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Abstract
Testing is a significantly time-consuming, yet commonly 
employed activity to improve the quality of software. Thus, 
techniques like dynamic symbolic execution were proposed 
for generating tests only from source code. However, cur-
rent approaches usually could not create thorough tests for 
software units with dependencies (e.g. calls to file system or 
external services). In this paper, we present a novel approach 
that synthesizes an isolation sandbox, which interacts with the 
test generator to increase the covered behaviour in the unit 
under test. The approach automatically transforms the code of 
the unit under test, and lets the test generator choose values 
for parameters in the calls to dependencies. The paper pre-
sents a prototype implementation that collaborates with the 
IntelliTest test generator. The automated isolation is evaluated 
on source code from open-source projects. The results show 
that the approach can significantly increase the code coverage 
achieved by the generated tests.

Keywords
testing, symbolic execution, unit testing, isolation, mocking

1 Introduction
Nowadays, the demand for higher quality software is signifi-

cantly increasing. Testing is one of the most commonly used 
techniques to improve the quality of software. During differ-
ent phases of a software development process testing can be 
conductedat multiple levels. This paper focuses on unit testing, 
where the goal is to test a well-defined, isolated module com-
monly called as a unit. 

Software testing is a time and resource consuming task and 
developers face several questions during unit testing [10]. 
Numerous techniques have been proposed to reduce the time 
required for unit testing by automatically generating tests 
using only the source code [7, 23, 1]. These techniques are 
able to select relevant inputs for the unit under test. Symbolic 
execution is one of the code-based techniques, while dynamic 
symbolic execution (DSE) is a state-of-the-art variant that com-
bines symbolic with concrete executions. 

Several tools exist implementing symbolic execution for 
different programming languages or even binary code. Among 
several others, KLEE [5], EXE [6], CUTE [31], and DART 
[13] are designed to be used for C programs. SAGE [14] is a 
tool for the x86 instruction set. Java PathFinder [26], jCUTE 
[31] can be used on Java, while IntelliTest (formerly Pex [33]) 
is available for C#. 

An ongoing research area of code based-based test genera-
tion techniques (including symbolic execution) is concerning 
their industrial adoption [35, 3, 36] as the techniques are hin-
dered by numerous already confirmed factors [8, 28, 4]. As 
a result of these issues, tests generated by dynamic symbolic 
execution typically achieve low code coverage on complicated 
source code. Interaction with dependencies of the unit is often 
mentioned among these factors as it may involve accessing the 
environment (e.g., file system, network) or reaching external 
modules that are outside the scope of testing. Environment 
accesses may cause undesired side effects (e.g., creating files), 
while calling external modules may lead to incorrect test results 
for the unit under test.

A commonly used technique in unit testing tackling the inter-
action problem is the isolation of calls to the dependencies. 
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Isolation of the unit under test can be performed using stubs 
(returning only a given value) or mocks (both returning dif-
ferent values and verifying the interaction). Currently exist-
ing isolator frameworks are using two different approaches in 
terms of implementation: 1) a runtime proxy that detours calls 
to another objects, or 2) low-level runtime detouring of calls 
that invoke external modules. Both of them poses a challenge 
for symbolic execution-based test generation as runtime code 
intervention is a hindering factor of the technique. Moreover, 
both implementation approaches have their own limitations of 
isolating special cases like static or abstract types, which tight-
ens their usage scenarios on source code that is not prepared 
or designed for testability (e.g., legacy code or complex com-
municational modules). 

Although challenges exists, several attempts were made 
to enhance test generation on environment-dependent soft-
ware [34, 22, 2, 32]. For example, the concept of parameter-
ized mock objects [34] is a technique, which collaborates with 
mocks during test generation. This special type of mocks is 
designed to obtain return values from the symbolic executor 
process by adding them as new variables to the path constraint. 
Using this technique, the test generator is able to select relevant 
values for the dependencies. This is crucial to cover parts of the 
unit under test, which rely on return values from dependencies. 
Parameterized mock objects may solve the problem of depend-
ency interaction in certain cases, still the common limitations 
of existing isolation approaches and their general collaboration 
capability with symbolic execution-based test generators leave 
numerous issues. 

The approach presented in this paper addresses the problem 
of unit isolation for DSE-based test generation by generating 
a sandbox, which interacts with the test generator to increase 
the covered behaviour in the unit under test. The approach 
employs code transformations to replace invocations to exter-
nal dependencies with fake ones with corresponding signa-
tures. These replacement methods include configurable gener-
ated logic interacting with the test generation process to obtain 
values to be returned and to alter states of objects passed to 
the dependency. Moreover, these generated fake methods can 
be extended with user-provided assumptions restricting the 
possible behavior of the given dependency. The fake methods 
together form a fully parameterized code sandbox around the 
unit under test hence making the dependencies explorable for 
the test generation process. This technique may be employed in 
scenarios, where dynamic symbolic execution-based test gen-
erators usually fail due to the lack of isolation.

We have already presented a preliminary version of our idea 
in a conference paper [16]. This paper enhances the approach 
with 1) analyzing possible solutions to the addressed problem 
in detail, 2) extending the technique with source code transfor-
mations, 3) introducing a vastly enhanced implementation and 
4) presenting a more thorough evaluation. 

Section 2 presents the importance of the unit isolation prob-
lem during DSE-based test generation. Then, the main contri-
butions are arranged as follows. 

• We give an overview of possible solutions to the problem 
of unit isolation during dynamic symbolic execution-
based test generation (Section 3). 

• We introduce a source code transformation approach 
that may be able to overcome the issues of existing unit 
isolation approaches and to seamlessly collaborate with 
test generators. A prototype tool that implements the ap-
proach is also presented (Section 4). 

• We evaluate the approach and the implemented proto-
type tool using artificial code samples and modules from 
open-source projects (Section 5).

2 Background and Motivation
Symbolic execution represents the possible paths of the 

source code with quantifier-free first order logic formulas over 
symbolic variables created from program variables. The solu-
tion of a path formula (path constraint) provides values for each 
variable that drive the program execution along the given path. 
The solution is obtained using constraint solvers that are able 
to reason over different types of variables. 

Classic symbolic execution [21] interprets each statement in 
a static way, hence the program does not need to be executed. 
Dynamic symbolic execution (DSE) [30, 8] is an advanced 
variant that executes the program, while dynamically gather-
ing symbolic constraints over the variables. Notice that DSE 
requires initial values to start from, which can be simply prede-
fined for each variable type or can be generated randomly. After 
each concrete execution, the gathered path constraint or a part 
of it is transformed (e.g., negated) and then solved to be able to 
steer the concrete execution to a different path. The process is 
repeated until no more new execution path can be discovered 
or a predefined boundary criteria (e.g., time, memory) is met.

Example 1. Consider the following example method (Listing 1), 
where the process of DSE is demonstrated. The method has 
three different execution paths ending in return statements with 
different values. 

Listing 1 Example method for the demonstration of DSE

1
2
3
4
5
6
7
8
9

public int Example(int a, int b)
{
if(a > 5)
{

if(b > 10)  { return 1; }
return 0;

}
return -1;

}
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DSE can be started from an arbitrary method, which is 
Example in this case. The technique selects the most simple 
inputs at first to start a concrete execution. As the two param-
eters (a and b) are both integer types, let their assigned values 
be 0. Thus, the first concrete execution will execute the path, 
which ends in statement return -1. Along this path, the sym-
bolic execution engine collects the first constraint on the pro-
gram variables, which is a > 5. The DSE engine discovers 
that if a := 0 then this path constraint is not satisfied, hence 
solving this formula may give a new execution path. The solu-
tion is calculated by a constraint solver, and a satisfying value 
is returned. Let this value be a := 6, while b remains 0. This 
executes the body of the first if statement as a > 5 evaluates 
to true. However, the next statement reached by the execution 
is return 0 and a new constraint is added to the path formula 
(b > 10), which has to be satisfied to obtain new execution 
paths. In the last step, this constraint is solved that gives the 
value of 11 for variable b. Finally, a concrete execution is run 
with a := 6 and b := 11 reaching the only uncovered state-
ment return 1. As no more new constraints were collected, 
thus no new execution paths can be revealed, the DSE algorithm 
stops and yields the test cases found in Table 1. The last column 
(Expected result) denotes that the DSE algorithm observed that 
specific behavior (return value) for the given inputs.

Table 1 Set of generated test cases by DSE for method in Listing 1

# Value of  a Value of  b Observed result

1 0 0 -1

2 6 0 0

3 6 11 1

Code-based test generators (including those based on DSE) 
may alleviate the work of developers and testers by generating 
an initial set of test cases that can be extended to a whole test 
suite manually. However, the testability issues of the modules 

may more likely to hinder the test generation process as test 
generators reach their limitations. 

A frequent testability issue is caused by developing a mod-
ule without considering testing, which prevents testers to inject 
every external object and configuration into the unit under 
test. This issue hinders the environment and dependency isola-
tion during testing as there is no possibility to replace original 
objects to fake ones. Subsequently test generators also usually 
face several difficulties in these scenarios, as they cannot exe-
cute the entire code under test.

Example 2.  Let us consider the following example, 
where a simple method is the unit under test (with two 
data objects: FileData and FileContentData that 
are also included in the unit) in a problematic testing sce-
nario that hinders the work of test generators. The method 
GetPermissions(int,byte):int implements a logic, 
which decides on permissions of a file. The decision is based 
on a header indicator in the file, and on results from a permis-
sion analysis using another module.

In this setting, the first challenge that a dynamic symbolic 
execution-based test generator may face is found in line 3, where 
the configuration file is opened. If the file does not exist, test gen-
erators would always fail here and would not explore remaining 
parts of the code (C1). The issue can be solved via isolating the 
call or creating the file. During test generation, accesses to the 
file system should be isolated as unintended behavior may occur. 
Note that we assume these test generators can seamlessly collabo-
rate with different isolation approaches and frameworks.

The next difficulty, where a test generator may fail is found 
in line 5, where the stream of the file is read into an array. 
Assuming the opening of the file is isolated, this call shall 
be also handled similarly. Otherwise statement return -1 
could not be reached. However, only runtime detouring of the 
call can be carried out due to the method (unit) structure and 

Listing 2 Example method for isolation case

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

public int GetPermissions(int fileLength, byte indicator)
{
Stream file = File.Open(CONFIGLOCATION, FileMode.Open);
byte[] fileContent = new byte[fileLength];
file.Read(fileContent, 0, fileLength);
if(fileContent[0] < indicator)
{

return -1;
}
FileContentAnalyzer fca = new FileContentAnalyzer();
FileData fd = new FileData();
FileContentData fcd = fca.Analyze(fileContent, fd);
if(fd.IsReadable && !fcd.IsSecret )
{
return 1;

}
return 0;

}
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design (C2). With the help of runtime detouring, statements 
return -1 and return 0 are considered reachable. 

Proceeding further one may notice that line 15 may 
not be executed due to the fact that an external object 
(FileContentAnalyzer) is called. If the type is not imple-
mented yet or contains behavior that may affect test results of 
the unit (e.g., throws unexpected exceptions), the call to method 
Analyze shall also be isolated. Moreover, in this specific call, 
the state of the reference-type argument shall be changed using 
the properties to reach line 15 (C3). 

Based on the previous example, some common identified 
challenges of code-based test generation in a strongly environ-
ment-dependent software are the following. 

• C1: Access to the environment of programs (e.g., file sys-
tem, network). 

• C2: Limitations and collaboration capability of isolation 
approaches. 

• C3: Change of object states in external invocations.

Supporting test generation even for this simple method may 
require tremendous effort. Furthermore, we assumed that test 
generators can collaborate with arbitrary isolation approaches. 
On the contrary, it is not the fact: their collaboration intro-
duce more issues [17]. This simple example has introduced the 
main challenges for DSE-based test generation caused by the 
lack of isolation.

3 Overview of the Supporting Approaches
As presented in Section 1 and 2, invoking dependencies 

from the unit under test may raise numerous issues when using 
DSE-based test generation. Thus, their usage on such source 
code is burdensome. In general, we distinguish four different 
ways of supporting this test generation technique on software 
units that possess several external dependencies.

3.1 Using Default Behavior
When using the default behavior of DSE, the test genera-

tion process is fully automated. The motivating example pre-
sented in Section 2 demonstrated how test generation can fail 
on various dependencies: access to the file system and memory 
streams, or invoking methods that are outside the scope of test-
ing. DSE may fail due to these issues as they are included in 
the general limitations of the technique [8, 28, 4]. Environment 
dependencies like the file system or low-level library accesses 
(e.g., FileStream) are hindering the exploration of the code 
(e.g., when handling files, in certain cases the file shall exist 
and in some cases shall not). Hence, DSE is unable to collect 
constraints through some parts of the execution path or even 
cannot finish a whole path. 

Reconsider the example presented in Listing 2, the state-
ments below line 8 were not possible to reach due to the excep-
tion occurred in the invoked method if the file is not found or 

not accessible. Thus, no new symbolic constraint could be col-
lected during the concrete execution. 

For example, running the IntelliTest DSE-based test genera-
tion tool on this method without any guidance yields the results 
found in Table 2. Notice that – as the opened file does not exist 
– only one test case is generated, which shows the hindered 
behavior of the tool.

Table 2 Results of simply running IntelliTest on Listing 2

# fileLength indicator Observed result  

0 0 0 FileNotFoundException

3.2 Guiding Test Generation
Guiding DSE-based test generation can be achieved by 

employing preconditions (assumptions). These preconditions 
are included in every path constraint collected during the DSE 
process, hence every input that is generated must also fulfill 
these preconditions. The assumptions are written by the user 
to steer DSE along different, more relevant paths. In case of 
Listing 2, one can make an assumption on the file location 
that points to a valid file. For example, the following con-
straint can be added to every path to handle file locations: 
CONFIGLOCATION == “C:\test.txt”, where test.txt 
is a file preconfigured for testing purposes. Using this guid-
ance, DSE is not hindered by an invalid file access, thus new 
constraints can be collected throughout the rest of the code. 

In the example method of Listing 2, the guidance of the 
IntelliTest tool can be achieved using a Parameterized Unit 
Test (PUT) [11], which serves as the starting point of the 
test generation process. The list of parameters consists of the 
following variables: target:PermissionProvider, 
fileLength:int, indicator:byte. We extend this list 
with the CONFIGLOCATION variable in order to assign new 
values. Furthermore, we make an assumption in the body of the 
PUT describing that the value of this variable for all generated 
test cases shall be equal to “C:\test.txt”. This specific 
PUT method containing the mentioned modifications can be 
found in Listing 3.

The modification introduced inside the PUT – in order to 
guide IntelliTest – produces the outcome found in Table 3. The 
yielded results show that the tool reached the branches in the 
code where 0 and -1 is returned. However, the branch where 1 
is returned remains uncovered.

Employing assumptions during DSE could alleviate the 
issues caused by the lack of isolation in certain cases, however 
several other corner cases exist, where preconditions are not 
powerful enough. These occur, when the unit under test uses 
values from external calls and its behavior depends on them. In 
these cases different isolation approaches and frameworks may 
provide solutions.
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3.3 Approaches for Using Isolation
The commonly known and employed isolation approaches 

are stubs and mocks. Involving stubs and mocks into the DSE-
based test generation process is not a new idea as mentioned 
in Section 1 (parameterized mock objects). This special type 
of mocks is able to return inputs necessary to cover parts in 
the unit that depend on values from external invocations (e.g., 
content of the file). 

Reconsider the example method in Listing 2. The previously 
defined PUT can be reused by extending its body with a param-
eterized mock using the Fakes isolation framework. By using 
this mock, the remaining uncovered branch can also becov-
ered, however this requires manual analysis of the code with 
scrutinizing its behavior (e.g., the required values for the vari-
ables to cover the remaining branch). The Fakes code including 
the parameterization of the mock is found in Listing 4. The 

first statement in the body assigns a new FileData object 
for the data parameter, while the second statement returns 
a new FileContentData object. Both assignments obtain 
the objects from the IntelliTest tool by using its PexChoose.
Value method. The resulting test cases are found in Table 4. 
The table – compared to Table 3 – is extended with one test 
case, which executes the path, where the method returns 1. 
Hence, all of the possible execution paths are covered with 
using this approach.

However, employing parameterized mocks during dynamic 
symbolic execution-based test generation leaves questions 
open. First, the concept does not deal with state change of 
objects in an external invocation, which is possible both on 
the called object itself and on the object-type parameters of 
the method being called. Second, the creation of mocks rely 
on isolator approaches that have limited applicability (runtime 

Table 3 Results of running IntelliTest with guidance on Listing 2

# fileLength indicator configLocation Observed result

0 0 0 “C:\\test.txt” IndexOutOfRangeException

1 1 0 “C:\\test.txt” 0

2 int.MinValue 0 “C:\\test.txt” OverflowException  

3 1 58 “C:\\test.txt” -1

Table 4 Results of running IntelliTest with Fakes on Listing 2

# fileLength indicator fd.IsReadable Observed result  

0 0 0 - IndexOutOfRangeException  

1 1 0 false 0  

2 int.MinValue 0 - OverflowException  

3 1 58 - -1

4 1 0 true 1

Listing 3 PUT with assumption for method found in Listing 2

1
2
3
4
5
6
7
8
9
10
11
12
13

public int GetPermissionsTest (
[PexAssumeUnderTest] PermissionProvider target,
int fileLength, byte indicator,
string configLocation // the extra parameter

)
{
// Adding assumption to the configLocation variable
PexAssume . AreEqual (“C:\\test.txt”, configLocation );
// Setting the configuration target variable
target.CONFIGLOCATION = configLocation;
// Calling the method under test
target.GetPermissions (fileLength, indicator);

}

Listing 4 Fakes code in the PUT for the method Listing 2

1
2
3
4
5
6
7

ShimFileContentAnalyzer // mock for FCA
.AllInstances // valid for all instances of FCA
.AnalyzeByteArrayFileData = (fca , content , data ) => // Replaceing Analyze

{
data.IsReadable = PexChoose.Value<bool>(“data.IsReadable”);
return PexChoose.Value<FileContentData>(“fcdata”);

};
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proxy or detour) as some cases – like native calls – are difficult 
to handle. Third, one of the most challenging problems is that 
the core ideas of isolator approaches hinder the DSE-based test 
generation process in general due to the code and call interven-
tions during runtime (as described in Section 2).

3.4 Transforming the Unit Under Test
The previously mentioned challenges (Section 2) with the 

collaboration of DSE and isolation approaches demands for 
a new technique, which could alleviate these problems. To 
overcome the proposed challenges, treating calls in a novel 
way could provide support to the dynamic symbolic execu-
tion-based test generation process. More specifically, replace-
ment of these calls to fake, static methods that have same 
signatures and contain value generation behavior so that it 1) 
may not introduce complexity to test generators, along with 
2) maintaining functionality of the unit under test. This spe-
cial procedure on the source requires identifying all exter-
nal calls and objects. Considering the motivating example 
(Section 2), these methods are the following: File.Open, 
FileStream.Read, FileContentAnalyzer.ctor, 
FileContentAnalyzer.Analyze. Moreover, the code 
also contains two references of external types: FileStream 
and FileContentAnalyzer. The replacement procedure 
involves the following two steps for this method. 

1. Rewriting references of external types to a special type, 
which acts both as a state container and a placeholder, to 
maintain the syntactical correctness of the code. 

2. Replacing every external call to a static invocation into a 
fake class with same signature. 

After conducting these two steps on the source code found 
in Listing 2, the resulting code of the method is found in 
Listing 5. Lines 3, 5, 10 and 12 are changed and transformed 
to isolate external dependencies (marked with color). In line 
3, a DynamicFake object replaces the original FileStream 

as a state container (see step 1) and the opening of the file 
is replaced with a call to a static method FileOpen in the 
class Fake (see step 2). The reading of FileStream is 
replaced to method FileStreamRead (line 5). The instan-
tiation of FileContentAnalyzer is transformed to the 
instantiation of a state container (DynamicFake) (line 
10) and a call to method Analyze is also changed to a 
fake one (line 12). Argument lists of FileStreamRead 
and FileContAnalyzerAnalyze are extended with a 
DynamicFake that may be able to store the current state of 
their original container objects dynamically.

Although the invocations have been replaced, the replace-
ment methods also have to be implemented in the Fake 
static class. Method FileOpen shall be able to return a new 
DynamicFake object, method FileStreamRead shall be 
able tofill the fileContent byte array with arbitrary content, 
and finally FileContentAnalyzerAnalyze shall be able 
to set the properties of FileData and FileContentData 
to different values. The source code of class Fake is found in 
Listing 6. Note that in the current example, we used a method 
ChooseValue<T> that represents interaction with the test 
generator to obtain values of a specific type T. For example, 
when using the IntelliTest tool, this can be replaced to method 
PexChoose, which was already presented in the previous sec-
tions. In case of array initializations (line 10 and 21), we did 
not parameterize the size of arrays as it may require prelimi-
nary assumptions to avoid unintended overflows.

Using this fake method container class in combination with 
the special transformation of the unit under test, a dynamic 
symbolic execution-based test generation process is alleviated 
from the issues caused by external dependencies (C1, C2 and 
C3 in Section 2). Thus, a white-box test suite could be gener-
ated easily to cover the unit under test with additional infor-
mation about the dependencies. This data describes which 
behavior (return value, state change of parameters) steers the 
program executions along different paths.

Listing 5 Transformed example method for isolation case

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

public int GetPermissionFromFileContent(int fileLength, byte indicator)
{
DynamicFake file = Fake.FileOpen(CONFIGLOCATION, FileMode.Open);
byte[] fileContent = new byte[fileLength];
Fake.FileStreamRead(fileContent, 0, fileLength, file);
if(fileContent[0] < indicator)
{

return -1;
}
DynamicFake fca = new DynamicFake();
FileData fd = new FileData();
FileContentData fcd = Fake.FileContentAnalyzerAnalyze(fileContent, fd, fca);
if(fd.IsReadable && !fcd.IsSecret)
{

return 1;
}
return 0;

}
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Table 5 Possible set of generated inputs for the transformed example method

indicator 
fcaa-p1-IsRead-

able 
fcaa-ret result  

00 false null 0  

00 true null -  

00 true new FileContentData(IsSecret=false) 1  

01 - - -1  

Algorithm 1 High-level algorithm of the presented approach
1:
2:
3:
4:
5:
6:
7:
8:
9:

function AutomatedIsolator(Unit[] units)
for all unit in units do

ast := parseAst(unit.getSource());
syntaxData := analyzeSyntax(ast);
newAst := transformAst(ast,syntaxData);
sandbox := synthesizeSandbox(syntaxData);
outputCode(newAst, sandbox);

end for
end function

 iterating through units
 getting AST of unit
 analyzing syntax tree
 transforming the AST
 creating the sandbox
 emitting the results

Listing 6 Example fake container class for replacement methods

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

public static class Fake
{
public DynamicFake FileOpen(string p0, FileMode p1)
{

return new DynamicFake(); // Returning a state container
}

public int FileStreamRead(byte[] p0, int p1, int p2, DynamicFake obj)
{

p0 = new byte[2]; // Assigning a new array to p0
for (int i = 0; i < p0.Length ; i++)
{

// Filling p0 with arbitrary values
p0[i] = ChooseValue <byte>(“fsr-p0-”+i);

}
return ChooseValue<int>(“fsr-ret”); // Choosing arbitrary int to return

}

public FileContentData FileContentAnalyzerAnalyze(byte[] p0, FileData p1, DynamicFake obj)
{

p0 = new byte[2]; // Assigning a new array to p0
for (int i = 0; i < p0.Length; i++)
{

// Filling p0 with arbitrary values
p0[i] = ChooseValue<byte>(“fcaa-p0-”+i);

}
// Setting a property of p1
p1.IsReadable = ChooseValue<bool>(“fcaa-p1-IsReadable”);
// Returning a new FileContentData object
return ChooseValue<FileContentData>(“fcaa-ret”);

}
}

Implementing this approach for IntelliTest provides the 
generated set of test inputs found in Table 5, which covers 
every execution path in the method under test. We use nota-
tions of the variables from Listings 5 and 6 (see assigned 
parameters of method ChooseValue). Note that the table 
only contains variables that needed to have different values 

for the test generation process. The constant assignments for 
the other variables are the following: fileLength = 6, 
fsr-p0-0 = fsr-p0-1 = 00, fsr-ret = 0, fcaa-
p0-0 = fcaa-p0-1 = 00. 

The proposed procedure has three main steps: 1) static code 
analysis, 2) code transformation and 3) sandbox generation. All 
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of them can be automated using special algorithms and tech-
niques. Static code analysis is viable using code traversal algo-
rithms to identify external types and invocations. The rewriting 
of the source code can be achieved using specific transformations 
to replace the parts identified during the analysis step. Finally, 
the synthesization of the sandbox around the unit under test can 
be accomplished using code generation techniques. In Section 4, 
we present this automated isolation approach in detail.

4 Approach for Automated Isolation
The approach presented in this paper tackles the unit isola-

tion problem for DSE-based test generation using syntax trans-
formations and sandbox code synthesis. Our technique uses 
Abstract Syntax Trees (ASTs) [20] to gain information and to 
modify the source code. ASTs are graphs representing parts 
of source code, which can be obtained via code parsing. The 
nodes of the tree denote different structures taking place in the 
code, hence types of the nodes are depending on the grammar 
of the programming language being used.

4.1 Generic Definition
Our isolation approach involves three main steps: 1) analy-

sis of the code under test, 2) syntax transformation of the unit 
and 3) synthesis of an isolation sandbox. The overview of the 
whole approach can be found in Algorithm 1. The process starts 
from a predefined unit, which is given with the fully qualified 
names of elements to include. An element can be a method, 
a class or even a whole module. The concept of a unit can be 
formalized as found in Definition 1.

Definition 1 (Unit Under Test).  Let the unit under test  UUT 
be a set so that an element  u Î UUT  is an arbitrary module of 
the software, which can be identified by its fully qualified name. 

For example, MySoftware has three modules (Module1, 
Module2, Module3), then a possible unit under test is UUT = 
{MySoftware.Module1, MySoftware.Module2}. In 
that context, Module3 is thought as external during unit test-
ing. Note that every ancestor of classes included in the unit are 
also automatically added to the unit to avoid issues caused by 
rewriting external types in signatures. 

4.1.1 Syntax Analysis
The tasks during the analysis are 1) to reveal invocations 

of methods thought as external from the unit and 2) to iden-
tify references to types thought as external. The detection is 
performed using the ASTs and the attached semantic models 
that are obtained from runtime compilation of the source code 
under test. The semantic model contains information about the 
types used in the source. The AST is traversed and every node  
Call is scrutinized in detail that matches the following two con-
straints at once.

Definition 2 (Call node). Call (s, c) is an AST node with signa-
ture s (e.g., its name, parameters, etc.) and container c  so that 
Call is a method invocation or member access expression, and 
c  is an external module:  c Ï UUT .

Deciding if the invoked method or accessed member is 
external or not is achieved via type analysis using the seman-
tic model, which can be used to obtain fully qualified names 
for the elements (e.g., variables, methods) in the AST. Note 
that basic types or specific primitive or system types shall be 
included in the unit by default to avoid overisolation (e.g, iso-
lating integers). 

Furthermore, in order to detect external type usages, every 
node  Typ  is collected for further analysis that satisfy the fol-
lowing two constraints.

Definition 3 (Typ node). Typ(t) is an AST node so that it is a 
parameter of type t or a return type of  t or a variable declara-
tion expression of type t . Furthermore, t is an external type: 
t Ï UUT . 

Before any other step could be taken, external method invo-
cations shall be analyzed more deeply to discover their signa-
ture, which can be used in the body of the replacement method. 
In there, the actual state of different parameter objects can be 
altered possibly simulating the original behavior. Hence, during 
the analysis of parameters, variables with types included in the 
unit are sought (t, Typ(t) Î UUT ). However, changing the state 
of these objects requires further and more deeper examination.

Using the semantic model, parameters of external invoca-
tions are analyzed that have types included in the unit. The type 
analysis discovers members (e.g., fields) of the object, which 
can be modified from any other object (i.e., it is public and 
writable from outside). This process is performed recursively 
as several levels of references among types may exist. 

All the information collected during the analysis of invoca-
tions, variables and types is stored for use in the forthcoming 
steps of the automated isolation process.

Example 3. Let us consider the example method found in 
Listing 7 in order to demonstrate the workflow of syntax and 
type analysis. The method indicates if the weekend is near by 
returning true if the day after tomorrow is Saturday and false 
otherwise. Let the under under test be only this method, thus 
UUT = {WeekendNotifier.IsWeekendNear():bool}. 

The analysis starts with parsing the source code into an AST. 
A simplified version of the AST for this example method is 
found in Fig. 1. The first step discovers external invocations, 
which we marked with light gray on the AST. The signature 
and type information of all the three invocations are collected 
and persisted for later use. The next step during the analysis 
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phase is to identify external type usages. In this case, there 
is only one variable declaration, which uses an external type 
(marked with dark gray on the AST).

Listing 7 Example method to the demonstration of isolation workflow

1
2
3
4
5
6
7
8
9
10
11
12

public class WeekendNotifier {
public bool IsWeekendNear()
{

DateTime date = DateTime.GetNow();
date.AddDays(2);
if(date.GetDay() == “Saturday”)
{

return true;
}
return false;

}
}

Fig. 1 The simplified AST of method IsWeekendNear

4.1.2 Syntax Tree Transformation
In order the replace the invocations and type usages detected 

during the analysis step, the AST is transformed for each 
detected node (Call or Typ). The approach rewrites 1) method 
and constructor invocations, 2) member accesses and 3) type 
usages. The rewriting algorithm conducts the following trans-
formations on the previously collected nodes (Call or Typ). 

• Call (s, c) → Call (s',  f ), where Call (s',  f ) denotes a 
method invocation with similar  s'  signature in container   
f  that stands for Fake. s' is a slightly modified (s' has 
the method name combined from the unique name of the 
containing type and the original method name), and pos-
sibly extended variant of   s  signature if the method call 
is not static. In this case, the list of parameters is extended 
with a DynamicFake parameter to maintain the state of 
the external object. 

• Typ(t) → Typ(df), where  df denotes the type DynamicFake.

Let us reconsider the example method used during the 
demonstration of the analysis step. All the required informa-
tion in method IsWeekendNear was collected regarding the 

external invocations and type usages. We demonstrate the AST 
transformation through this simple method to give a better 
understanding (Fig. 2). The modified nodes of the AST have 
bold labels. First, the invocations are transformed in order to 
invoke replacement methods instead of the original ones. Note 
the invocation of method AddDays: the containing type and 
original method name is combined (DateTimeAddDays) 
for unique identification and the list of parameters is extended 
with a new variable of DynamicFake type representing the 
state of the external object. Note that if there were multiple 
types named DateTime, then the approach would use the 
fully qualified name of the type (e.g., SystemDateTime, 
OtherDateTime). Moreover, if method names are collid-
ing, the list of parameter types are also added to their names 
to ensure uniqueness. The other two invocations were also 
transformed, however method DateTime.GetNow is static, 
thus the list of parameters is not extended there. Furthermore, 
the only one external type usage node (VariableDeclaration) 
is transformed to use the DynamicFake type instead of the 
original DateTime.

Fig. 2 The transformed AST of method IsWeekendNear

A question may be raised about the modified code in the 
unit under test if it influences or alters the behavior or not. In a 
wrongly designed source code with numerous external depend-
encies, isolating these external calls is hindered by the lack of 
injection possibility. This causes the modification unavoidable 
for the code under test. Manual testability refactoring [15] tech-
niques mostly employ approaches, which also introduce modi-
fications to the source code, like extracting interfaces [24]. 
Although these may provide solutions for testability issues, 
manual refactoring may require tremendous effort in large and 
complex software. Our code transformation 1) does not modify 
the behavior of the unit under test and 2) does not require man-
ual effort as it is performed automatically.
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4.1.3 Sandbox Synthesis
As the original source code is rewritten to invoke replace-

ment methods, the container for the definitions needs to be cre-
ated. The replacement calls are acting as static calls hence the 
container itself is also a static class called Fake. 
Fake contains all the  m  methods that were invoked in 

the unit under test and thought as external (m Ï UUT). If the 
method  m  has signature   s  then the method in the container 
has signature   s'  corresponding to the invocation in the trans-
formed AST. These methods are not only need to be defined 
in the container Fake, they should also define arbitrary and 
extensible behavior to simulate the original. 

Numerous possibilities exist to simulate the original behav-
ior of external components. Our technique currently defines 
two different behaviors. 

• Simple behavior: If the method does return any value, it 
will act as a stub and will not define any logic or behavior. 
If it does return a value of some type, then it is obtained 
from the DSE-based test generator by adding the variable 
to the path constraint. 

• Advanced behavior: Extends the simple behavior with 
object state handling. Hence, if a parameter has a type, 
which is included in the unit, then all of its recursively 
discovered modifiable members has an assignment in the 
body of the method. The assignments obtain values for 
the members from the test generation process by adding 
them as variables to the path constraint.

Let us reconsider the method IsWeekendNear and its 
transformed AST (Fig. 2) used during the previous examples. 
The synthesized sandbox (Fake) from the data collected dur-
ing the analysis contains thedefinitions of the three methods 
that are invoked in the transformed unit under test. Note that 
there is no parameter, which state can be altered in the body of 
the replacement method. The synthesized sandbox code for the 
IsWeekendNear example can be found in Listing 8.

4.2 Possible use cases
The presented approach is suitable for two different possi-

ble use cases as it is currently tied to the dynamic symbolic 
execution technique. Furthermore, it is designed to alleviate the 
challenges of a code-based test generator (C1, C2 and C3 of 
Section 2) in a strongly environment-dependent software. 

The first and main use case of the approach is the support 
of the DSE-based test generation by alleviating the isolation 
problem that may hinder the process. By replacing the external 
invocations and type usages, the unit under test is isolated from 
everything thought as external and could be run in a parameter-
ized sandbox filled by DSE. The test cases generated for the 
transformed source code may reveal problems in the original 
code as it only focuses on the behavior of the unit under test in 
a simulated environment altered by DSE. 

The other use case is for the integration of modules. By 
using the presented approach, one can analyze the influence 
of external invocations in the unit under test. This includes 
checking the possible interactions and their values to decide if 
the module is ready for integration with others. Also, one can 
describe and restrict the generated behavior of external invoca-
tions in order to have more realistic simulation of the original 
dependencies. These descriptions can be achieved via using 
assumptions for the test generator.

4.3 Tool-specific Implementation
The implementation of the approach requires a code-based 

test generator that uses dynamic symbolic execution to cre-
ate tests. Moreover, the technique employs a special abstract 
syntax tree transformation, which demands for a source code 
parser and transformer that enables the definition of custom 
transformation rules. 

We selected IntelliTest as the DSE-based test generator 
for the implementation. It is one of the most advanced tools 
available and its transfer to industrial practice was already 
investigated indicating its maturity [35]. As IntelliTest 

Listing 8 Sandbox for the example method IsWeekendNear

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

public static class Fake
{
public DynamicFake DateTimeGetNow()
{

// Return a state storage object instead of the original
return new DynamicFake();

}

public void DateTimeAddDays(int days)
{

// A simple test stub
}

public int DateTimeGetDay()
{

// Getting value from test generator
return ChooseValue<int>();

}
}
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currently only works with source code written in C# language, 
the number of possibilities to choose a source code parser 
was reduced. One approach could have been to write our own 
C#-to-AST parser, however the .NET developer team provides 
a code analysis library, called Roslyn [25]. This library is able 
to construct ASTs from C# source code and also supports the 
transformation of the trees, which makes it a suitable tool for 
the requirements of our approach. 

We implemented the whole approach in a tool, which is an 
extension of the Visual Studio integrated development environ-
ment. The user first defines the elements of the unit under test 
using their fully qualified names. Then, when invoking the tool 
the ASTs of the unit elements are transformed, and the code 
of the sandbox (Fake) – containing the implementations of 
the replacement methods – is also generated. The bodies of the 
replacement methods contain statements that collaborate with 
IntelliTest by obtaining concrete values from the tool. Note that 
the current implementation does not support the state container 
feature of DynamicFake objects.

5 Experimental Evaluation
As the approach has been implemented in a proof-of-con-

cept prototype tool, the preliminary experimental evaluation 
of the approach became feasible. We employed two types of 
source code in this experiment: 1) snippets from an evaluation 
framework and 2) parts of open-source projects from GitHub.

5.1 Objective
This evaluation intends to decide whether the approach and 

the implemented prototype tool is able to support DSE-based 
test generation process. Hence, the current experiment aims to 
answer the following research question. 

Is the automated isolation approach able to enhance 
block coverage for DSE-based test generation?

5.2 Process
Answering the RQ requires collecting software modules 

that are implementing different behaviors with diverse logic 
constructs. The subjects of evaluation can be obtained from 
various places like open-source code repositories, where C# 
projects can be found (e.g., CodePlex or GitHub). We chose 
GitHub as the sources of the projects. 

First, we used environment-dependent snippets from SETTE 
[9] (Symbolic Execution-based Testing Tool Evaluator), a 
framework specially created to compare test generator tools. 
The SETTE snippets were translated manually from Java to C#.

Next, we randomly chose projects available on GitHub 
meeting a predefined set of criteria. We defined the following 
selection criteria. 

• The project repository shall have at least 100 stars indi-
cating its popularity, thus the mature state of the code. 

• The project repository shall have been updated in the last 
five days, which indicates the active development. 

• The project shall be compiled and built with one-click in 
order to speed up the evaluation process. 

• The selected modules of a project shall not contain 
code with multi-threading as it cannot be handled by 
IntelliTest.

The answer requires measurements of the yielded results 
in terms of coverage. We measured the basic code block cov-
erage of simply running IntelliTest on the analyzed module 
first. Then, the transformation was applied to the code using 
the automated isolation approach, and IntelliTest was executed 

Table 6 Details of the selected classes for evaluation

Project Class Method count Lines of code  

Abot 

WebContentExtractor 1 63  

RobotsDotTextFinder 1 15  

CrawlDecisionMaker 4 68  

Textc 

SyntaxParser 1 35  

CsdlToken 6 101  

CsdlParser 5 53  

LiteDB 

LiteFileStorage 14 57  

DataService 8 80  

TransactionService 5 38  

Papercut 

MessageRepository 5 38  

NetworkHelper 4 29  

TempDirectoryCleanupService 3 17  

SETTE 

SetteFileIo 3 44  

SetteNetworking 1 41  

SetteStdio 4 36  
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again. Note that we did not provide any support manually
(e.g., factory methods, assumptions, etc.) for IntelliTest, or for 
the automated isolation tool either.

5.3 Setup
The selection process of the projects from GitHub was 

very simple. We searched for repositories that have more than 
100 stars and had been updated in the last five days. Then, we 
selected an arbitrary project from the list that contained no 
multi-threaded logic, then we tried to compile it. If the compila-
tion finished successfully, the project was included in the evalu-
ation, otherwise we looked for another repository that matched 
our criteria. Using this procedure, we managed to select the 
following projects and modules for this preliminary evaluation. 
The class selection criteria was to choose classes that act cru-
cial roles in the business logic. From SETTE, we selected three 
classes implementing various behaviors with environment inter-
action. The detailed statistics of the selected modules are found 
in Table 6. We used these classes as the unit under tests (UUT).

• Abot is customizable and lightweight web crawler. 
Class WebContentExtractor obtains the 
required content from the currently crawled site. 
RobotsDotTextFinder is responsible for seek-
ing the robots.txt file, which is a de facto standard for 
describing the intended behavior of web crawlers for 
the website. CrawlDecisionMaker decides on the 
behavior, when a possible branch occurs in the crawled 
website path.

• Textc is a natural language processing library. Command 
Syntax Definition Language is an included notation, 
which can be used to define syntaxes. Syntaxes form the 
basis of processing as they are matched against the input 

tokens. Class SyntaxParser implements the default 
behavior of parsing an arbitrary text with a selected syn-
tax. The result is information about an expression that 
was parsed from an input text using the specified syntax. 
CsdlToken represents a token in the syntax description 
language. Class CsdlParser can parse texts written in 
CSDL to define new syntaxes. 

• LiteDB is a NoSQL document store that uses only a sin-
gle file for storage. The application is lightweight and 
is rich of features. Class LiteFileStorage is a col-
lection to store files or data streams. DataService 
provides basic CRUD methods to create, read, update 
and delete arbitrary data in the document store. Finally, 
TransactionService is responsible for managing 
transactions. 

• Papercut is an SMTP e-mail receiver. The application is 
useful for testing applications that are sending e-mails. 
Class MessageRepository is responsible for manag-
ing the storage of incoming messages. NetworkHelper 
is a class, which provides methods for frequently used 
actions in networking (e.g., getting the IP address). 
TempDirectoryCleanupService is a service, 
which cleans the temporary storage directory, when a 
specific event occurs. 

• SETTE is a symbolic execution-based testing tool evalu-
ator framework implemented in Java. We translated three 
environment-dependent classes to C# for this evaluation. 
Class SetteFileIo performs various file operations 
like writing and reading. SetteNetworking imple-
ments a complex networking behavior including a server 
that processes requests from a client. SetteStdio uses 
the standard input and output for various operations.

Table 7 Detailed results of the evaluation. 

IntelliTest default Automated isolation  

Project Class GT BC GT BC  

Abot 

WebContentExtractor 1 7.87% 17 93.59%  

RobotsDotTextFinder 1 29.03% 5 92.59%  

CrawlDecisionMaker 17 30.23% 61 95.82%  

Textc 

SyntaxParser 24 91.07% 28 100.00%  

CsdlToken 61 46.54% 88 58.29%  

CsdlParser 41 54.62% 7 35.96%  

LiteDB 

LiteFileStorage 22 55.28% 51 100.00%  

DataService 21 16.08% 20 30.61%  

TransactionService 5 25.37% 6 33.90%  

Papercut 

MessageRepository 5 16.22% 37 90.28%  

NetworkHelper 4 81.67% 10 81.67%  

TempDirectoryCleanupService 3 62.5% 11 91.67%  

SETTE 

SetteFileIo 7 69.35% 21 100.00%  

SetteNetworking 1 23.08% 3 92.31%  

SetteStdio 25 100.00% 12 100.00%  
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Two steps were taken to obtain the results: 1) we executed 
IntelliTest and obtained the coverage results, then 2) the auto-
mated isolation tool was executed to transform the code and to 
create a sandbox, and IntelliTest was run once again to obtain 
the newcoverage metrics. Each execution was repeated 3 times. 
During the evaluation, we observed no differences among the 
outcomes of repetitions. 

The evaluation was performed on a laptop running Windows 
10 and Visual Studio 2015 Enterprise Update 3.

5.4 Results
The results obtained can be found in Table 7. Here, GT 

denotes the number of generated tests, while BC indicates the 
block coverage reached.

The first project we employed was Abot. The results for pro-
ject Abot show significant increase in the number of generated 
tests and block coverage in all three cases. The block coverage 
reaches more than 90%, which can be thought as successful. 

Comparing the results of Textc to the previous project, the 
initial number of generated tests are significantly larger, mean-
ing that IntelliTest could more easily handle these classes. 
When the automated isolation was applied, the number of gen-
erated tests and also the block coverage increased in the first 
two classes. Note that there were blocks in class CsdlToken, 
which were not covered even in the transformed code. This 
issue is related to IntelliTest as it could not instantiate a map 
object with specific elements that is required to execute dif-
ferent branches. Also, class CsdlParser shows interesting 
results: the coverage decreased after applying automated isola-
tion. This anomaly was due to the following two root causes: 
1) current implementation of the Fake container does not sup-
port returning arbitrary sizes of arrays of given types, 2) a type 
query (typeof) statement could not be transformed in the 
AST. The combination of these issues led to missing a whole 
method and multiple other blocks to cover. It must be empha-
sized here that this issue is only related to the current state of 
the prototype tool and not to the approach. 

In terms of project LiteDB, the yielded coverage and test 
metrics show similar results to Abot: a significant increase is 
seen for all three classes in both metrics. In case of the last 
two classes, there are code blocks, which were not covered 
even in the transformed code, which caused the coverage 
metric to stay very low in both cases. After scrutinizing the 
generated test cases, we found two different reasons. For class 
DataService, the blocking issue was that IntelliTest could 
not provide a map for the Fake container that is indexable with 
different values. In case of class TransactionService, 
reaching 100% coverage would require construction of method 
invocation sequences (e.g., begin, commit, save). Thus, these 
issues are not related to the approach or the prototype tool. 

The results for project Papercut show similar increase of 
both examined metrics than in the previous three projects. 

For class NetworkHelper, the coverage did not show any 
growth, however the number of generated tests was raised from 
4 to 10. This was caused by a tool-related issue, particularly the 
lack of transforming a special structure in the code (using). 
This feature is currently not implemented in the tool. 

Finally, identical results can be discovered for project 
SETTE. For classes SetteFileIo and SetteNetworking, 
the coverage increased significantly. In the latter class, the 
cause of omitting full block coverage is that the server-side 
code contains an infinite loop, which can be only stopped by 
thread handling. Thus, IntelliTest is not able to reach some 
statements after the loop. For class SetteStdio, the block 
coverage remained 100% in both cases, however the number of 
generated tests is reduced as the unit to explore is smaller when 
using isolation. 

In summary, the results for the five projects showed a clear 
increase in the number of generated tests and also in block cov-
erage, when using IntelliTest supported by the automated isola-
tion approach. Based on these results, the approach could be 
able to help increasing the coverage for tests generated by DSE.

5.5 Limitations
During the preliminary evaluation, we managed to iden-

tify bugs and issues hindering our approach, though they were 
caused only by the prototype state of the tool, and were not 
related to the approach itself. One of these issues was the lack 
of transformations of some special structures. These AST trans-
formations require numerous different scenarios to be prepared 
for as the C# language is very vast. Among others, we found 
the following issues with the tool when it was executed on the 
selected classes. Also note that most of these were not fixed – 
due to the complexity – during the evaluation and the results 
for the RQ could be influenced by them. 

• The DynamicFake state container objects are currently 
acting as a dummy type and are not storing anything. 

• Class DynamicFake is not disposable and not enumer-
able meaning that it cannot be used in some special code 
contexts. 

• Enums are thought as external types in some cases, how-
ever they are not harmful as they have no behavior. Thus, 
should not act as subjects of isolation. 

• Properties of class Fake have no generic type indicators 
in certain situations. 

• Methods in the Fake container are not able to throw 
exceptions in their current implementation state. 

• Generic methods and types are not handled properly in 
the AST transformations in certain cases. 

• Casting to an external type is not transformed in the AST. 
• Delegates and anonymous methods are not handled dur-

ing the AST transformation. 
• Using structures are currently not supported in the AST 

transformations. 
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• Classes in the unit that implement external interfaces or 
external abstract classes are currently not supported due 
to the large amount of transformations required. 

Some of these issues caused the compiling of the transformed 
unit under test to fail. During the evaluation, we only fixed the 
blocking issues manually. We decided to not fix the rest of the 
issues for this paper as 1) the results of the prototype version 
was already able to show the potential in the underlying ap-
proach, and 2) designing and implementing the missing fea-
tures would require significant effort.

6 Related work
Our idea originally derives from a paper written by 

Tillmann et al. [34], where the idea of mock object genera-
tion is described. They also conducted a case study for file-
system dependent software [22], that showed promising results 
for using parameterized mocks. Their presented technique is 
able to automatically create mock objects with behavior and 
has the ability to return symbolic variables, which is used dur-
ing the symbolic execution to increase the coverage of the unit 
under test. However, their solution requires external interfaces 
explicitly added to the parameterized unit tests (i.e. needs user 
intervention), moreover they did not consider any state change 
of object inside mocks that can affect the coverage in the unit 
under test. Hence, our solution covers a wider area of scenarios 
and needs minimal user interaction for the automated genera-
tion (our approach only requires the fully qualified names of 
the units under test). 

The idea of Galler et al. is to generate mock objects from pre-
defined design by contract specifications [12]. These contracts 
describe preconditions of a method, thus the derived mocks 
are created in respect of them. This makes the mocks able to 
avoid false behavior. However, their approach does not relate to 
dynamic symbolic execution and provides no mention of collabo-
ration with any test generation process. The approach may also 
introduce work overhead when creating contracts as specification.

Samimi et al. proposed the approach of declarative mock-
ing [29]. Their technique requires developers to write speci-
fications in a domain-specific language (DSL) to describe the 
intended behavior of the method to mock. The specification 
is then executed by a special tool called PBnJ. Hence, this 
approach needs developers to write their own tests, and it has 
also no mention of collaboration with code-based test generator 
approaches and tools. 

A similar approach is introduced in parallel with a symbolic 
execution engine to Java by Islam et al. [18]. The difference 
with previous two techniques is that this one uses interfaces as 
specifications instead of contracts or a special DSL. 

Another approach of mock generation was presented by 
Pasternak et al. [27]. They created a tool called GenUTest, 
which is able to generate unit tests and so-called mock aspects 

from previously monitored concrete executions. However, the 
effectiveness of the approach largely relies on the complete-
ness of previous concrete executions, while our presented 
approach uses only the previous compilation with static AST 
transformations. 

A model-based approach of isolation is presented by Jeon 
et al. [19] for Java programs that largely rely on frameworks. 
Their technique derives a framework model in order to sup-
port and collaborate with symbolic execution during the test 
generation process. Their implemented tool Pasket is able to 
instantiate a model from code artifacts and tutorial programs, 
which has a matching behavior with the original framework. 

7 Conclusion and future work
In this paper, an approach for automatically isolating exter-

nal dependencies has been presented to support dynamic 
symbolic execution-based (DSE) test generation in complex 
software. This technique is designed to collaborate with DSE-
based test generationby obtaining values for dependencies 
directly form the test generator tool. These values are used as 
return values for external methods and for assignments, where 
changing states of object is possible inside the dependency. The 
presented approach replaces the calls to external dependencies 
with fake invocations to a sandbox. The extensible sandbox is 
synthesized from various information collected during code 
and type analysis. This sandbox is able to collaborate with 
dynamic symbolic execution. 

The paper also presented a prototype tool that implements 
the approach for C# by using Roslyn and is able to collaborate 
with IntelliTest, a state-of-the-art dynamic symbolic execution-
based test generator. The technique was evaluated in terms of 
increase in code coverage of the generated tests. The prelimi-
nary evaluation employed snippets from a symbolic execution-
based tool evaluator framework, and modules from selected 
open-source projects on GitHub. The results of the evaluation 
were promising as theprototype tool was able to transform 
these modules, and was also capable of synthesizing a sandbox 
without serious blocking issues. Furthermore, the transformed 
code that used the sandbox had significantly higher code cover-
age with increased number of generated tests. 

In terms of future work, our plan is to elaborate the use of 
DynamicFake objects that are able to store and maintain the 
state of externally-typed objects. This would improve the whole 
approach and may provide better matching with software sys-
tem environments. We are also continuously fixing the issues 
of the prototype tool. Another way of improvement could be to 
enhance the behavioral logic inside the sandbox from sample 
programs or observations of concrete executions (similarly to 
[19] and [27]). Furthermore, we would like to provide an incre-
mental isolation refinement method for our current approach in 
order to avoid isolating calls that are not necessary for improv-
ing DSE-based test generation.



130 Period. Polytech. Elec. Eng. Comp. Sci. D. Honfi, Z. Micskei

References
[1] Arcuri, A., Iqbal, M. Z., Briand, L. "Random testing: Theoretical results 

and practical implications." IEEE Transactions on Software Engineering. 
38(2), pp. 258-277. 2012. https://doi.org/10.1109/TSE.2011.121

[2] Arcuri, A., Fraser, G., Galeotti, J. P. "Automated unit test generation for 
classes with environment dependencies." In: Proceedings of the Interna-
tional Conference on Automated Software Engineering, Vasteras, Swe-
den, Sept. 15-19, 2014, pp. 79-90.

 https://doi.org/10.1145/2642937.2642986
[3] Bucur, S., Ureche, V., Zamfir, C., Candea, G. "Parallel symbolic execu-

tion for automated real-world software testing." In: Proceedings of the 
Sixth Conference on Computer Systems, Salzburg, Austria, April 10-13, 
2011. pp. 183-198.

 https://doi.org/10.1145/1966445.1966463
[4] Cadar, C., Sen, K. "Symbolic execution for software testing: three dec-

ades later." Communications of the ACM. 56(2), pp. 82-90. 2013.
 https://doi.org/10.1145/2408776.2408795
[5] Cadar, C., Dunbar, D., Engler, D. "KLEE: unassisted and automatic gen-

eration of high-coverage tests for complex systems programs." In: Pro-
ceedings of Operating systems design and implementation, OSDI’08, pp. 
209-224. USENIX Association, 2008.

[6] Cadar, C., Ganesh, V., Pawlowski, P. M., Dill, D. L., Engler, D. R. "EXE: 
automatically generating inputs of death." ACM Transactions on Infor-
mation and System Security (TISSEC). 12(2), Article No. 10, 2008.

 https://doi.org/10.1145/1455518.1455522
[7] Cadar, C., Godefroid, P., Khurshid, S., Păsăreanu, C. S., Sen, K., Till-

mann, N., Visser, W. "Symbolic execution for software testing in prac-
tice: preliminary assessment." In: Proceedings of the 33rd International 
Conference on Software Engineering, Waikiki, Honolulu, HI, USA, May 
21-28, 2011, pp. 1066-1071.

 https://doi.org/10.1145/1985793.1985995
[8] Chen, T., Zhang, X., Guo, S.-Z., Li, H.-Y., Wu, Y. "State of the art: Dy-

namic symbolic execution for automated test generation." Future Gen-
eration Computer Systems. 29(7), pp. 1758-1773. 2013.

 https://doi.org/10.1016/j.future.2012.02.006
[9] Cseppento, L., Micskei, Z. "Evaluating symbolic execution-based test 

tools." In: 2015 IEEE 8th International Conference on Software Testing, 
Verification and Validation (ICST), Graz, April 13-17, 2015, pp. 1-10.

 https://doi.org/10.1109/ICST.2015.7102587
[10] Daka, E., Fraser, G. "A Survey on Unit Testing Practices and Problems." 

In: 2014 IEEE 25th International Symposium on Software Reliability 
Engineering, Naples, Nov. 3-6, 2014, pp. 201-211.

 https://doi.org/10.1109/ISSRE.2014.11
[11] de Halleux, J., Tillmann, N. "Parameterized Unit Testing with Pex." In: 

Tests and Proofs. (Beckert, B., Hähnle R. (eds.)), Vol. 4966, pp. 171-181. 
Springer, 2008.

 https://doi.org/10.1007/978-3-540-79124-9_12
[12] Galler, S. J., Maller, A., Wotawa, F. "Automatically Extracting Mock Ob-

ject Behavior from Design by ContractTM Specification for Test Data 
Generation." In: Proceedings of the 5th Workshop on Automation of Soft-
ware Test (AST), Cape Town, South Africa, May 03-04, 2010, pp. 43-50.

 https://doi.org/10.1145/1808266.1808273
[13] Godefroid, P., Klarlund, N., Sen, K. "DART: directed automated random 

testing." ACM Sigplan Notices. 40(6), pp. 213-223. 2005.
 https://doi.org/10.1145/1064978.1065036
[14] Godefroid, P., Levin, M. Y., Molnar, D. A. "SAGE: Automated Whitebox 

Fuzz Testing." In: Proceedings of NDSS’2008 (Network and Distributed 
Systems Security), San Diego, February 2008, pp. 151-166. 

[15] Harman, M. "Refactoring as testability transformation." In: 2011 IEEE 
 Fourth International Conference on Software Testing, Verification and 

Validation Workshops, Berlin, March 21-25, 2011, pp. 414-421.
 https://doi.org/10.1109/ICSTW.2011.38
[16] Honfi, D., Micskei, Z. "Generating unit isolation environment using 

symbolic execution." In: Proceedings of the 23rd PhD Mini-Symposi-
um. Budapest University of Technology and Economics, Department of 
Measurement and Information Systems, Budapest University of Tech-
nology and Economics, Department of Measurement and Information 
Systems, 2016.

[17] Honfi, D., Micskei, Z., Vörös, A. "Isolation and Pex: Case Study of Co-
operation, 2013." Technical report, Budapest University of Technology 
and Economics.

[18] Islam, M., Csallner, C. "Dsc+Mock: A Test Case + Mock Class Gen-
erator in Support of Coding against Interfaces." In: Proceedings of the 
Eighth International Workshop on Dynamic Analysis, Trento, Italy, July 
12-16, 2010, pp. 26-31.

 https://doi.org/10.1145/1868321.1868326
[19] Jeon, J., Qiu, X., Fetter-Degges, J., Foster, J. S., Solar-Lezama, A. "Syn-

thesizing Framework Models for Symbolic Execution." In: Proceedings 
of the 38th International Conference on Software Engineering, Austin, 
Texas, May 14-22, 2016, pp. 156-167.

 https://doi.org/10.1145/2884781.2884856
[20] Jones, J. "Abstract Syntax Tree Implementation Idioms." In: Proceed-

ings of the International Conference on Pattern Languages of Programs 
(PLOP 2003), pp. 1-10, 2003.

[21] King, J. C. "Symbolic execution and program testing." Communications 
of the ACM. 19(7), pp. 385-394. 1976.

 https://doi.org/10.1145/360248.360252
[22] Marri, M. R., Xie, T., Tillmann, N., De Halleux, J., Schulte, W. "An Em-

pirical Study of Testing File-System-Dependent Software with Mock 
Objects." In: 2009 ICSE Workshop on Automation of Software Test, 
Vancouver, BC, May 18-19. 2009, pp. 149-153.

 https://doi.org/10.1109/IWAST.2009.5069054
[23] McMinn, P. "Search-based software testing: Past, present and future." In: 

2011 IEEE Fourth International Conference on Software Testing, Verifica-
tion and Validation Workshops, Berlin, March 21-25, 2011, pp. 153-163.

 https://doi.org/10.1109/ICSTW.2011.100
[24] Meszaros, G. "XUnit Test Patterns: Refactoring Test Code." Prentice 

Hall PTR, Upper Saddle River, NJ, USA, 2006.
[25] Microsoft. ".NET Compiler Platform (\Roslyn)." 2016. https://github.

com/dotnet/roslyn.
[26] Păsăreanu, C. S., Rungta, N. "Symbolic PathFinder: symbolic execution 

of Java bytecode. In: Proceedings of the IEEE/ACM International Con-
ference on Automated Software Engineering, Antwerp, Belgium, Sept. 
20-24, 2010, pp. 179-180.

 https://doi.org/10.1145/1858996.1859035
[27] Pasternak, B., Tyszberowicz, S., Yehudai, A. "GenUTest: a Unit Test and 

Mock Aspect Generation Tool." International Journal on Software Tools 
for Technology Transfer. 11(4), pp. 273-290. 2009.

 https://doi.org/10.1007/s10009-009-0115-4
[28] Qu, X., Robinson, B. "A case study of concolic testing tools and their limi-

tations." In: 2011 International Symposium on Empirical Software Engi-
neering and Measurement, Banff, AB, Sept. 22-23, 2011, pp. 117-126.

 https://doi.org/10.1109/ESEM.2011.20

https://doi.org/10.1109/TSE.2011.121
https://doi.org/10.1145/2642937.2642986
https://doi.org/10.1145/1966445.1966463
https://doi.org/10.1145/2408776.2408795
https://doi.org/10.1145/1455518.1455522
https://doi.org/10.1145/1985793.1985995
https://doi.org/10.1016/j.future.2012.02.006
https://doi.org/10.1109/ICST.2015.7102587
https://doi.org/10.1109/ISSRE.2014.11
https://doi.org/10.1007/978-3-540-79124-9_12
https://doi.org/10.1145/1808266.1808273
https://doi.org/10.1145/1064978.1065036
https://doi.org/10.1109/ICSTW.2011.38
https://doi.org/10.1145/1868321.1868326
https://doi.org/10.1145/2884781.2884856
https://doi.org/10.1145/360248.360252
https://doi.org/10.1109/IWAST.2009.5069054
https://doi.org/10.1109/ICSTW.2011.100
https://github.com/dotnet/roslyn
https://github.com/dotnet/roslyn
https://doi.org/10.1145/1858996.1859035
https://doi.org/10.1007/s10009-009-0115-4
https://doi.org/10.1109/ESEM.2011.20


131Supporting Unit Test Generation via Automated Isolation 2017 61 2

[29] Samimi, H., Hicks, R., Fogel, A., Millstein, T. "Declarative mocking." 
In: Proceedings of the 2013 International Symposium on Software Test-
ing and Analysis, ISSTA 2013, Lugano, Switzerland, July 15-20, 2013, 
pp. 246-256.

 https://doi.org/10.1145/2483760.2483790
[30] Sen, K. "Concolic testing." In: Proceedings of the twenty-second IEEE/

ACM International Conference on Automated Software Engineering, At-
lanta, Georgia, USA, Nov. 05-09, 2007. pp. 571-572.

 https://doi.org/10.1145/1321631.1321746
[31] Sen, K., Agha, G. "CUTE and jCUTE: Concolic unit testing and explicit 

path model-checking tools. In: Computer Aided Verification. (Ball, T., 
Jones, R. B.) Vol. 4144, pp. 419-423, Springer, 2006.

 https://doi.org/10.1007/11817963_38
[32] Taneja, K., Zhang, Y., Xie, T. "MODA: Automated test generation for da-

tabase applications via mock objects." In: Proceedings of the IEEE/ACM 
International Conference on Automated Software Engineering, Antwerp, 
Belgium, Sept. 20-24, 2010 pp. 289-292.

 https://doi.org/10.1145/1858996.1859053

[33] Tillmann, N., de Halleux, J. "Pex-White Box Test Generation for .NET." 
In: Tests and Proofs. (Beckert, B., Hähnle, R. (eds.)), Vol. 4966, pp. 134-
153. Springer, 2008. https://doi.org/10.1007/978-3-540-79124-9_10

[34] Tillmann, N., Schulte, W. "Mock-Object Generation with Behavior." In: 
21st IEEE/ACM International Conference on Automated Software Engi-
neering (ASE’06), Tokyo, Sept. 18-22, 2006, pp. 365-368.

 https://doi.org/10.1109/ASE.2006.51
[35] Tillmann, N., de Halleux, J., Xie, T. "Transferring an Automated Test Gen-

eration Tool to Practice: From Pex to Fakes and Code Digger." In: Pro-
ceedings of the 29th ACM/IEEE International Conference on Automated 
Software Engineering, Vasteras, Sweden, Sept. 15-19, 2014, pp. 385-396.

 https://doi.org/10.1145/2642937.2642941
[36] Xie, T., De Halleux, J., Tillmann, N., Schulte, W. "Teaching and train-

ing developer-testing techniques and tool support." In: Proceedings 
of the ACM International Conference Companion on Object Oriented 
Programming Systems Languages and Applications Companion, Reno/
Tahoe, Nevada, USA, Oct. 17-21, 2010, pp. 175-182.

 https://doi.org/10.1145/1869542.1869570

https://doi.org/10.1145/2483760.2483790
https://doi.org/10.1145/1321631.1321746
https://doi.org/10.1007/11817963_38
https://doi.org/10.1145/1858996.1859053
https://doi.org/10.1007/978-3-540-79124-9_10
https://doi.org/10.1109/ASE.2006.51
https://doi.org/10.1145/2642937.2642941
https://doi.org/10.1145/1869542.1869570

	1 Introduction
	2 Background and Motivation
	3 Overview of the Supporting Approaches
	3.1 Using Default Behavior
	3.2 Guiding Test Generation
	3.3 Approaches for Using Isolation
	3.4 Transforming the Unit Under Test

	4 Approach for Automated Isolation
	4.1 Generic Definition
	4.1.1 Syntax Analysis
	4.1.2 Syntax Tree Transformation
	4.1.3 Sandbox Synthesis

	4.2 Possible use cases
	4.3 Tool-specific Implementation

	5 Experimental Evaluation
	5.1 Objective
	5.2 Process
	5.3 Setup
	5.4 Results
	5.5 Limitations

	6 Related work
	7 Conclusion and future work
	References

