
116 Period. Polytech. Elec. Eng. Comp. Sci. D. Honfi, Z. Micskei

Supporting Unit Test
Generation via Automated
Isolation
Dávid Honfi1,2*, Zoltán Micskei1

Received 20 July 2016; accepted after revision 30 October 2016

Abstract
Testing is a significantly time-consuming, yet commonly
employed activity to improve the quality of software. Thus,
techniques like dynamic symbolic execution were proposed
for generating tests only from source code. However, cur-
rent approaches usually could not create thorough tests for
software units with dependencies (e.g. calls to file system or
external services). In this paper, we present a novel approach
that synthesizes an isolation sandbox, which interacts with the
test generator to increase the covered behaviour in the unit
under test. The approach automatically transforms the code of
the unit under test, and lets the test generator choose values
for parameters in the calls to dependencies. The paper pre-
sents a prototype implementation that collaborates with the
IntelliTest test generator. The automated isolation is evaluated
on source code from open-source projects. The results show
that the approach can significantly increase the code coverage
achieved by the generated tests.

Keywords
testing, symbolic execution, unit testing, isolation, mocking

1 Introduction
Nowadays, the demand for higher quality software is signifi-

cantly increasing. Testing is one of the most commonly used
techniques to improve the quality of software. During differ-
ent phases of a software development process testing can be
conductedat multiple levels. This paper focuses on unit testing,
where the goal is to test a well-defined, isolated module com-
monly called as a unit.

Software testing is a time and resource consuming task and
developers face several questions during unit testing [10].
Numerous techniques have been proposed to reduce the time
required for unit testing by automatically generating tests
using only the source code [7, 23, 1]. These techniques are
able to select relevant inputs for the unit under test. Symbolic
execution is one of the code-based techniques, while dynamic
symbolic execution (DSE) is a state-of-the-art variant that com-
bines symbolic with concrete executions.

Several tools exist implementing symbolic execution for
different programming languages or even binary code. Among
several others, KLEE [5], EXE [6], CUTE [31], and DART
[13] are designed to be used for C programs. SAGE [14] is a
tool for the x86 instruction set. Java PathFinder [26], jCUTE
[31] can be used on Java, while IntelliTest (formerly Pex [33])
is available for C#.

An ongoing research area of code based-based test genera-
tion techniques (including symbolic execution) is concerning
their industrial adoption [35, 3, 36] as the techniques are hin-
dered by numerous already confirmed factors [8, 28, 4]. As
a result of these issues, tests generated by dynamic symbolic
execution typically achieve low code coverage on complicated
source code. Interaction with dependencies of the unit is often
mentioned among these factors as it may involve accessing the
environment (e.g., file system, network) or reaching external
modules that are outside the scope of testing. Environment
accesses may cause undesired side effects (e.g., creating files),
while calling external modules may lead to incorrect test results
for the unit under test.

A commonly used technique in unit testing tackling the inter-
action problem is the isolation of calls to the dependencies.

1 Department of Measurement and Information Systems,
Faculty of Electrical Engineering and Informatics,
Budapest University of Technology and Economics,
Budapest, Hungary
2 MTA-BME Lendület Cyber-Physical Systems Research Group,
Budapest, Hungary
* Corresponding author, e-mail: honfi@mit.bme.hu

61(2), pp. 116-131, 2017
https://doi.org/10.3311/PPee.9768

Creative Commons Attribution b

research article

PPPeriodica Polytechnica
Electrical Engineering
and Computer Science

https://doi.org/10.3311/PPee.9768

117Supporting Unit Test Generation via Automated Isolation 2017 61 2

Isolation of the unit under test can be performed using stubs
(returning only a given value) or mocks (both returning dif-
ferent values and verifying the interaction). Currently exist-
ing isolator frameworks are using two different approaches in
terms of implementation: 1) a runtime proxy that detours calls
to another objects, or 2) low-level runtime detouring of calls
that invoke external modules. Both of them poses a challenge
for symbolic execution-based test generation as runtime code
intervention is a hindering factor of the technique. Moreover,
both implementation approaches have their own limitations of
isolating special cases like static or abstract types, which tight-
ens their usage scenarios on source code that is not prepared
or designed for testability (e.g., legacy code or complex com-
municational modules).

Although challenges exists, several attempts were made
to enhance test generation on environment-dependent soft-
ware [34, 22, 2, 32]. For example, the concept of parameter-
ized mock objects [34] is a technique, which collaborates with
mocks during test generation. This special type of mocks is
designed to obtain return values from the symbolic executor
process by adding them as new variables to the path constraint.
Using this technique, the test generator is able to select relevant
values for the dependencies. This is crucial to cover parts of the
unit under test, which rely on return values from dependencies.
Parameterized mock objects may solve the problem of depend-
ency interaction in certain cases, still the common limitations
of existing isolation approaches and their general collaboration
capability with symbolic execution-based test generators leave
numerous issues.

The approach presented in this paper addresses the problem
of unit isolation for DSE-based test generation by generating
a sandbox, which interacts with the test generator to increase
the covered behaviour in the unit under test. The approach
employs code transformations to replace invocations to exter-
nal dependencies with fake ones with corresponding signa-
tures. These replacement methods include configurable gener-
ated logic interacting with the test generation process to obtain
values to be returned and to alter states of objects passed to
the dependency. Moreover, these generated fake methods can
be extended with user-provided assumptions restricting the
possible behavior of the given dependency. The fake methods
together form a fully parameterized code sandbox around the
unit under test hence making the dependencies explorable for
the test generation process. This technique may be employed in
scenarios, where dynamic symbolic execution-based test gen-
erators usually fail due to the lack of isolation.

We have already presented a preliminary version of our idea
in a conference paper [16]. This paper enhances the approach
with 1) analyzing possible solutions to the addressed problem
in detail, 2) extending the technique with source code transfor-
mations, 3) introducing a vastly enhanced implementation and
4) presenting a more thorough evaluation.

Section 2 presents the importance of the unit isolation prob-
lem during DSE-based test generation. Then, the main contri-
butions are arranged as follows.

• We give an overview of possible solutions to the problem
of unit isolation during dynamic symbolic execution-
based test generation (Section 3).

• We introduce a source code transformation approach
that may be able to overcome the issues of existing unit
isolation approaches and to seamlessly collaborate with
test generators. A prototype tool that implements the ap-
proach is also presented (Section 4).

• We evaluate the approach and the implemented proto-
type tool using artificial code samples and modules from
open-source projects (Section 5).

2 Background and Motivation
Symbolic execution represents the possible paths of the

source code with quantifier-free first order logic formulas over
symbolic variables created from program variables. The solu-
tion of a path formula (path constraint) provides values for each
variable that drive the program execution along the given path.
The solution is obtained using constraint solvers that are able
to reason over different types of variables.

Classic symbolic execution [21] interprets each statement in
a static way, hence the program does not need to be executed.
Dynamic symbolic execution (DSE) [30, 8] is an advanced
variant that executes the program, while dynamically gather-
ing symbolic constraints over the variables. Notice that DSE
requires initial values to start from, which can be simply prede-
fined for each variable type or can be generated randomly. After
each concrete execution, the gathered path constraint or a part
of it is transformed (e.g., negated) and then solved to be able to
steer the concrete execution to a different path. The process is
repeated until no more new execution path can be discovered
or a predefined boundary criteria (e.g., time, memory) is met.

Example 1. Consider the following example method (Listing 1),
where the process of DSE is demonstrated. The method has
three different execution paths ending in return statements with
different values.

Listing 1 Example method for the demonstration of DSE

1
2
3
4
5
6
7
8
9

public int Example(int a, int b)
{
if(a > 5)
{

if(b > 10) { return 1; }
return 0;

}
return -1;

}

118 Period. Polytech. Elec. Eng. Comp. Sci. D. Honfi, Z. Micskei

DSE can be started from an arbitrary method, which is
Example in this case. The technique selects the most simple
inputs at first to start a concrete execution. As the two param-
eters (a and b) are both integer types, let their assigned values
be 0. Thus, the first concrete execution will execute the path,
which ends in statement return -1. Along this path, the sym-
bolic execution engine collects the first constraint on the pro-
gram variables, which is a > 5. The DSE engine discovers
that if a := 0 then this path constraint is not satisfied, hence
solving this formula may give a new execution path. The solu-
tion is calculated by a constraint solver, and a satisfying value
is returned. Let this value be a := 6, while b remains 0. This
executes the body of the first if statement as a > 5 evaluates
to true. However, the next statement reached by the execution
is return 0 and a new constraint is added to the path formula
(b > 10), which has to be satisfied to obtain new execution
paths. In the last step, this constraint is solved that gives the
value of 11 for variable b. Finally, a concrete execution is run
with a := 6 and b := 11 reaching the only uncovered state-
ment return 1. As no more new constraints were collected,
thus no new execution paths can be revealed, the DSE algorithm
stops and yields the test cases found in Table 1. The last column
(Expected result) denotes that the DSE algorithm observed that
specific behavior (return value) for the given inputs.

Table 1 Set of generated test cases by DSE for method in Listing 1

Value of a Value of b Observed result

1 0 0 -1

2 6 0 0

3 6 11 1

Code-based test generators (including those based on DSE)
may alleviate the work of developers and testers by generating
an initial set of test cases that can be extended to a whole test
suite manually. However, the testability issues of the modules

may more likely to hinder the test generation process as test
generators reach their limitations.

A frequent testability issue is caused by developing a mod-
ule without considering testing, which prevents testers to inject
every external object and configuration into the unit under
test. This issue hinders the environment and dependency isola-
tion during testing as there is no possibility to replace original
objects to fake ones. Subsequently test generators also usually
face several difficulties in these scenarios, as they cannot exe-
cute the entire code under test.

Example 2. Let us consider the following example,
where a simple method is the unit under test (with two
data objects: FileData and FileContentData that
are also included in the unit) in a problematic testing sce-
nario that hinders the work of test generators. The method
GetPermissions(int,byte):int implements a logic,
which decides on permissions of a file. The decision is based
on a header indicator in the file, and on results from a permis-
sion analysis using another module.

In this setting, the first challenge that a dynamic symbolic
execution-based test generator may face is found in line 3, where
the configuration file is opened. If the file does not exist, test gen-
erators would always fail here and would not explore remaining
parts of the code (C1). The issue can be solved via isolating the
call or creating the file. During test generation, accesses to the
file system should be isolated as unintended behavior may occur.
Note that we assume these test generators can seamlessly collabo-
rate with different isolation approaches and frameworks.

The next difficulty, where a test generator may fail is found
in line 5, where the stream of the file is read into an array.
Assuming the opening of the file is isolated, this call shall
be also handled similarly. Otherwise statement return -1
could not be reached. However, only runtime detouring of the
call can be carried out due to the method (unit) structure and

Listing 2 Example method for isolation case

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

public int GetPermissions(int fileLength, byte indicator)
{
Stream file = File.Open(CONFIGLOCATION, FileMode.Open);
byte[] fileContent = new byte[fileLength];
file.Read(fileContent, 0, fileLength);
if(fileContent[0] < indicator)
{

return -1;
}
FileContentAnalyzer fca = new FileContentAnalyzer();
FileData fd = new FileData();
FileContentData fcd = fca.Analyze(fileContent, fd);
if(fd.IsReadable && !fcd.IsSecret)
{
return 1;

}
return 0;

}

119Supporting Unit Test Generation via Automated Isolation 2017 61 2

design (C2). With the help of runtime detouring, statements
return -1 and return 0 are considered reachable.

Proceeding further one may notice that line 15 may
not be executed due to the fact that an external object
(FileContentAnalyzer) is called. If the type is not imple-
mented yet or contains behavior that may affect test results of
the unit (e.g., throws unexpected exceptions), the call to method
Analyze shall also be isolated. Moreover, in this specific call,
the state of the reference-type argument shall be changed using
the properties to reach line 15 (C3).

Based on the previous example, some common identified
challenges of code-based test generation in a strongly environ-
ment-dependent software are the following.

• C1: Access to the environment of programs (e.g., file sys-
tem, network).

• C2: Limitations and collaboration capability of isolation
approaches.

• C3: Change of object states in external invocations.

Supporting test generation even for this simple method may
require tremendous effort. Furthermore, we assumed that test
generators can collaborate with arbitrary isolation approaches.
On the contrary, it is not the fact: their collaboration intro-
duce more issues [17]. This simple example has introduced the
main challenges for DSE-based test generation caused by the
lack of isolation.

3 Overview of the Supporting Approaches
As presented in Section 1 and 2, invoking dependencies

from the unit under test may raise numerous issues when using
DSE-based test generation. Thus, their usage on such source
code is burdensome. In general, we distinguish four different
ways of supporting this test generation technique on software
units that possess several external dependencies.

3.1 Using Default Behavior
When using the default behavior of DSE, the test genera-

tion process is fully automated. The motivating example pre-
sented in Section 2 demonstrated how test generation can fail
on various dependencies: access to the file system and memory
streams, or invoking methods that are outside the scope of test-
ing. DSE may fail due to these issues as they are included in
the general limitations of the technique [8, 28, 4]. Environment
dependencies like the file system or low-level library accesses
(e.g., FileStream) are hindering the exploration of the code
(e.g., when handling files, in certain cases the file shall exist
and in some cases shall not). Hence, DSE is unable to collect
constraints through some parts of the execution path or even
cannot finish a whole path.

Reconsider the example presented in Listing 2, the state-
ments below line 8 were not possible to reach due to the excep-
tion occurred in the invoked method if the file is not found or

not accessible. Thus, no new symbolic constraint could be col-
lected during the concrete execution.

For example, running the IntelliTest DSE-based test genera-
tion tool on this method without any guidance yields the results
found in Table 2. Notice that – as the opened file does not exist
– only one test case is generated, which shows the hindered
behavior of the tool.

Table 2 Results of simply running IntelliTest on Listing 2

fileLength indicator Observed result

0 0 0 FileNotFoundException

3.2 Guiding Test Generation
Guiding DSE-based test generation can be achieved by

employing preconditions (assumptions). These preconditions
are included in every path constraint collected during the DSE
process, hence every input that is generated must also fulfill
these preconditions. The assumptions are written by the user
to steer DSE along different, more relevant paths. In case of
Listing 2, one can make an assumption on the file location
that points to a valid file. For example, the following con-
straint can be added to every path to handle file locations:
CONFIGLOCATION == “C:\test.txt”, where test.txt
is a file preconfigured for testing purposes. Using this guid-
ance, DSE is not hindered by an invalid file access, thus new
constraints can be collected throughout the rest of the code.

In the example method of Listing 2, the guidance of the
IntelliTest tool can be achieved using a Parameterized Unit
Test (PUT) [11], which serves as the starting point of the
test generation process. The list of parameters consists of the
following variables: target:PermissionProvider,
fileLength:int, indicator:byte. We extend this list
with the CONFIGLOCATION variable in order to assign new
values. Furthermore, we make an assumption in the body of the
PUT describing that the value of this variable for all generated
test cases shall be equal to “C:\test.txt”. This specific
PUT method containing the mentioned modifications can be
found in Listing 3.

The modification introduced inside the PUT – in order to
guide IntelliTest – produces the outcome found in Table 3. The
yielded results show that the tool reached the branches in the
code where 0 and -1 is returned. However, the branch where 1
is returned remains uncovered.

Employing assumptions during DSE could alleviate the
issues caused by the lack of isolation in certain cases, however
several other corner cases exist, where preconditions are not
powerful enough. These occur, when the unit under test uses
values from external calls and its behavior depends on them. In
these cases different isolation approaches and frameworks may
provide solutions.

120 Period. Polytech. Elec. Eng. Comp. Sci. D. Honfi, Z. Micskei

3.3 Approaches for Using Isolation
The commonly known and employed isolation approaches

are stubs and mocks. Involving stubs and mocks into the DSE-
based test generation process is not a new idea as mentioned
in Section 1 (parameterized mock objects). This special type
of mocks is able to return inputs necessary to cover parts in
the unit that depend on values from external invocations (e.g.,
content of the file).

Reconsider the example method in Listing 2. The previously
defined PUT can be reused by extending its body with a param-
eterized mock using the Fakes isolation framework. By using
this mock, the remaining uncovered branch can also becov-
ered, however this requires manual analysis of the code with
scrutinizing its behavior (e.g., the required values for the vari-
ables to cover the remaining branch). The Fakes code including
the parameterization of the mock is found in Listing 4. The

first statement in the body assigns a new FileData object
for the data parameter, while the second statement returns
a new FileContentData object. Both assignments obtain
the objects from the IntelliTest tool by using its PexChoose.
Value method. The resulting test cases are found in Table 4.
The table – compared to Table 3 – is extended with one test
case, which executes the path, where the method returns 1.
Hence, all of the possible execution paths are covered with
using this approach.

However, employing parameterized mocks during dynamic
symbolic execution-based test generation leaves questions
open. First, the concept does not deal with state change of
objects in an external invocation, which is possible both on
the called object itself and on the object-type parameters of
the method being called. Second, the creation of mocks rely
on isolator approaches that have limited applicability (runtime

Table 3 Results of running IntelliTest with guidance on Listing 2

fileLength indicator configLocation Observed result

0 0 0 “C:\\test.txt” IndexOutOfRangeException

1 1 0 “C:\\test.txt” 0

2 int.MinValue 0 “C:\\test.txt” OverflowException

3 1 58 “C:\\test.txt” -1

Table 4 Results of running IntelliTest with Fakes on Listing 2

fileLength indicator fd.IsReadable Observed result

0 0 0 - IndexOutOfRangeException

1 1 0 false 0

2 int.MinValue 0 - OverflowException

3 1 58 - -1

4 1 0 true 1

Listing 3 PUT with assumption for method found in Listing 2

1
2
3
4
5
6
7
8
9
10
11
12
13

public int GetPermissionsTest (
[PexAssumeUnderTest] PermissionProvider target,
int fileLength, byte indicator,
string configLocation // the extra parameter

)
{
// Adding assumption to the configLocation variable
PexAssume . AreEqual (“C:\\test.txt”, configLocation);
// Setting the configuration target variable
target.CONFIGLOCATION = configLocation;
// Calling the method under test
target.GetPermissions (fileLength, indicator);

}

Listing 4 Fakes code in the PUT for the method Listing 2

1
2
3
4
5
6
7

ShimFileContentAnalyzer // mock for FCA
.AllInstances // valid for all instances of FCA
.AnalyzeByteArrayFileData = (fca , content , data) => // Replaceing Analyze

{
data.IsReadable = PexChoose.Value<bool>(“data.IsReadable”);
return PexChoose.Value<FileContentData>(“fcdata”);

};

121Supporting Unit Test Generation via Automated Isolation 2017 61 2

proxy or detour) as some cases – like native calls – are difficult
to handle. Third, one of the most challenging problems is that
the core ideas of isolator approaches hinder the DSE-based test
generation process in general due to the code and call interven-
tions during runtime (as described in Section 2).

3.4 Transforming the Unit Under Test
The previously mentioned challenges (Section 2) with the

collaboration of DSE and isolation approaches demands for
a new technique, which could alleviate these problems. To
overcome the proposed challenges, treating calls in a novel
way could provide support to the dynamic symbolic execu-
tion-based test generation process. More specifically, replace-
ment of these calls to fake, static methods that have same
signatures and contain value generation behavior so that it 1)
may not introduce complexity to test generators, along with
2) maintaining functionality of the unit under test. This spe-
cial procedure on the source requires identifying all exter-
nal calls and objects. Considering the motivating example
(Section 2), these methods are the following: File.Open,
FileStream.Read, FileContentAnalyzer.ctor,
FileContentAnalyzer.Analyze. Moreover, the code
also contains two references of external types: FileStream
and FileContentAnalyzer. The replacement procedure
involves the following two steps for this method.

1. Rewriting references of external types to a special type,
which acts both as a state container and a placeholder, to
maintain the syntactical correctness of the code.

2. Replacing every external call to a static invocation into a
fake class with same signature.

After conducting these two steps on the source code found
in Listing 2, the resulting code of the method is found in
Listing 5. Lines 3, 5, 10 and 12 are changed and transformed
to isolate external dependencies (marked with color). In line
3, a DynamicFake object replaces the original FileStream

as a state container (see step 1) and the opening of the file
is replaced with a call to a static method FileOpen in the
class Fake (see step 2). The reading of FileStream is
replaced to method FileStreamRead (line 5). The instan-
tiation of FileContentAnalyzer is transformed to the
instantiation of a state container (DynamicFake) (line
10) and a call to method Analyze is also changed to a
fake one (line 12). Argument lists of FileStreamRead
and FileContAnalyzerAnalyze are extended with a
DynamicFake that may be able to store the current state of
their original container objects dynamically.

Although the invocations have been replaced, the replace-
ment methods also have to be implemented in the Fake
static class. Method FileOpen shall be able to return a new
DynamicFake object, method FileStreamRead shall be
able tofill the fileContent byte array with arbitrary content,
and finally FileContentAnalyzerAnalyze shall be able
to set the properties of FileData and FileContentData
to different values. The source code of class Fake is found in
Listing 6. Note that in the current example, we used a method
ChooseValue<T> that represents interaction with the test
generator to obtain values of a specific type T. For example,
when using the IntelliTest tool, this can be replaced to method
PexChoose, which was already presented in the previous sec-
tions. In case of array initializations (line 10 and 21), we did
not parameterize the size of arrays as it may require prelimi-
nary assumptions to avoid unintended overflows.

Using this fake method container class in combination with
the special transformation of the unit under test, a dynamic
symbolic execution-based test generation process is alleviated
from the issues caused by external dependencies (C1, C2 and
C3 in Section 2). Thus, a white-box test suite could be gener-
ated easily to cover the unit under test with additional infor-
mation about the dependencies. This data describes which
behavior (return value, state change of parameters) steers the
program executions along different paths.

Listing 5 Transformed example method for isolation case

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

public int GetPermissionFromFileContent(int fileLength, byte indicator)
{
DynamicFake file = Fake.FileOpen(CONFIGLOCATION, FileMode.Open);
byte[] fileContent = new byte[fileLength];
Fake.FileStreamRead(fileContent, 0, fileLength, file);
if(fileContent[0] < indicator)
{

return -1;
}
DynamicFake fca = new DynamicFake();
FileData fd = new FileData();
FileContentData fcd = Fake.FileContentAnalyzerAnalyze(fileContent, fd, fca);
if(fd.IsReadable && !fcd.IsSecret)
{

return 1;
}
return 0;

}

122 Period. Polytech. Elec. Eng. Comp. Sci. D. Honfi, Z. Micskei

Table 5 Possible set of generated inputs for the transformed example method

indicator
fcaa-p1-IsRead-

able
fcaa-ret result

00 false null 0

00 true null -

00 true new FileContentData(IsSecret=false) 1

01 - - -1

Algorithm 1 High-level algorithm of the presented approach
1:
2:
3:
4:
5:
6:
7:
8:
9:

function AutomatedIsolator(Unit[] units)
for all unit in units do

ast := parseAst(unit.getSource());
syntaxData := analyzeSyntax(ast);
newAst := transformAst(ast,syntaxData);
sandbox := synthesizeSandbox(syntaxData);
outputCode(newAst, sandbox);

end for
end function

 iterating through units
 getting AST of unit
 analyzing syntax tree
 transforming the AST
 creating the sandbox
 emitting the results

Listing 6 Example fake container class for replacement methods

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

public static class Fake
{
public DynamicFake FileOpen(string p0, FileMode p1)
{

return new DynamicFake(); // Returning a state container
}

public int FileStreamRead(byte[] p0, int p1, int p2, DynamicFake obj)
{

p0 = new byte[2]; // Assigning a new array to p0
for (int i = 0; i < p0.Length ; i++)
{

// Filling p0 with arbitrary values
p0[i] = ChooseValue <byte>(“fsr-p0-”+i);

}
return ChooseValue<int>(“fsr-ret”); // Choosing arbitrary int to return

}

public FileContentData FileContentAnalyzerAnalyze(byte[] p0, FileData p1, DynamicFake obj)
{

p0 = new byte[2]; // Assigning a new array to p0
for (int i = 0; i < p0.Length; i++)
{

// Filling p0 with arbitrary values
p0[i] = ChooseValue<byte>(“fcaa-p0-”+i);

}
// Setting a property of p1
p1.IsReadable = ChooseValue<bool>(“fcaa-p1-IsReadable”);
// Returning a new FileContentData object
return ChooseValue<FileContentData>(“fcaa-ret”);

}
}

Implementing this approach for IntelliTest provides the
generated set of test inputs found in Table 5, which covers
every execution path in the method under test. We use nota-
tions of the variables from Listings 5 and 6 (see assigned
parameters of method ChooseValue). Note that the table
only contains variables that needed to have different values

for the test generation process. The constant assignments for
the other variables are the following: fileLength = 6,
fsr-p0-0 = fsr-p0-1 = 00, fsr-ret = 0, fcaa-
p0-0 = fcaa-p0-1 = 00.

The proposed procedure has three main steps: 1) static code
analysis, 2) code transformation and 3) sandbox generation. All

123Supporting Unit Test Generation via Automated Isolation 2017 61 2

of them can be automated using special algorithms and tech-
niques. Static code analysis is viable using code traversal algo-
rithms to identify external types and invocations. The rewriting
of the source code can be achieved using specific transformations
to replace the parts identified during the analysis step. Finally,
the synthesization of the sandbox around the unit under test can
be accomplished using code generation techniques. In Section 4,
we present this automated isolation approach in detail.

4 Approach for Automated Isolation
The approach presented in this paper tackles the unit isola-

tion problem for DSE-based test generation using syntax trans-
formations and sandbox code synthesis. Our technique uses
Abstract Syntax Trees (ASTs) [20] to gain information and to
modify the source code. ASTs are graphs representing parts
of source code, which can be obtained via code parsing. The
nodes of the tree denote different structures taking place in the
code, hence types of the nodes are depending on the grammar
of the programming language being used.

4.1 Generic Definition
Our isolation approach involves three main steps: 1) analy-

sis of the code under test, 2) syntax transformation of the unit
and 3) synthesis of an isolation sandbox. The overview of the
whole approach can be found in Algorithm 1. The process starts
from a predefined unit, which is given with the fully qualified
names of elements to include. An element can be a method,
a class or even a whole module. The concept of a unit can be
formalized as found in Definition 1.

Definition 1 (Unit Under Test). Let the unit under test UUT
be a set so that an element u Î UUT is an arbitrary module of
the software, which can be identified by its fully qualified name.

For example, MySoftware has three modules (Module1,
Module2, Module3), then a possible unit under test is UUT =
{MySoftware.Module1, MySoftware.Module2}. In
that context, Module3 is thought as external during unit test-
ing. Note that every ancestor of classes included in the unit are
also automatically added to the unit to avoid issues caused by
rewriting external types in signatures.

4.1.1 Syntax Analysis
The tasks during the analysis are 1) to reveal invocations

of methods thought as external from the unit and 2) to iden-
tify references to types thought as external. The detection is
performed using the ASTs and the attached semantic models
that are obtained from runtime compilation of the source code
under test. The semantic model contains information about the
types used in the source. The AST is traversed and every node
Call is scrutinized in detail that matches the following two con-
straints at once.

Definition 2 (Call node). Call (s, c) is an AST node with signa-
ture s (e.g., its name, parameters, etc.) and container c so that
Call is a method invocation or member access expression, and
c is an external module: c Ï UUT .

Deciding if the invoked method or accessed member is
external or not is achieved via type analysis using the seman-
tic model, which can be used to obtain fully qualified names
for the elements (e.g., variables, methods) in the AST. Note
that basic types or specific primitive or system types shall be
included in the unit by default to avoid overisolation (e.g, iso-
lating integers).

Furthermore, in order to detect external type usages, every
node Typ is collected for further analysis that satisfy the fol-
lowing two constraints.

Definition 3 (Typ node). Typ(t) is an AST node so that it is a
parameter of type t or a return type of t or a variable declara-
tion expression of type t . Furthermore, t is an external type:
t Ï UUT .

Before any other step could be taken, external method invo-
cations shall be analyzed more deeply to discover their signa-
ture, which can be used in the body of the replacement method.
In there, the actual state of different parameter objects can be
altered possibly simulating the original behavior. Hence, during
the analysis of parameters, variables with types included in the
unit are sought (t, Typ(t) Î UUT). However, changing the state
of these objects requires further and more deeper examination.

Using the semantic model, parameters of external invoca-
tions are analyzed that have types included in the unit. The type
analysis discovers members (e.g., fields) of the object, which
can be modified from any other object (i.e., it is public and
writable from outside). This process is performed recursively
as several levels of references among types may exist.

All the information collected during the analysis of invoca-
tions, variables and types is stored for use in the forthcoming
steps of the automated isolation process.

Example 3. Let us consider the example method found in
Listing 7 in order to demonstrate the workflow of syntax and
type analysis. The method indicates if the weekend is near by
returning true if the day after tomorrow is Saturday and false
otherwise. Let the under under test be only this method, thus
UUT = {WeekendNotifier.IsWeekendNear():bool}.

The analysis starts with parsing the source code into an AST.
A simplified version of the AST for this example method is
found in Fig. 1. The first step discovers external invocations,
which we marked with light gray on the AST. The signature
and type information of all the three invocations are collected
and persisted for later use. The next step during the analysis

124 Period. Polytech. Elec. Eng. Comp. Sci. D. Honfi, Z. Micskei

phase is to identify external type usages. In this case, there
is only one variable declaration, which uses an external type
(marked with dark gray on the AST).

Listing 7 Example method to the demonstration of isolation workflow

1
2
3
4
5
6
7
8
9
10
11
12

public class WeekendNotifier {
public bool IsWeekendNear()
{

DateTime date = DateTime.GetNow();
date.AddDays(2);
if(date.GetDay() == “Saturday”)
{

return true;
}
return false;

}
}

Fig. 1 The simplified AST of method IsWeekendNear

4.1.2 Syntax Tree Transformation
In order the replace the invocations and type usages detected

during the analysis step, the AST is transformed for each
detected node (Call or Typ). The approach rewrites 1) method
and constructor invocations, 2) member accesses and 3) type
usages. The rewriting algorithm conducts the following trans-
formations on the previously collected nodes (Call or Typ).

• Call (s, c) → Call (s', f), where Call (s', f) denotes a
method invocation with similar s' signature in container
f that stands for Fake. s' is a slightly modified (s' has
the method name combined from the unique name of the
containing type and the original method name), and pos-
sibly extended variant of s signature if the method call
is not static. In this case, the list of parameters is extended
with a DynamicFake parameter to maintain the state of
the external object.

• Typ(t) → Typ(df), where df denotes the type DynamicFake.

Let us reconsider the example method used during the
demonstration of the analysis step. All the required informa-
tion in method IsWeekendNear was collected regarding the

external invocations and type usages. We demonstrate the AST
transformation through this simple method to give a better
understanding (Fig. 2). The modified nodes of the AST have
bold labels. First, the invocations are transformed in order to
invoke replacement methods instead of the original ones. Note
the invocation of method AddDays: the containing type and
original method name is combined (DateTimeAddDays)
for unique identification and the list of parameters is extended
with a new variable of DynamicFake type representing the
state of the external object. Note that if there were multiple
types named DateTime, then the approach would use the
fully qualified name of the type (e.g., SystemDateTime,
OtherDateTime). Moreover, if method names are collid-
ing, the list of parameter types are also added to their names
to ensure uniqueness. The other two invocations were also
transformed, however method DateTime.GetNow is static,
thus the list of parameters is not extended there. Furthermore,
the only one external type usage node (VariableDeclaration)
is transformed to use the DynamicFake type instead of the
original DateTime.

Fig. 2 The transformed AST of method IsWeekendNear

A question may be raised about the modified code in the
unit under test if it influences or alters the behavior or not. In a
wrongly designed source code with numerous external depend-
encies, isolating these external calls is hindered by the lack of
injection possibility. This causes the modification unavoidable
for the code under test. Manual testability refactoring [15] tech-
niques mostly employ approaches, which also introduce modi-
fications to the source code, like extracting interfaces [24].
Although these may provide solutions for testability issues,
manual refactoring may require tremendous effort in large and
complex software. Our code transformation 1) does not modify
the behavior of the unit under test and 2) does not require man-
ual effort as it is performed automatically.

125Supporting Unit Test Generation via Automated Isolation 2017 61 2

4.1.3 Sandbox Synthesis
As the original source code is rewritten to invoke replace-

ment methods, the container for the definitions needs to be cre-
ated. The replacement calls are acting as static calls hence the
container itself is also a static class called Fake.
Fake contains all the m methods that were invoked in

the unit under test and thought as external (m Ï UUT). If the
method m has signature s then the method in the container
has signature s' corresponding to the invocation in the trans-
formed AST. These methods are not only need to be defined
in the container Fake, they should also define arbitrary and
extensible behavior to simulate the original.

Numerous possibilities exist to simulate the original behav-
ior of external components. Our technique currently defines
two different behaviors.

• Simple behavior: If the method does return any value, it
will act as a stub and will not define any logic or behavior.
If it does return a value of some type, then it is obtained
from the DSE-based test generator by adding the variable
to the path constraint.

• Advanced behavior: Extends the simple behavior with
object state handling. Hence, if a parameter has a type,
which is included in the unit, then all of its recursively
discovered modifiable members has an assignment in the
body of the method. The assignments obtain values for
the members from the test generation process by adding
them as variables to the path constraint.

Let us reconsider the method IsWeekendNear and its
transformed AST (Fig. 2) used during the previous examples.
The synthesized sandbox (Fake) from the data collected dur-
ing the analysis contains thedefinitions of the three methods
that are invoked in the transformed unit under test. Note that
there is no parameter, which state can be altered in the body of
the replacement method. The synthesized sandbox code for the
IsWeekendNear example can be found in Listing 8.

4.2 Possible use cases
The presented approach is suitable for two different possi-

ble use cases as it is currently tied to the dynamic symbolic
execution technique. Furthermore, it is designed to alleviate the
challenges of a code-based test generator (C1, C2 and C3 of
Section 2) in a strongly environment-dependent software.

The first and main use case of the approach is the support
of the DSE-based test generation by alleviating the isolation
problem that may hinder the process. By replacing the external
invocations and type usages, the unit under test is isolated from
everything thought as external and could be run in a parameter-
ized sandbox filled by DSE. The test cases generated for the
transformed source code may reveal problems in the original
code as it only focuses on the behavior of the unit under test in
a simulated environment altered by DSE.

The other use case is for the integration of modules. By
using the presented approach, one can analyze the influence
of external invocations in the unit under test. This includes
checking the possible interactions and their values to decide if
the module is ready for integration with others. Also, one can
describe and restrict the generated behavior of external invoca-
tions in order to have more realistic simulation of the original
dependencies. These descriptions can be achieved via using
assumptions for the test generator.

4.3 Tool-specific Implementation
The implementation of the approach requires a code-based

test generator that uses dynamic symbolic execution to cre-
ate tests. Moreover, the technique employs a special abstract
syntax tree transformation, which demands for a source code
parser and transformer that enables the definition of custom
transformation rules.

We selected IntelliTest as the DSE-based test generator
for the implementation. It is one of the most advanced tools
available and its transfer to industrial practice was already
investigated indicating its maturity [35]. As IntelliTest

Listing 8 Sandbox for the example method IsWeekendNear

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

public static class Fake
{
public DynamicFake DateTimeGetNow()
{

// Return a state storage object instead of the original
return new DynamicFake();

}

public void DateTimeAddDays(int days)
{

// A simple test stub
}

public int DateTimeGetDay()
{

// Getting value from test generator
return ChooseValue<int>();

}
}

126 Period. Polytech. Elec. Eng. Comp. Sci. D. Honfi, Z. Micskei

currently only works with source code written in C# language,
the number of possibilities to choose a source code parser
was reduced. One approach could have been to write our own
C#-to-AST parser, however the .NET developer team provides
a code analysis library, called Roslyn [25]. This library is able
to construct ASTs from C# source code and also supports the
transformation of the trees, which makes it a suitable tool for
the requirements of our approach.

We implemented the whole approach in a tool, which is an
extension of the Visual Studio integrated development environ-
ment. The user first defines the elements of the unit under test
using their fully qualified names. Then, when invoking the tool
the ASTs of the unit elements are transformed, and the code
of the sandbox (Fake) – containing the implementations of
the replacement methods – is also generated. The bodies of the
replacement methods contain statements that collaborate with
IntelliTest by obtaining concrete values from the tool. Note that
the current implementation does not support the state container
feature of DynamicFake objects.

5 Experimental Evaluation
As the approach has been implemented in a proof-of-con-

cept prototype tool, the preliminary experimental evaluation
of the approach became feasible. We employed two types of
source code in this experiment: 1) snippets from an evaluation
framework and 2) parts of open-source projects from GitHub.

5.1 Objective
This evaluation intends to decide whether the approach and

the implemented prototype tool is able to support DSE-based
test generation process. Hence, the current experiment aims to
answer the following research question.

Is the automated isolation approach able to enhance
block coverage for DSE-based test generation?

5.2 Process
Answering the RQ requires collecting software modules

that are implementing different behaviors with diverse logic
constructs. The subjects of evaluation can be obtained from
various places like open-source code repositories, where C#
projects can be found (e.g., CodePlex or GitHub). We chose
GitHub as the sources of the projects.

First, we used environment-dependent snippets from SETTE
[9] (Symbolic Execution-based Testing Tool Evaluator), a
framework specially created to compare test generator tools.
The SETTE snippets were translated manually from Java to C#.

Next, we randomly chose projects available on GitHub
meeting a predefined set of criteria. We defined the following
selection criteria.

• The project repository shall have at least 100 stars indi-
cating its popularity, thus the mature state of the code.

• The project repository shall have been updated in the last
five days, which indicates the active development.

• The project shall be compiled and built with one-click in
order to speed up the evaluation process.

• The selected modules of a project shall not contain
code with multi-threading as it cannot be handled by
IntelliTest.

The answer requires measurements of the yielded results
in terms of coverage. We measured the basic code block cov-
erage of simply running IntelliTest on the analyzed module
first. Then, the transformation was applied to the code using
the automated isolation approach, and IntelliTest was executed

Table 6 Details of the selected classes for evaluation

Project Class Method count Lines of code

Abot

WebContentExtractor 1 63

RobotsDotTextFinder 1 15

CrawlDecisionMaker 4 68

Textc

SyntaxParser 1 35

CsdlToken 6 101

CsdlParser 5 53

LiteDB

LiteFileStorage 14 57

DataService 8 80

TransactionService 5 38

Papercut

MessageRepository 5 38

NetworkHelper 4 29

TempDirectoryCleanupService 3 17

SETTE

SetteFileIo 3 44

SetteNetworking 1 41

SetteStdio 4 36

127Supporting Unit Test Generation via Automated Isolation 2017 61 2

again. Note that we did not provide any support manually
(e.g., factory methods, assumptions, etc.) for IntelliTest, or for
the automated isolation tool either.

5.3 Setup
The selection process of the projects from GitHub was

very simple. We searched for repositories that have more than
100 stars and had been updated in the last five days. Then, we
selected an arbitrary project from the list that contained no
multi-threaded logic, then we tried to compile it. If the compila-
tion finished successfully, the project was included in the evalu-
ation, otherwise we looked for another repository that matched
our criteria. Using this procedure, we managed to select the
following projects and modules for this preliminary evaluation.
The class selection criteria was to choose classes that act cru-
cial roles in the business logic. From SETTE, we selected three
classes implementing various behaviors with environment inter-
action. The detailed statistics of the selected modules are found
in Table 6. We used these classes as the unit under tests (UUT).

• Abot is customizable and lightweight web crawler.
Class WebContentExtractor obtains the
required content from the currently crawled site.
RobotsDotTextFinder is responsible for seek-
ing the robots.txt file, which is a de facto standard for
describing the intended behavior of web crawlers for
the website. CrawlDecisionMaker decides on the
behavior, when a possible branch occurs in the crawled
website path.

• Textc is a natural language processing library. Command
Syntax Definition Language is an included notation,
which can be used to define syntaxes. Syntaxes form the
basis of processing as they are matched against the input

tokens. Class SyntaxParser implements the default
behavior of parsing an arbitrary text with a selected syn-
tax. The result is information about an expression that
was parsed from an input text using the specified syntax.
CsdlToken represents a token in the syntax description
language. Class CsdlParser can parse texts written in
CSDL to define new syntaxes.

• LiteDB is a NoSQL document store that uses only a sin-
gle file for storage. The application is lightweight and
is rich of features. Class LiteFileStorage is a col-
lection to store files or data streams. DataService
provides basic CRUD methods to create, read, update
and delete arbitrary data in the document store. Finally,
TransactionService is responsible for managing
transactions.

• Papercut is an SMTP e-mail receiver. The application is
useful for testing applications that are sending e-mails.
Class MessageRepository is responsible for manag-
ing the storage of incoming messages. NetworkHelper
is a class, which provides methods for frequently used
actions in networking (e.g., getting the IP address).
TempDirectoryCleanupService is a service,
which cleans the temporary storage directory, when a
specific event occurs.

• SETTE is a symbolic execution-based testing tool evalu-
ator framework implemented in Java. We translated three
environment-dependent classes to C# for this evaluation.
Class SetteFileIo performs various file operations
like writing and reading. SetteNetworking imple-
ments a complex networking behavior including a server
that processes requests from a client. SetteStdio uses
the standard input and output for various operations.

Table 7 Detailed results of the evaluation.

IntelliTest default Automated isolation

Project Class GT BC GT BC

Abot

WebContentExtractor 1 7.87% 17 93.59%

RobotsDotTextFinder 1 29.03% 5 92.59%

CrawlDecisionMaker 17 30.23% 61 95.82%

Textc

SyntaxParser 24 91.07% 28 100.00%

CsdlToken 61 46.54% 88 58.29%

CsdlParser 41 54.62% 7 35.96%

LiteDB

LiteFileStorage 22 55.28% 51 100.00%

DataService 21 16.08% 20 30.61%

TransactionService 5 25.37% 6 33.90%

Papercut

MessageRepository 5 16.22% 37 90.28%

NetworkHelper 4 81.67% 10 81.67%

TempDirectoryCleanupService 3 62.5% 11 91.67%

SETTE

SetteFileIo 7 69.35% 21 100.00%

SetteNetworking 1 23.08% 3 92.31%

SetteStdio 25 100.00% 12 100.00%

128 Period. Polytech. Elec. Eng. Comp. Sci. D. Honfi, Z. Micskei

Two steps were taken to obtain the results: 1) we executed
IntelliTest and obtained the coverage results, then 2) the auto-
mated isolation tool was executed to transform the code and to
create a sandbox, and IntelliTest was run once again to obtain
the newcoverage metrics. Each execution was repeated 3 times.
During the evaluation, we observed no differences among the
outcomes of repetitions.

The evaluation was performed on a laptop running Windows
10 and Visual Studio 2015 Enterprise Update 3.

5.4 Results
The results obtained can be found in Table 7. Here, GT

denotes the number of generated tests, while BC indicates the
block coverage reached.

The first project we employed was Abot. The results for pro-
ject Abot show significant increase in the number of generated
tests and block coverage in all three cases. The block coverage
reaches more than 90%, which can be thought as successful.

Comparing the results of Textc to the previous project, the
initial number of generated tests are significantly larger, mean-
ing that IntelliTest could more easily handle these classes.
When the automated isolation was applied, the number of gen-
erated tests and also the block coverage increased in the first
two classes. Note that there were blocks in class CsdlToken,
which were not covered even in the transformed code. This
issue is related to IntelliTest as it could not instantiate a map
object with specific elements that is required to execute dif-
ferent branches. Also, class CsdlParser shows interesting
results: the coverage decreased after applying automated isola-
tion. This anomaly was due to the following two root causes:
1) current implementation of the Fake container does not sup-
port returning arbitrary sizes of arrays of given types, 2) a type
query (typeof) statement could not be transformed in the
AST. The combination of these issues led to missing a whole
method and multiple other blocks to cover. It must be empha-
sized here that this issue is only related to the current state of
the prototype tool and not to the approach.

In terms of project LiteDB, the yielded coverage and test
metrics show similar results to Abot: a significant increase is
seen for all three classes in both metrics. In case of the last
two classes, there are code blocks, which were not covered
even in the transformed code, which caused the coverage
metric to stay very low in both cases. After scrutinizing the
generated test cases, we found two different reasons. For class
DataService, the blocking issue was that IntelliTest could
not provide a map for the Fake container that is indexable with
different values. In case of class TransactionService,
reaching 100% coverage would require construction of method
invocation sequences (e.g., begin, commit, save). Thus, these
issues are not related to the approach or the prototype tool.

The results for project Papercut show similar increase of
both examined metrics than in the previous three projects.

For class NetworkHelper, the coverage did not show any
growth, however the number of generated tests was raised from
4 to 10. This was caused by a tool-related issue, particularly the
lack of transforming a special structure in the code (using).
This feature is currently not implemented in the tool.

Finally, identical results can be discovered for project
SETTE. For classes SetteFileIo and SetteNetworking,
the coverage increased significantly. In the latter class, the
cause of omitting full block coverage is that the server-side
code contains an infinite loop, which can be only stopped by
thread handling. Thus, IntelliTest is not able to reach some
statements after the loop. For class SetteStdio, the block
coverage remained 100% in both cases, however the number of
generated tests is reduced as the unit to explore is smaller when
using isolation.

In summary, the results for the five projects showed a clear
increase in the number of generated tests and also in block cov-
erage, when using IntelliTest supported by the automated isola-
tion approach. Based on these results, the approach could be
able to help increasing the coverage for tests generated by DSE.

5.5 Limitations
During the preliminary evaluation, we managed to iden-

tify bugs and issues hindering our approach, though they were
caused only by the prototype state of the tool, and were not
related to the approach itself. One of these issues was the lack
of transformations of some special structures. These AST trans-
formations require numerous different scenarios to be prepared
for as the C# language is very vast. Among others, we found
the following issues with the tool when it was executed on the
selected classes. Also note that most of these were not fixed –
due to the complexity – during the evaluation and the results
for the RQ could be influenced by them.

• The DynamicFake state container objects are currently
acting as a dummy type and are not storing anything.

• Class DynamicFake is not disposable and not enumer-
able meaning that it cannot be used in some special code
contexts.

• Enums are thought as external types in some cases, how-
ever they are not harmful as they have no behavior. Thus,
should not act as subjects of isolation.

• Properties of class Fake have no generic type indicators
in certain situations.

• Methods in the Fake container are not able to throw
exceptions in their current implementation state.

• Generic methods and types are not handled properly in
the AST transformations in certain cases.

• Casting to an external type is not transformed in the AST.
• Delegates and anonymous methods are not handled dur-

ing the AST transformation.
• Using structures are currently not supported in the AST

transformations.

129Supporting Unit Test Generation via Automated Isolation 2017 61 2

• Classes in the unit that implement external interfaces or
external abstract classes are currently not supported due
to the large amount of transformations required.

Some of these issues caused the compiling of the transformed
unit under test to fail. During the evaluation, we only fixed the
blocking issues manually. We decided to not fix the rest of the
issues for this paper as 1) the results of the prototype version
was already able to show the potential in the underlying ap-
proach, and 2) designing and implementing the missing fea-
tures would require significant effort.

6 Related work
Our idea originally derives from a paper written by

Tillmann et al. [34], where the idea of mock object genera-
tion is described. They also conducted a case study for file-
system dependent software [22], that showed promising results
for using parameterized mocks. Their presented technique is
able to automatically create mock objects with behavior and
has the ability to return symbolic variables, which is used dur-
ing the symbolic execution to increase the coverage of the unit
under test. However, their solution requires external interfaces
explicitly added to the parameterized unit tests (i.e. needs user
intervention), moreover they did not consider any state change
of object inside mocks that can affect the coverage in the unit
under test. Hence, our solution covers a wider area of scenarios
and needs minimal user interaction for the automated genera-
tion (our approach only requires the fully qualified names of
the units under test).

The idea of Galler et al. is to generate mock objects from pre-
defined design by contract specifications [12]. These contracts
describe preconditions of a method, thus the derived mocks
are created in respect of them. This makes the mocks able to
avoid false behavior. However, their approach does not relate to
dynamic symbolic execution and provides no mention of collabo-
ration with any test generation process. The approach may also
introduce work overhead when creating contracts as specification.

Samimi et al. proposed the approach of declarative mock-
ing [29]. Their technique requires developers to write speci-
fications in a domain-specific language (DSL) to describe the
intended behavior of the method to mock. The specification
is then executed by a special tool called PBnJ. Hence, this
approach needs developers to write their own tests, and it has
also no mention of collaboration with code-based test generator
approaches and tools.

A similar approach is introduced in parallel with a symbolic
execution engine to Java by Islam et al. [18]. The difference
with previous two techniques is that this one uses interfaces as
specifications instead of contracts or a special DSL.

Another approach of mock generation was presented by
Pasternak et al. [27]. They created a tool called GenUTest,
which is able to generate unit tests and so-called mock aspects

from previously monitored concrete executions. However, the
effectiveness of the approach largely relies on the complete-
ness of previous concrete executions, while our presented
approach uses only the previous compilation with static AST
transformations.

A model-based approach of isolation is presented by Jeon
et al. [19] for Java programs that largely rely on frameworks.
Their technique derives a framework model in order to sup-
port and collaborate with symbolic execution during the test
generation process. Their implemented tool Pasket is able to
instantiate a model from code artifacts and tutorial programs,
which has a matching behavior with the original framework.

7 Conclusion and future work
In this paper, an approach for automatically isolating exter-

nal dependencies has been presented to support dynamic
symbolic execution-based (DSE) test generation in complex
software. This technique is designed to collaborate with DSE-
based test generationby obtaining values for dependencies
directly form the test generator tool. These values are used as
return values for external methods and for assignments, where
changing states of object is possible inside the dependency. The
presented approach replaces the calls to external dependencies
with fake invocations to a sandbox. The extensible sandbox is
synthesized from various information collected during code
and type analysis. This sandbox is able to collaborate with
dynamic symbolic execution.

The paper also presented a prototype tool that implements
the approach for C# by using Roslyn and is able to collaborate
with IntelliTest, a state-of-the-art dynamic symbolic execution-
based test generator. The technique was evaluated in terms of
increase in code coverage of the generated tests. The prelimi-
nary evaluation employed snippets from a symbolic execution-
based tool evaluator framework, and modules from selected
open-source projects on GitHub. The results of the evaluation
were promising as theprototype tool was able to transform
these modules, and was also capable of synthesizing a sandbox
without serious blocking issues. Furthermore, the transformed
code that used the sandbox had significantly higher code cover-
age with increased number of generated tests.

In terms of future work, our plan is to elaborate the use of
DynamicFake objects that are able to store and maintain the
state of externally-typed objects. This would improve the whole
approach and may provide better matching with software sys-
tem environments. We are also continuously fixing the issues
of the prototype tool. Another way of improvement could be to
enhance the behavioral logic inside the sandbox from sample
programs or observations of concrete executions (similarly to
[19] and [27]). Furthermore, we would like to provide an incre-
mental isolation refinement method for our current approach in
order to avoid isolating calls that are not necessary for improv-
ing DSE-based test generation.

130 Period. Polytech. Elec. Eng. Comp. Sci. D. Honfi, Z. Micskei

References
[1] Arcuri, A., Iqbal, M. Z., Briand, L. "Random testing: Theoretical results

and practical implications." IEEE Transactions on Software Engineering.
38(2), pp. 258-277. 2012. https://doi.org/10.1109/TSE.2011.121

[2] Arcuri, A., Fraser, G., Galeotti, J. P. "Automated unit test generation for
classes with environment dependencies." In: Proceedings of the Interna-
tional Conference on Automated Software Engineering, Vasteras, Swe-
den, Sept. 15-19, 2014, pp. 79-90.

 https://doi.org/10.1145/2642937.2642986
[3] Bucur, S., Ureche, V., Zamfir, C., Candea, G. "Parallel symbolic execu-

tion for automated real-world software testing." In: Proceedings of the
Sixth Conference on Computer Systems, Salzburg, Austria, April 10-13,
2011. pp. 183-198.

 https://doi.org/10.1145/1966445.1966463
[4] Cadar, C., Sen, K. "Symbolic execution for software testing: three dec-

ades later." Communications of the ACM. 56(2), pp. 82-90. 2013.
 https://doi.org/10.1145/2408776.2408795
[5] Cadar, C., Dunbar, D., Engler, D. "KLEE: unassisted and automatic gen-

eration of high-coverage tests for complex systems programs." In: Pro-
ceedings of Operating systems design and implementation, OSDI’08, pp.
209-224. USENIX Association, 2008.

[6] Cadar, C., Ganesh, V., Pawlowski, P. M., Dill, D. L., Engler, D. R. "EXE:
automatically generating inputs of death." ACM Transactions on Infor-
mation and System Security (TISSEC). 12(2), Article No. 10, 2008.

 https://doi.org/10.1145/1455518.1455522
[7] Cadar, C., Godefroid, P., Khurshid, S., Păsăreanu, C. S., Sen, K., Till-

mann, N., Visser, W. "Symbolic execution for software testing in prac-
tice: preliminary assessment." In: Proceedings of the 33rd International
Conference on Software Engineering, Waikiki, Honolulu, HI, USA, May
21-28, 2011, pp. 1066-1071.

 https://doi.org/10.1145/1985793.1985995
[8] Chen, T., Zhang, X., Guo, S.-Z., Li, H.-Y., Wu, Y. "State of the art: Dy-

namic symbolic execution for automated test generation." Future Gen-
eration Computer Systems. 29(7), pp. 1758-1773. 2013.

 https://doi.org/10.1016/j.future.2012.02.006
[9] Cseppento, L., Micskei, Z. "Evaluating symbolic execution-based test

tools." In: 2015 IEEE 8th International Conference on Software Testing,
Verification and Validation (ICST), Graz, April 13-17, 2015, pp. 1-10.

 https://doi.org/10.1109/ICST.2015.7102587
[10] Daka, E., Fraser, G. "A Survey on Unit Testing Practices and Problems."

In: 2014 IEEE 25th International Symposium on Software Reliability
Engineering, Naples, Nov. 3-6, 2014, pp. 201-211.

 https://doi.org/10.1109/ISSRE.2014.11
[11] de Halleux, J., Tillmann, N. "Parameterized Unit Testing with Pex." In:

Tests and Proofs. (Beckert, B., Hähnle R. (eds.)), Vol. 4966, pp. 171-181.
Springer, 2008.

 https://doi.org/10.1007/978-3-540-79124-9_12
[12] Galler, S. J., Maller, A., Wotawa, F. "Automatically Extracting Mock Ob-

ject Behavior from Design by ContractTM Specification for Test Data
Generation." In: Proceedings of the 5th Workshop on Automation of Soft-
ware Test (AST), Cape Town, South Africa, May 03-04, 2010, pp. 43-50.

 https://doi.org/10.1145/1808266.1808273
[13] Godefroid, P., Klarlund, N., Sen, K. "DART: directed automated random

testing." ACM Sigplan Notices. 40(6), pp. 213-223. 2005.
 https://doi.org/10.1145/1064978.1065036
[14] Godefroid, P., Levin, M. Y., Molnar, D. A. "SAGE: Automated Whitebox

Fuzz Testing." In: Proceedings of NDSS’2008 (Network and Distributed
Systems Security), San Diego, February 2008, pp. 151-166.

[15] Harman, M. "Refactoring as testability transformation." In: 2011 IEEE
 Fourth International Conference on Software Testing, Verification and

Validation Workshops, Berlin, March 21-25, 2011, pp. 414-421.
 https://doi.org/10.1109/ICSTW.2011.38
[16] Honfi, D., Micskei, Z. "Generating unit isolation environment using

symbolic execution." In: Proceedings of the 23rd PhD Mini-Symposi-
um. Budapest University of Technology and Economics, Department of
Measurement and Information Systems, Budapest University of Tech-
nology and Economics, Department of Measurement and Information
Systems, 2016.

[17] Honfi, D., Micskei, Z., Vörös, A. "Isolation and Pex: Case Study of Co-
operation, 2013." Technical report, Budapest University of Technology
and Economics.

[18] Islam, M., Csallner, C. "Dsc+Mock: A Test Case + Mock Class Gen-
erator in Support of Coding against Interfaces." In: Proceedings of the
Eighth International Workshop on Dynamic Analysis, Trento, Italy, July
12-16, 2010, pp. 26-31.

 https://doi.org/10.1145/1868321.1868326
[19] Jeon, J., Qiu, X., Fetter-Degges, J., Foster, J. S., Solar-Lezama, A. "Syn-

thesizing Framework Models for Symbolic Execution." In: Proceedings
of the 38th International Conference on Software Engineering, Austin,
Texas, May 14-22, 2016, pp. 156-167.

 https://doi.org/10.1145/2884781.2884856
[20] Jones, J. "Abstract Syntax Tree Implementation Idioms." In: Proceed-

ings of the International Conference on Pattern Languages of Programs
(PLOP 2003), pp. 1-10, 2003.

[21] King, J. C. "Symbolic execution and program testing." Communications
of the ACM. 19(7), pp. 385-394. 1976.

 https://doi.org/10.1145/360248.360252
[22] Marri, M. R., Xie, T., Tillmann, N., De Halleux, J., Schulte, W. "An Em-

pirical Study of Testing File-System-Dependent Software with Mock
Objects." In: 2009 ICSE Workshop on Automation of Software Test,
Vancouver, BC, May 18-19. 2009, pp. 149-153.

 https://doi.org/10.1109/IWAST.2009.5069054
[23] McMinn, P. "Search-based software testing: Past, present and future." In:

2011 IEEE Fourth International Conference on Software Testing, Verifica-
tion and Validation Workshops, Berlin, March 21-25, 2011, pp. 153-163.

 https://doi.org/10.1109/ICSTW.2011.100
[24] Meszaros, G. "XUnit Test Patterns: Refactoring Test Code." Prentice

Hall PTR, Upper Saddle River, NJ, USA, 2006.
[25] Microsoft. ".NET Compiler Platform (\Roslyn)." 2016. https://github.

com/dotnet/roslyn.
[26] Păsăreanu, C. S., Rungta, N. "Symbolic PathFinder: symbolic execution

of Java bytecode. In: Proceedings of the IEEE/ACM International Con-
ference on Automated Software Engineering, Antwerp, Belgium, Sept.
20-24, 2010, pp. 179-180.

 https://doi.org/10.1145/1858996.1859035
[27] Pasternak, B., Tyszberowicz, S., Yehudai, A. "GenUTest: a Unit Test and

Mock Aspect Generation Tool." International Journal on Software Tools
for Technology Transfer. 11(4), pp. 273-290. 2009.

 https://doi.org/10.1007/s10009-009-0115-4
[28] Qu, X., Robinson, B. "A case study of concolic testing tools and their limi-

tations." In: 2011 International Symposium on Empirical Software Engi-
neering and Measurement, Banff, AB, Sept. 22-23, 2011, pp. 117-126.

 https://doi.org/10.1109/ESEM.2011.20

https://doi.org/10.1109/TSE.2011.121
https://doi.org/10.1145/2642937.2642986
https://doi.org/10.1145/1966445.1966463
https://doi.org/10.1145/2408776.2408795
https://doi.org/10.1145/1455518.1455522
https://doi.org/10.1145/1985793.1985995
https://doi.org/10.1016/j.future.2012.02.006
https://doi.org/10.1109/ICST.2015.7102587
https://doi.org/10.1109/ISSRE.2014.11
https://doi.org/10.1007/978-3-540-79124-9_12
https://doi.org/10.1145/1808266.1808273
https://doi.org/10.1145/1064978.1065036
https://doi.org/10.1109/ICSTW.2011.38
https://doi.org/10.1145/1868321.1868326
https://doi.org/10.1145/2884781.2884856
https://doi.org/10.1145/360248.360252
https://doi.org/10.1109/IWAST.2009.5069054
https://doi.org/10.1109/ICSTW.2011.100
https://github.com/dotnet/roslyn
https://github.com/dotnet/roslyn
https://doi.org/10.1145/1858996.1859035
https://doi.org/10.1007/s10009-009-0115-4
https://doi.org/10.1109/ESEM.2011.20

131Supporting Unit Test Generation via Automated Isolation 2017 61 2

[29] Samimi, H., Hicks, R., Fogel, A., Millstein, T. "Declarative mocking."
In: Proceedings of the 2013 International Symposium on Software Test-
ing and Analysis, ISSTA 2013, Lugano, Switzerland, July 15-20, 2013,
pp. 246-256.

 https://doi.org/10.1145/2483760.2483790
[30] Sen, K. "Concolic testing." In: Proceedings of the twenty-second IEEE/

ACM International Conference on Automated Software Engineering, At-
lanta, Georgia, USA, Nov. 05-09, 2007. pp. 571-572.

 https://doi.org/10.1145/1321631.1321746
[31] Sen, K., Agha, G. "CUTE and jCUTE: Concolic unit testing and explicit

path model-checking tools. In: Computer Aided Verification. (Ball, T.,
Jones, R. B.) Vol. 4144, pp. 419-423, Springer, 2006.

 https://doi.org/10.1007/11817963_38
[32] Taneja, K., Zhang, Y., Xie, T. "MODA: Automated test generation for da-

tabase applications via mock objects." In: Proceedings of the IEEE/ACM
International Conference on Automated Software Engineering, Antwerp,
Belgium, Sept. 20-24, 2010 pp. 289-292.

 https://doi.org/10.1145/1858996.1859053

[33] Tillmann, N., de Halleux, J. "Pex-White Box Test Generation for .NET."
In: Tests and Proofs. (Beckert, B., Hähnle, R. (eds.)), Vol. 4966, pp. 134-
153. Springer, 2008. https://doi.org/10.1007/978-3-540-79124-9_10

[34] Tillmann, N., Schulte, W. "Mock-Object Generation with Behavior." In:
21st IEEE/ACM International Conference on Automated Software Engi-
neering (ASE’06), Tokyo, Sept. 18-22, 2006, pp. 365-368.

 https://doi.org/10.1109/ASE.2006.51
[35] Tillmann, N., de Halleux, J., Xie, T. "Transferring an Automated Test Gen-

eration Tool to Practice: From Pex to Fakes and Code Digger." In: Pro-
ceedings of the 29th ACM/IEEE International Conference on Automated
Software Engineering, Vasteras, Sweden, Sept. 15-19, 2014, pp. 385-396.

 https://doi.org/10.1145/2642937.2642941
[36] Xie, T., De Halleux, J., Tillmann, N., Schulte, W. "Teaching and train-

ing developer-testing techniques and tool support." In: Proceedings
of the ACM International Conference Companion on Object Oriented
Programming Systems Languages and Applications Companion, Reno/
Tahoe, Nevada, USA, Oct. 17-21, 2010, pp. 175-182.

 https://doi.org/10.1145/1869542.1869570

https://doi.org/10.1145/2483760.2483790
https://doi.org/10.1145/1321631.1321746
https://doi.org/10.1007/11817963_38
https://doi.org/10.1145/1858996.1859053
https://doi.org/10.1007/978-3-540-79124-9_10
https://doi.org/10.1109/ASE.2006.51
https://doi.org/10.1145/2642937.2642941
https://doi.org/10.1145/1869542.1869570

	1 Introduction
	2 Background and Motivation
	3 Overview of the Supporting Approaches
	3.1 Using Default Behavior
	3.2 Guiding Test Generation
	3.3 Approaches for Using Isolation
	3.4 Transforming the Unit Under Test

	4 Approach for Automated Isolation
	4.1 Generic Definition
	4.1.1 Syntax Analysis
	4.1.2 Syntax Tree Transformation
	4.1.3 Sandbox Synthesis

	4.2 Possible use cases
	4.3 Tool-specific Implementation

	5 Experimental Evaluation
	5.1 Objective
	5.2 Process
	5.3 Setup
	5.4 Results
	5.5 Limitations

	6 Related work
	7 Conclusion and future work
	References

