S) −s→ (�′, S ′)

As it can be seen, the two types of transitions are analogous 
to the cases described for timed automata. We note however 
that for the analysis of reachability properties, a combined 
step semantics [20] can be defined as an alternative where a 

transition is a combination of a single delay and a discrete 
transition. In this case, finite initial execution fragments that 
witness the reachability of a given state are potentially half 
as long. This enhances performance of reachability checking 
compared to the original formulation, especially for verifiers 
based on unrolling of the transition relation or counterexample 
guided abstraction refinement.

Example. As an example, Fig. 3 depicts Fischer’s protocol [30] 
as a TCFA. Here, a , b and i  are constant values of type int. 

Fig. 3 Fischer’s protocol as a TCFA

Interleaving of TCFAs. To enable modeling of concurrent 
systems, we define the interleaving of two TCFAs. Given 

TCFAi = (Loci, Urgi, Var i, Clock i, ↪→i, Inv i, �0,i)

for  i Î {1, 2}, their interleaving is defined as 

TCFA1 ||| TCFA2 = (Loc, Urg , Var , Clock , ↪→, Inv , �0)

where 
•	 Loc = Loc1 × Loc2 , 
•	 Var = Var1 È Var2 , 
•	 0 = (0,1 , 0,2 )
•	 Urg = Urg1 × Loc2 È Loc1 × Urg2

•	 Clock = Clock1 È Clock2, 
•	 Inv((1 , 2 )) = Inv1(1) Ù Inv2(2), and 
•	 ↪  is defined by the following rules: 

�1
s
↪−→1 �

′
1

(�1, �2)
s
↪−→ (�′1, �2)

and
�2

s
↪−→2 �

′
2

(�1, �2)
s
↪−→ (�1, �′2)

Here,  Var1 Ç Var2  are shared variables, and  Clock1 Ç Clock2  
are shared clocks.

3.2 Connection to TAs and CFAs
The TCFA formulation admits a simple and uniform descrip-

tion of both CFAs and TAs.

TA as TCFA. For any TA = (Loc, Clock, ↪0
 
, Inv, 0 )  there 

exists a  TCFA = (Loc, Ø, Clock, Clock, ↪, Inv, 0 )  that - 
aside from the inital values of clocks and the action labels 
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on transitions - is semantically equivalent to the original TA. 
Here,  ↪  is defined by the following rule: 

�
g,R
↪−−→0 �

′ R = {x1, . . . , xn}

�
[g] ; x1:=0 ; ... ; xn:=0
↪−−−−−−−−−−−−−→ �′

CFA as TCFA. For any  CFA = (Loc, Var, ↪, 0 ) , there exists a 
semantically equivalent  TCFA = (Loc, Loc, Var, Ø, ↪, Inv, 0 )   
where  Inv ( ) = true  for all    Loc .

TCFA as CFA. For any  TCFA = (Loc, Urg, Var, Clock, ↪0  , 
Inv, 0 )  such that  Inv (0  ) = true , there exists a semantically 
equivalent  CFA = (Loc, Var, ↪, 0 )  (aside from action labels on 
transitions), where  ↪  is defined by the following rules: 

•	 Simulating discrete transitions: 

�
s
↪−→0 �

′ ϕ = Inv(�′)

�
s ; [ϕ]
↪−−−→ �′

•	 Simulating delay transitions: 

� ∈/ Urg ϕ = Inv(�)

�
delay ; [ϕ]
↪−−−−−−→ �

Here, delay stands for the statement

havoc δ ; x1 := x1 + δ ; . . . ; xn := xn + δ

where δ : real≥0 is a distinguished delay variable and Clock = {x1, . . . , xn}.

Here, delay stands for the statement 

havocδ δ δ; := + ; := +x x x xn n1 1
;

where  δ : real≥0  is a distinguished delay variable and 
Clock = {x1 , … , xn }.

By applying this simple translation, the application of pro-
gram verifiers become directly available for the analysis of 
timed systems. However, as in this case time related behav-
ior becomes implicitly encoded during the translation, such 
an approach is expected to be not necessarily complete and 
in general less efficient than the use of a dedicated algorithm 
(see related work in Section 1) that addresses real-time aspects 
directly, especially for models with many clock variables.

3.3 Abstraction for TCFAs
The main advantage of the above formulation is that it 

admits verifiers to be built in a modular way. More precisely, 
given abstractions  data  for data variables and  time  for clock 
variables with respective transfer relations  data  and  time , 
by combining the two abstractions (e.g. by taking their direct 
product in the simplest case) an analysis can be built that is a 
full-fledged verifier for the complete system (we assume that 
the control location is explicitly tracked). Here,  data  essen-
tially realizes an analysis for software that operates on CFAs, 
and  time  realizes an analysis for TAs, expressed over the uni-
form representation of TCFAs.

Example. As a simple example, Fig. 4 illustrates the abstract 
state space of Fischer’s protocol where  data  is predicate ab-
straction over a singleton set of predicates  {lock = i}  for some  
i≠ 0 ,  time  is zone abstraction over a singleton set of clocks 
{x} , and the combined abstraction is  data × time . On the fig-
ure, abstract states are depicted as rounded rectangles, where 
the current location is shown in the left compartment, and the 
information tracked by the zone and predicate analyses are de-
picted in the middle and right compartments, respectively. With 
both timing and data handled with an appropriate abstraction, 
a compact over-approximation of the concrete state space is 
obtained that enables sound and efficient reachability analysis 
of the system. 

Fig. 4 Abstract Reachability Graph for Fischer’s protocol

As hinted earlier, in simple cases like this, the direct product 
provides the strongest combination, as statements and atomic 
formulas occurring in invariants are pure in the sense that they 
do not mix clock and data variables. However, this restriction 
doesn’t apply to the formalism itself, and in principle analyses 
can be defined for cases where data and clock variables are 
in some way interdependent (e.g. a clock is reset to the value 
stored in a data variable, the current value of a clock is stored in 
a data variable, clocks are allowed to be bound by data values 
in assumptions and invariants). Such complex cases are how-
ever out of the scope of this paper.
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4 Implementation
As a proof of concept, we implemented several analyses in 

our verification framework to enable analysis of TCFAs. We 
also evaluated our implementation on two models.

4.1 A Framework for Abstract Model Checking
The basis for our implementation is a framework that sup-

ports formal verification based on abstraction and abstraction 
refinement. The simplified architecture of the framework is 
depicted on Fig. 5. 

Our framework provides the following components out-of-
the box: 

•	 Abstraction Model Checker. An abstraction model 
checker is implemented that builds the abstract reach-
ability tree (ART) of a system w.r.t. a given abstraction 
and precision. 

•	 Abstraction Refiner. Optionally, the model checker can 
be augmented with an abstraction refiner component. The 
model checker and the refiner then can be organized to 
an abstraction refinement loop. In this case, an abstract 
counterexample found by the model checker can be 
passed to the refiner to either concretize it, or exclude it 
from later search by refining the abstraction. After suc-
cessful refinement, the model checker can continue with 
the expansion of the reachability tree. 

•	 Abstract Domains. Supported domains include predicate 
domain, zone domain and explicit value domain. More-
over, since the framework is not specialized to any par-
ticular formalism, a domain is defined to track the current 
control location of an automaton (as in [31]) to enable 
flow-sensitive analysis of such formalisms. 

•	 Combination of Domains. The generic direct product 
construction is implemented both for abstract domains 
and transfer relations. Combined domains can optionally 
be augmented with a reduction operator, thus providing a 
stronger abstraction. 

•	 SMT Solvers. The framework defines a common inter-
face for SMT solvers, with support for generation of 

interpolants [32]. The solvers can be used for implement-
ing transfer relations or abstraction refiner components.

4.2 Analysis Support for TCFAs
We implemented the modeling formalism of TCFAs as 

described in the paper, including the interleaving operator 
to support the modeling of networks of TCFAs. Moreover, 
to enable the formal verification of TCFAs, we extended the 
framework with the following components: 
•	 Transfer Relations. Transfer relations for TCFAs interpret 

delays and statements over a given abstract domain. We 
implemented transfer relations for all the abstract domains 
mentioned above.

The framework and the extensions implemented for TCFAs 
thus enable abstract model checking for networks of TCFAs, 
with several different combinations that differ in the handling 
of data and timing (e.g. explicit tracking of values, the appli-
cation of predicates, or both for data variables). As for a given 
system some of the many configurations might be more fitting 
than others, more efficient verification can be achieved, either 
by using selection heuristics based on the input model or by 
running diverse configurations in parallel as part of a portfolio.

4.3 Evaluation
We evaluated our implementation of abstractions for net-

works of TCFAs by generating abstract reachability trees over 
different abstract domains for two models: Fischer’s mutual 
exclusion protocol, and a protocol from an industrial railway 
supervisory control and data acquisition (SCADA) system.

Example. For Fischer’s protocol, we compared two combina-
tions of abstractions: predicate abstraction and explicit value 
analysis, combined with zone abstraction in both cases. Using 
predicate analysis over the single predicate lock > 0 , our im-
plementation generates the ART in 4 seconds for 3 processes, 
and reaches the timeout (set to 5 minutes) for 4 processes due 
to a large state space. However using explicit value analysis, 

Fig. 5 Architecture of the Analysis Framework
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the generation of the ART takes 1 second for 3 processes, 10 
seconds for 4 processes, and results in timeout for 5 processes. 
For comparison, our implementation is less efficient yet than 
the sophisticated and optimized implementation of Uppaal for-
ward search (without state space reduction and extrapolation), 
but the limits are similar: Uppaal is able to generate the state 
space of 5 processes in 4 seconds and reaches timeout for 6 
processes.

Example. Our other example is a protocol from an industrial 
SCADA system. Its primary function is dependable connection 
handling between the field and control units of the railway con-
trol system with given timing conditions. For a detailed de-
scription of the protocol, see [33].

We modeled the protocol as a network of TCFAs, under a 
fault model that permits the loss of a single message. The for-
malism was well applicable to the task, as in the protocol both 
real-time (e.g. sending synchronization messages periodically) 
and data related (e.g. storing messages) behavior was present. 
Fig. 6 depicts the TCFA model of a component in the protocol. 

Due to the presence of clock variables and the small number 
of possible values for data variables in the TCFA model of the 
protocol, we applied the combination of zone abstraction and 
explicit value analysis for its verification. The abstract reach-
ability tree generation for the model executed in one second. 

Fig. 6 TCFA Model of SCAN Connection Handling (Field Side)

5 Conclusions and Future Work
In this paper, we described the formalism of timed control 

flow automata that is an extension of control flow automata 
with notions of timed automata. We compared it to the origi-
nal formalisms, and demonstrated how modular verifiers can 
be built for the formalism by combining abstractions used for 
CFAs and TAs using standard combination techniques. 

The main advantage of the method is that it enables the use 
of many different abstraction techniques for both data and tim-
ing, some of which may be more efficient than the others for 
the given model. The price of such an approach is the overhead 
caused by the indirection introduced for the generic handling 
of abstractions. 

In the future, we plan to implement further analyses for the 
formalism and augment them with abstraction refinement tech-
niques known from the area of software model checking. More-
over, to enable modeling of industrial systems, we plan to inves-
tigate analyses that enable the verification of parametric systems 
and cases where clock and data variables are interdependent.
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