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Abstract
The last decade brought considerable improvements in dis-
tributed storage and query technologies, known as NoSQL 
systems. These systems provide quick evaluation of simple 
retrieval operations and are able to answer certain complex 
queries in a scalable way, albeit not instantly. Providing scal-
ability and quick response times at the same time for querying 
large data sets is still a challenging task. Evaluating com-
plex graph queries is particularly difficult, as it requires lots 
of join, antijoin and filtering operations. This paper presents 
optimization techniques used in relational database systems 
and applies them on graph queries. We evaluate various query 
plans on multiple datasets and discuss the effect of different 
optimization techniques.
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1 Introduction
The key components of Big Data are often defined as vari-

ety, velocity and volume [28] of data. Applications operating 
on continuously changing graphs are a prime example: the 
semi-structured graph-like nature introduces a high variety, 
changes happen at high velocity, and datasets are often high-vol-
ume. Such applications include fraud detection in financial 
transactions [27], validation of engineering models [3], and 
static analysis of source code repositories [35]. These use cases 
provide a set of complex queries that need to be evaluated con-
tinuously on each change of the underlying graph. 

Traditional approaches need to reevaluate each query upon 
each change, which often takes minutes on a large dataset. In 
contrast, incremental query evaluation caches interim results, 
hence it only requires reevaluation on a small fragment of 
the dataset impacted by the change. This leads to significant 
speedup for large and continuously changing data. Although 
several approaches exist for incremental query evalua-
tion [9, 20] in the context of expert systems, incremental query 
evaluation is not in widespread use in graph databases. 

In order to predict query performance at runtime, relational 
databases synthesize and evaluate different query plans which 
impose a certain ordering on relational algebraic operations 
prescribed by the query. Optimizing query plans is a challeng-
ing task, since a wide variety of query plans may exist even 
for simple queries with different costs. Database engines use 
heuristics-based optimization techniques and evaluate a cost 
function for the different query plans [10]. 

Query plans have been adapted for graph query engines 
using a local-search based query evaluation strategy where it is 
called the search plan. Optimization techniques may exploit the 
type and multiplicity information defined in the graph schema 
(or metamodel) [29, 22] or rely upon runtime statistics of the 
instance graph [11, 38, 39]. 

In case of incremental graph query engines, the structure and 
the content of caches have the most significant impact on query 
performance. Therefore, optimization is directed to reduce exe-
cution time and memory consumption imposed by a complex 
network of caches [37]. 
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In this paper, we use heuristic optimization techniques to 
create different query plans for the incremental evaluation 
of graph queries describing model validation constraints. We 
investigate the execution time and scalability of the generated 
query plans for incremental query evaluation workloads using 
the open-source Train Benchmark project [33]. The results 
show that using basic optimization techniques avoiding Carte-
sian products already results in efficient query plans that scale 
for models with 9M+ elements, while applying further optimi-
zations (e.g. swapping the operands of join operators) did not 
have a significant impact. 

This paper is an extended version of [17], which evaluates 
the effect of various optimization techniques on the perfor-
mance of incremental queries. 

Structure of the paper. Section 2 presents the running ex-
ample, introduces model validation with graph patterns, and 
demonstrates the usage of graph transformations on models. 
Section 3 presents labeled graphs, their representation as rela-
tions, and the extended relational algebraic operators for pro-
cessing graphs. Section 4 summarizes the basics of relational 
graph queries and presents Rete, a widely used incremental 
graph query algorithm. Section 5 features a set of optimiza-
tion techniques and shows their application on Rete query net-
works. Section 6 presents and discusses the results of the per-
formance experiments. Section 7 lists the related optimization 
approaches, while Section 8 summarizes the paper and out-
lines future research directions. Appendix A shows the query 
plan layouts used for the evaluation.

2 Preliminaries
Model-Driven Engineering (MDE) is a widely used tech-

nique in many application domains such as automotive, avi-
onics or other cyber-physical systems [40]. MDE facilitates 
the use of models in different phases of design and on vari-
ous levels of abstraction. These models enable the automated 

synthesis of various design artifacts (such as source code, con-
figuration files, documentation) and help catch design flaws 
early by model validation techniques. 

In this section, we present the running example and the con-
cepts used in the paper.

2.1 Domain Models for Critical Systems: the Train 
Benchmark

We use the Train Benchmark [33] as a running example to 
present both the concepts used in the paper and also as a bench-
mark framework for evaluating our results. The benchmark 
defines a domain model for railway networks—the railway 
domain itself reflects that model validation scenarios are typi-
cal in design tools of critical systems. 

The railway networks used in the benchmark are composed 
of typical railroad items, including routes, semaphores, and 
switches. An example model graph is shown in Fig. 1, while 
the metamodel of the model graph is shown in Fig. 2. 

Fig. 2 Metamodel of the railway graph.

Formally, structural models (such as this railway network) 
are often represented as labeled graphs (or typed graphs), 
where vertices and edges are annotated with labels (e.g. Sema-
phore, Route, entry, etc.). Labeled graphs are introduced in 
Section 3.1.1.

Fig. 1 Example railway instance model as a labeled graph.
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2.2 Model Validation with Graph Queries
Model validation highly depends on repeatedly checking 

multiple design rules and well-formedness constraints captured 
in the form of graph patterns [3, 4] over large (graph) mod-
els to highlight invalid model elements to systems engineers. 
A graph pattern is a list of symbolic object parameters and 
the constraints to be satisfied by the parameters. Constraints 
include positive conditions, negative conditions, and filter con-
ditions. Positive conditions define the structure and labels of 
the vertices and edges that must be satisfied, while negative 
conditions define subpatterns which must not be satisfied, while 
filter conditions express additional constraints (e.g. inequality 
of vertices). These patterns can be formulated as graph queries 
(or validation queries). 

A pattern match maps each symbolic parameter to a model 
object, where the mapping satisfies the conditions defined by 
the constraints. Upon evaluating the validation query on a 
model graph, the result is a match set that contains all matches 
for a given pattern. An empty match set for a validation 
query indicates that the model is well-formed w.r.t.a certain 
well-formedness constraint, while the matches in a non-empty 
match set mark the invalid elements that violate the corre-
sponding well-formedness constraint. 

The Train Benchmark specifies a set of well-formedness 
constraints for validating these networks. The benchmark also 
defines a set of model transformations, including Repair trans-
formations, which define quick fix-like operations for automat-
ically correcting errors in the model. In total, the benchmark 
defines six well-formedness constraints with their validation 
queries and transformations. Here, we only elaborate the two 
constraints used in the paper. The full set of constraints and 
transformations of the Train Benchmark are described in [33].

2.2.1 The RouteSensor Constraint
Well-formedness constraint. The RouteSensor well-formed-
ness constraint requires that all Sensors that are associated with 
a Switch that belongs to a Route must also be associated directly 
with the same Route.

Validation query. The RouteSensor query (Fig. 3) looks for 
Sensors (sensor) that are connected to a Route (route) through 
a Switch (switch) and a SwitchPosition (swP), but the Sensor 
and the Route are not connected with a requires edge. 

Repair transformation. The missing requires edge is inserted 
from the route vertex to the sensor vertex in the match (Fig. 4), 
which fixes the violation of the constraint.

Example. In the example model (Fig. 1), Route 2 violates this 
constraint, as it is connected to Sensor 5 through SwitchPo-
sition 14 and Switch 9, but the Sensor and the Route are not 
directly associated. Hence, the validation query return these 

invalid elements. Running the repair transformation fixes this 
by inserting a requires edge from Route 2 to Sensor 5. 

monitoredBy
requires target

follows

sw: Switch

swP: SwitchPositionroute: Route

sensor: Sensor

NEG

Fig. 3 The RouteSensor pattern.

requires
«new» target

follows

sw: Switch

swP: SwitchPositionroute: Route

sensor: Sensor

NEG
monitoredBy

Fig. 4 Repair transformation of the RouteSensor pattern.

2.2.2 The SemaphoreNeighbor Constraint
Well-formedness constraint. The SemaphoreNeighbor 
well-formedness constraint requires Routes which are con-
nected through a pair of Sensors and a pair of TrackElements 
to belong to the same semaphore.

Validation query. The SemaphoreNeighbor query (Fig. 5) 
checks for Routes (route1) which have an exit Semaphore 
(semaphore) and a Sensor (sensor1) connected to a TrackEle-
ment (te1). This TrackElement is connected to another Track-
Element (te2), which is connected to another Sensor (sensor2), 
which belongs to another, different Route (route2), but the 
Semaphore is not on the entry of this Route (route2). 

connectsTo

requires

exit

monitoredBy monitoredBy

requires

entry

route1 ≠ route2

te1: TrackElement

sensor1: Sensor

route1: Route

semaphore: Semaphore

te2: TrackElement

sensor2: Sensor

route2: Route

NEG

Fig. 5 The SemaphoreNeighbor pattern.

Repair transformation. The route2 vertex is connected to the 
semaphore vertex with an entry edge (Fig. 6), which fixes the 
violation of the constraint.

Example. In the example model (Fig. 1), Routes 2 and 4 vio-
late this constraint, as they are connected (through Sensors 6, 7 
and TrackElements 11, 12), but they do not belong to the same 
Semaphore. Hence, the validation query returns these elements 
as invalids. Running the repair transformation fixes this by in-
serting an entry edge from Route 4 to Semaphore 3.
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connectsTo

requires

exit

monitoredBy monitoredBy

requires

route1 ≠ route2

te1: TrackElement

sensor1: Sensor

route1: Route

te2: TrackElement

sensor2: Sensor

entry
«new» NEG
route2: Route

semaphore: Semaphore

Fig. 6 Repair transformation of the SemaphoreNeighbor pattern.

3 Relational Query Processing
In this paper, we use the notation of relational algebra for for-

malizing graph queries. Here, we present the mapping of graphs 
to relations and present the operators used for defining patterns.

3.1 Relations and Relational Schemas
In relational database theory [10], a relation is a subset of 

the Cartesian product of domains, containing a set of tuples. 
Each tuple has the same set of attributes. The set of attribute 
names for a given relation are called the relational schema. 
Relations are denoted with small letters, while relational sche-
mas are denoted with capital letters, e.g.  r  is a relation with a 
corresponding relational schema  R .

Note on order of attributes. In the database literature, some 
authors define a relational schema as a list of attributes [8], 
while others define it as a set of attributes [10, 18]. In this paper, 
we define the relational schema as a set of attributes, as this 
choice allows us to formalize queries in a more succinct way.

3.1.1 Labeled Graphs
The notation presented here is based on [14] and [26] with 

minor adaptations to simplify presentation. 
A labeled graph is defined as  G = (V, E, src_trg, 

Lv , Le , lv , le), where V is a set of vertices, E is a set of directed 
edges, src_trg : E → V × V  assigns the source and target 
vertices to edges.1 Both vertices and edges in the graph are 
labeled (or typed): 

• Lv  is a set of vertex labels,  lv : V → 2Lv  assigns a set of 
labels to each vertex. 

• Le  is a set of edge labels,  le : E → Le  assigns a single 
label to each edge. 

Property graphs are labeled graphs with attributes 
(properties) on their vertices and edges. For the sake of brevity, 

we do not discuss property graphs in this paper and refer the 
interested reader to [14].

3.1.2 Representing Labeled Graphs as Relations
We map vertices and edges in the graph to tuples in rela-

tions. For each vertex label and edge label, we define a separate 
relation. For the sake of simplicity, we presume that both verti-
ces and edges in the graph have a unique identifier.

Mapping vertices to tuples.  Vertices can be trivially mapped 
to relations of 1-tuples by introducing a relation for each label. 
The vertices of the example graph in Fig. 1 constitute the fol-
lowing relations: 

• Route(route) = {á2ñ, á4ñ}
• Segment(segment) = {á8ñ, á10ñ, á11ñ, á13ñ}
• Semaphore(semaphore) = {á1ñ, á3ñ}
• Sensor(sensor) = {á5ñ, á6ñ, á7ñ}
• Switch(switch) = {á9ñ, á12ñ}
• SwitchPosition(switchPosition) = {á14ñ, á15ñ}
• TrackElement(trackElement) = {á8ñ, á9ñ, á10ñ, á11ñ, á12ñ, á13ñ}

Mapping edges to tuples.  Each edge is represented by a triple 

ásource vertex, edge, target vertexñ.

The edges of the example graph in Fig. 1 constitute the fol-
lowing relations: 

• connectsTo(trackElement1, connectsTo, trackElement2) = 
{á8, m, 9ñ, á9, n, 10ñ, á10, o, 11ñ, á11, p, 12ñ, á12, q, 13ñ}

• entry(route, entry, semaphore) = {á2, a, 1ñ}
• exit(route, exit, semaphore) = {á2, b, 3ñ}
• follows(route, follows, switchPosition) = {á2, c, 14ñ, á4, e, 15ñ}
• requires(route, requires, sensor) = {á2, d, 6ñ, á4, f, 7ñ}
• monitoredBy(trackElement, monitoredBy, sensor) =  

{á8, g, 5ñ, á9, h, 5ñ, á10, i, 6ñ, á11, j, 6ñ, á12, k, 7ñ, á13, l, 7ñ}
• target(switchPosition, target, switch) = 

{á14, r, 9ñ, á15, s, 12ñ}

Note that in the representation above, attribute names of 
tuples are only denoted in the relational schemas and not in the 
tuples of the relation. Without the schema, we cannot deter-
mine the semantics of tuples, e.g. we cannot decide if the ele-
ments in  á8, m, 9ñ  and  á4, f, 7ñ  have the same labels. Hence, 
we often specify the attribute names for each tuple: 

• átrackElement1 : 8, connectsTo : m, trackElement2 : 9ñ,
• ároute : 4, requires : f, sensor : 7ñ.
Using this notation, the requires relation can be defined as: 

requires = {ároute : 2, requires : d, sensor : 6ñ ároute : 4, 
requires : f, sensor : 7ñ}.

3.2 Extended Relational Algebra
Relational algebra is a widespread formalism for defining 

queries on the relational data model. Relational algebra has 

1 While the terms nodes and vertices are often used as synonyms, we only 
use the term vertices for the graph elements to avoid confusion with Rete nodes 
(introduced in Section 4.1).
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several extensions, including graph-specific ones [14]. For a 
detailed discussion of relational algebra operators, the reader is 
referred to database textbooks [8, 30, 10]. 

We list basic operators of relational algebra along with 
graph-specific extensions. We present an example for each 
operator using the example graph of Fig. 1.

3.2.1 Nullary Operators
Get-vertices. The get-vertices operator ○ …v  t t: ∧ ∧( )1 n

 returns a 
relation of a single attribute  ν , containing vertices that have all 
labels of  t1 , … , tn . 

The relations for vertices in Section 3.1.2 can be simply 
defined using the get-vertices operator. For example, the  Route 
relation can be expressed as: 

Route = :( ) route   Route

Get-edges. The get-edges operator ⇑ [ ]( )
( )
src : 
trg : 

srcLabels
trgLabels e : edgeLabel  

operator returns a relation of three attributes. Each row rep-
resents an edge and its vertices: the source vertex  src  (with 
all labels of srcLabels), the edge  e (with label edgeLabel) and 
the target vertex trg (with all labels of trgLabels). 

The relations listed in Section 3.1.2 can be simply defined 
using the get-edges operator. For example the requires relation 
can be expressed as: 

requires =⇑ ::( )
( )
route
sensor requires

  

 : 

Route
Sensor requiress[ ]

If the edge variable is not used elsewhere in the expres-
sion, we often omit its name and use the operator as 
⇑ [ ]( )
( )
src : 
trg : 

srcLabels
trgLabels edgeLabel : .

3.2.2 Unary Operators
Projection.  The projection operator  π  reduces the dimen-
sion of the relation by only keeping a specific set of attributes: 
t = πA1, … An

(r). 
For example, the following expression returns the route  ver-

tices from the requires relation. 

π route route routerequires( ) = : , :{ }2 4

Selection.  The selection operator σ filters the relation accord-
ing to some criteria:  t = σθ (r) , where predicate  θ  is a propo-
sitional formula. The operator selects all tuples in  r  for which  
θ  holds. 

For example, the following expression returns edges from 
the requires relation, which start from route 2. 

σ route route requires sensor= ( ) = : , : , :{ }2
2 6requires  d  

3.2.3 Binary Operators
Cartesian Product.  The × operator produces the Cartesian 
product

t r s= × ,

where  t  holds all tuples that are a union of exactly one tuple 
from  r  and exactly one tuple from  s . 

For example, the following expression produces the Carte-
sian product of the follows and requires relations: 

follows × requires = {
⟨������ ∶ 2, ������� ∶ c, �������������� ∶ 14, ������ ∶ 2, �������� ∶ d, ������ ∶ 6⟩,
⟨������ ∶ 2, ������� ∶ c, �������������� ∶ 14, ������ ∶ 4, �������� ∶ f , ������ ∶ 7⟩,
⟨������ ∶ 4, ������� ∶ e, �������������� ∶ 15, ������ ∶ 2, �������� ∶ d, ������ ∶ 6⟩,
⟨������ ∶ 4, ������� ∶ e, �������������� ∶ 15, ������ ∶ 4, �������� ∶ f , ������ ∶ 7⟩

}

Natural Join.  The result of the natural join operator  ⋈   is 
determined by creating the Cartesian product of the relations, 
then filtering those tuples which are equal on the attributes that 
share a common name. The combined tuples are projected: 
from the attributes present in both of the two input relations, 
we only keep a single one. Thus, the join operator is defined as: 

� ⋈ � = ��∪�
(
��.��=�.�� ∧…∧ �.��=�.��) (� × �)

)
,

where  R  and  S  are the relational schemas of relations r and 
s , respectively;  {A1 , … , An}  is the set of attributes that oc-
cur both in schemas  R  and  S , i.e.  R Ç S = {A1 , … , An} . 
Note that if the set of common attributes is empty, the natural 
join operator is equivalent to the Cartesian product of the rela-
tions. The join operator is both commutative and associative: 
� ⋈ � = � ⋈ �  and  (� ⋈ �) ⋈ � = � ⋈ (� ⋈ �).

The join operator can connect vertices, edges and subgraphs 
to each other. For example, subgraphs of three vertices and two 
edges along the follows and requires edges can be queried as:

follows ⋈ requires = {
⟨����� ∶ 2, ������� ∶ c, �������������� ∶ 14, �������� ∶ d, ������ ∶ 6⟩,
⟨����� ∶ 4, ������� ∶ e, �������������� ∶ 15, �������� ∶ f , ������ ∶ 7⟩

}

Antijoin. The antijoin operator   (also known as left 
anti semijoin) collects the tuples from the left relation  r  
which have no matching pair in the right relation  s : 

� = � ⊳ � = � ⧵ �� (� ⋈ �) ,

where  πR  denotes a projection operator, which only keeps the 
attributes of the schema over relation  r . The definition can be 
also formulated using the set of common attributes R Ç S : 

� = � ⧵ �� (� ⋈ �) = � ⧵
(
� ⋈ ��∩� (�)

)

Unlike the natural join operator, the antijoin operator is not 
commutative and not associative. 

The antijoin operator can express negative conditions. For 
example, the triples for follows edges that do not have an exit  
edge on their route can be queried as: 

follows ⊳ exit = {⟨����� ∶ 4, ������� ∶ e, �������������� ∶ 15⟩}
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Note on operator precedence. The join and antijoin operators 
have the same precedence, i.e. if the order between join and 
antijoin operations is not indicated, the query is processed from 
left to right. 

3.3 Graph Patterns in Relational Algebra
The graph patterns (such as the validation queries introduced 

in Section 2.2) can be formalized using relational algebra: edges 
of the pattern are selected with the get-edges operator, connec-
tions are enforced using the natural join operator, negative sub-
patterns are translated using antijoin, and filtering is captured by 
the selection operator. Following this definition, we give rela-
tional algebra expressions for both validation queries.

3.3.1 Query RouteSensor
The RouteSensor query can be formalized as: 

⇑(���∶ ��������������)
(�����∶ �����) [∶ �������] ⋈⇑(��∶ ������)

(���∶ ��������������) [∶ �����] ⋈

⇑(������∶ ������)
(��∶ ������) [∶ ���������
	]⊳ ⇑(������∶ ������)

(�����∶ �����) [∶ ��������]

This query is of medium complexity, using 4 get-edges, 
2 natural join and 1 antijoin operators. 

3.3.2 Query SemaphoreNeighbor
The SemaphoreNeighbor query can be formalized as: 

�������≠������
(
⇑(���∶ ������������)
(���∶ ������������) [∶ ����������] ⋈

⇑(�������∶ ������)
(���∶ ������������) [∶ ����������] ⋈⇑(�������∶ ������)

(���∶ ������������) [∶ ����������] ⋈

⇑
(���������∶ ���������)
(������∶ 
�	��) [∶ ����] ⋈⇑(�������∶ ������)

(������∶ 
�	��) [∶ ���	����] ⋈

⇑(�������∶ ������)
(������∶ 
�	��) [∶ ���	����]

)
⊳ ⇑

(���������∶ ���������)
(������∶ 
�	��) [∶ ����]

This query is significantly more complex, using 7 get-edges, 
5 natural join, 1 antijoin and 1 selection operators. 

4 Incremental Query Evaluation
In many use cases, queries are continuously evaluated, while 

the data only changes rarely and to a small degree. The valida-
tion queries in MDE are a typical example of such a workload. 
The goal of incremental query evaluation is to speed up such 
queries, using the (partial) results obtained during the previous 
executions of the query and only computing the effect of the 
latest set of changes. 

Incremental query evaluation algorithms typically use addi-
tional data structures for caching interim results. This implies 
that they usually consume more memory than non-incremen-
tal, search-based algorithms. In other words, they trade mem-
ory consumption for execution speed. This approach, called 
space–time tradeoff, is well-known and widely used in com-
puter science [13]. 

Numerous algorithms were proposed for incremental pat-
tern matching. Mostly, these algorithms originate from the field 
of rule-based expert systems. In this paper, we use the Rete 

algorithm [9], which creates a dataflow network for evaluating 
relational queries. 

4.1 Overview of Rete Networks
The Rete algorithm constructs a network of three types of 

nodes. Following Fig. 7, from bottom to top: 
1. Input nodes are responsible for indexing the graph, i.e. 

they store the appropriate tuples for vertices and edges in 
the graph. They are also responsible for sending change 
sets as update messages to worker nodes that are sub-
scribed to them. 

2. Worker nodes perform a relational algebraic operation 
on their input and propagate the results to other worker 
nodes or production nodes. Some worker nodes are state-
ful: they store partial query results in their memory to 
allow incremental reevaluation. Worker nodes have two 
types: unary nodes have a single input slot, binary nodes 
have two input slots. 

3. Production nodes are terminators that provide an inter-
face for fetching the results.

W
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no
de

s
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ro
du

ct
io

n 
no

de
s

In
pu

t 
no

de
s

Worker node

Production node

Input node

Worker node

Input nodeInput node

Worker node

Production node Production node

Worker node

Fig. 7 The structure of the Rete propagation network.

The Rete network operates as follows. First, the network 
computes the set of pattern matches in the graph. Then upon a 
change in the graph, the network is incrementally maintained 
by propagating update messages (also known as deltas, denoted 
with the Δ character). Adding new graph matches to the result 
set is expressed as positive update messages, while removing 
matches results in negative update messages. 

In the following, we discuss Rete nodes in detail. For unary 
and binary nodes, we formulate the maintenance operations, 
which are performed upon receiving an update message. For 
these operations, we denote the output relation by  t , the updated 
output relation by  t' , and the propagated update message on the 
output by  Δt . If the propagated update message is a positive 
update,  t' = t È Δt , if it is a negative update,  t' = t  \ Δt.
 
4.2 Input Nodes

Input nodes provide the relations for each label of the 
graph. For example, the input node for the requires edge label 
of example the graph (Fig. 1) returns tuples that are currently 
in the requires relation: {á2, d, 6ñ, á4, f, 7ñ} . This input node is 
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also responsible for propagating changes to worker nodes in 
the network: 

• If a requires edge ‘t’ is inserted from vertex 2 to 5, the 
input node sends a positive update message to its sub-
scriber nodes with the change set {á2, t, 5ñ} . 

• If the edge ‘d’ between vertices 2 and 6 is deleted, the 
input node sends a negative update to its subscriber nodes 
with the change set {á2, d, 6ñ} . 

The relations contained by input nodes can be defined with 
nullary operators (Section 3.2.1): input nodes indexing vertices 
implement the get-vertices operator, while input nodes index-
ing edges implement the get-edges operator.

4.3 Unary Nodes
Unary nodes have one input slot. They filter or transform 

the tuples of the parent node according to certain criteria. In the 
following, the relation representing the input tuples is denoted 
with r , the relation representing the output tuples is denoted 
with t , and the operator processing the input is denoted with  α : 

t r= ( ).α

Maintenance. In the following, we assume that the α  operator 
is distributive w.r.t. the union (È) and set minus ( \ ) operators. 
If a unary node receives an update  Δr , it performs the operation 
and computes the change set. For positive updates, the result 
(t' ) and the change set (Δt ) are: 

′ ≡ ∪∆( )
= ( )∪ ∆( )
= ∪ ∆( )

∆

t r r

r r

t r
t

α

α α

α���

Similarly, for negative updates: 

′ ≡ ∆( )
= ( ) ∆( )
= ∆( )

∆

t r r

r r

t r
t

α

α α

α





���

Unary nodes are often implemented as stateless nodes, i.e. 
they do not store the results of the previous executions. Instead, 
these results are cached in their subscribers, e.g. indexers of 
binary nodes (Section 4.4) or production nodes (Section 4.5). 

As their name suggests, unary nodes implement unary rela-
tional algebraic operators (Section 3.2.1): 

• The projection node performs a projection operation on 
the input relation. 

• The selection node performs a selection operation on the 
input relation.

As both the projection and the selection operators are distrib-
utive w.r.t. the union and set minus operators, their results can be 
maintained by performing the operation for the change set Δr .

4.4 Binary Nodes
Binary nodes have two input slots: the primary (p) and the 

secondary (s). Binary node implementations typically cache 
both their input relations in indexers.

4.4.1 Natural Join Node
Maintenance. In the following, we define the maintenance op-
erations for natural join nodes. If a natural join node receives a 
positive update  Δp  on its primary input slot, the result (t' )  and 
the change set (Δt ) are determined as follows: 

�′ ≡ (� ∪ Δ�) ⋈ �
= (� ⋈ �) ∪ (Δ� ⋈ �)
= � ∪ (Δ� ⋈ �)

⏟⏞⏟⏞⏟
Δ�

If the node receives a positive update Δs on its secondary 
input slot, the result (t' ) and the change set (Δt ) are the 
following: 

�′ ≡ � ⋈ (� ∪ Δ�)
= (� ⋈ �) ∪ (� ⋈ Δ�)
= � ∪ (� ⋈ Δ�)

⏟⏞⏟⏞⏟
Δ�

For negative updates, the change set is the same, but it is 
propagated as a negative update. The result is �′ = � ⧵ (Δ� ⋈ �)   
and �′ = � ⧵ (� ⋈ Δ�), , for updates messages on the primary and 
the secondary input slots, respectively.

4.4.2 Antijoin Node
Maintenance. As the antijoin operator is not commutative, 
handling update messages requires us to distinguish between 
the following cases: 

• Update on the primary slot. 
- Positive update: send a positive update for each in-

coming tuple for which there is no match on the sec-
ondary indexer. 

′ ≡ ∪∆( )
= ( )∪ ∆( )
= ∪ ∆( )

∆

t p p s

p s p s

t p s
t

�

� �

���� ��

- Negative update: send a negative update with the fol-
lowing tuples: 

∆ = ∆t p s
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• Update on the secondary slot. This case is more difficult 
to handle, so we recall the definition of the antijoin oper-
ator from Section 3.2.3 for relations  p  and  s : 

� ≡ � ⊳ � = � ⧵
(
� ⋈ ��∩� (�)

)
,

- For positive updates, the result set can be expressed as: 

�′ ≡ � ⊳ (� ∪ Δ�)
= � ⧵

(
� ⋈ ��∩� (� ∪ Δ�)

)

Positive updates on the secondary indexer result in 
negative updates on the result set, so that  t' = t \ Δt , 
hence  Δt = t \ t' . 
For sets A, B ⊆ C , the following equality holds: 
(C  \ A)  \  (C  \ B) = B  \ A . Applying this with 
C = p  and using the distributive property of the natu-
ral join operator, the change set can be determined as: 

Δ� = � ⧵ �′ =

�
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞[
� ⧵

(
� ⋈ ��∩� (�)

)]
⧵

�′
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞[
� ⧵

(
� ⋈ ��∩� (� ∪ Δ�)

)]

=
(
� ⋈ ��∩� (� ∪ Δ�)

)
⧵
(
� ⋈ ��∩� (�)

)

= � ⋈ ��∩� (Δ�)

This implies that we send a negative update for each 
tuple in the primary indexer, which have a match in 
the incoming tuples. 

- For negative updates, the result set can be expressed as: 

�′ ≡ � ⊳ (� ⧵ Δ�)
= � ⧵

(
� ⋈ ��∩� (� ⧵ Δ�)

)
,

Negative updates may result in positive updates on the 
result set. Since  t' = t È Δt , we can define  Δt = t'  \ t : 

Δ� = �′ ⧵ � =

�′
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞[
� ⧵

(
� ⋈ ��∩� (� ⧵ Δ�)

)]
⧵

�
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞[
� ⧵

(
� ⋈ ��∩� (�)

)]

=
(
� ⋈ ��∩� (�)

)
⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟

�

⧵
(
� ⋈ ��∩� (� ⧵ Δ�)

)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

�

Although this change set may seem difficult to cal-
culate, we point out that both  x  and  y  can be main-
tained incrementally. Furthermore, they only grow 
linearly in the size of  p , as the join operator does not 
introduce new attributes, hence it can only reduce the 
number of elements in the relation.

4.5 Production Nodes
Production nodes are terminators that provide an interface 

for fetching results of a query (the match set) and also propa-
gate the changes introduced by the latest update message.2

Maintenance.  The change set is defined as: 

∆ ≡ ∆ ,
=

t r
i

n

i
1


where  Δr1 , Δr2 , … , Δrn   are the update messages triggered by 
the last change.

5 Rete Network Optimization
This section provides an overview of the query optimiza-

tion process and discusses optimization techniques for Rete 
networks.

5.1 Relational Query Optimization
5.1.1 Workflow

Figure 8 shows the generic workflow of relational query opti-
mization [10]. Users and developers typically formulate their 
query specification in a high-level declarative language (such 
as SQL for relational databases, SPARQL for semantic data-
bases [42] or Cypher for graph databases [34]). The query is 
interpreted by a query parser and compiled to a query plan, con-
sisting of input relations and relational algebraic operations. 

Modern database management systems use a sophisticated 
query optimizer module, which generates an efficient query 
plan for evaluating the query. The query engine uses the query 
plan for evaluating the query on the database. 

Fig. 8 Generic workflow of query optimization in databases.

2 In popular Rete implementations, client are usually subscribed to the 
production nodes and notified about the changes in the result set.
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5.1.2 Optimization Techniques
Cost-based optimization. Cost-based query optimizers typi-
cally use a cost function for estimating the resources required 
for executing the query (e.g. execution time, memory consump-
tion, number of disk operations). The goal of the optimization 
process is to minimize the cost function. Finding the best query 
plan for a certain query is a computationally expensive task. In 
particular, exhaustive search is often infeasible in practice. For 
example, due to the commutative and associative properties of 
the join operation, the join of  n  relations can be formalized 
as 2 1

1

n
n
−( )( )!
−( )!  different expressions [30], all of which produce the 

same results, but may vary largely in performance.

Heuristic optimization. Instead of implementing sophisticated 
cost estimation algorithms, optimizers often use simple heuris-
tics, e.g. they push selections closer to the leaves of the rela-
tional algebra tree and reorder joins using their associativity.

5.2 Optimization of Rete Networks
A relational algebraic query plan can be trivially transformed 

to a Rete network by instantiating the appropriate Rete nodes. 
Nullary operators are transformed to input nodes. Unary and 
binary operators are transformed to worker nodes. For fetching 
the results, a production node is inserted to the root of the tree. 

However, simply transforming a “well-optimized” query 
plan by itself does not guarantee that the Rete network have 
good performance. For Rete networks, one of the most import-
ant optimization goals is to minimize the query execution time. 
In general, optimization of Rete network layouts has three key 
subgoals: 

1. Reduce the size of the Rete network, i.e. the number of 
Rete nodes [37]. 

2. Reduce communication between Rete nodes [19], i.e. the 
amount of update messages required for evaluating (and 
reevaluating) the query. 

3. Reduce the number of tuples stored in Rete nodes, i.e. the 
total memory consumption of the Rete network.

These goals are interdependent: optimizing along one goal is 
often beneficial for other goals as well.

5.3 Optimization of the Train Benchmark Validation 
Queries

To investigate the effect of the layout of the query plan 
on query performance, we took the queries introduced in 
Section 2.2 and manually generated different query plans 
using heuristic optimization techniques: reordering join/
antijoin operators or pushing selection operators close to the 
leaves or root of the tree. We derived 3 different query plans 
for RouteSensor and 6 query plans for SemaphoreNeighbor. 
For each query plan, the corresponding Rete network layout is 
presented in Appendix A (Fig. 12–20). 

5.3.1 Optimization of Query RouteSensor
We designed three query plans for the RouteSensor query. 

Figures 12–14 show the layouts for these plans.

� ∶ ⇑(���∶ ��������������)
(�����∶ �����) [∶ �������] ⋈⇑(��∶ ������)

(���∶ ��������������) [∶ �����] ⋈

⇑(������∶ ������)
(��∶ ������) [∶ ���������
	]⊳ ⇑(������∶ ������)

(�����∶ �����) [∶ ��������]

� ∶ ⇑(��∶ ������)
(���∶ ��������������) [∶ �����] ⋈⇑(������∶ ������)

(��∶ ������) [∶ ���������
	] ⋈

⇑(���∶ ��������������)
(�����∶ �����) [∶ �������]⊳ ⇑(������∶ ������)

(�����∶ �����) [∶ ��������]

� ∶ ⇑(���∶ ��������������)
(�����∶ �����) [∶ �������] ⋈⇑(������∶ ������)

(��∶ ������) [∶ ���������
	]⊳

⇑(������∶ ������)
(�����∶ �����) [∶ ��������] ⋈⇑(��∶ ������)

(���∶ ��������������) [∶ �����]

Variants  A  and  B  only differ in the order of the join oper-
ations. However, variant  C  uses a join without common attri-
butes, which results in a Cartesian product operation.

5.3.2 Optimization of Query SemaphoreNeighbor
As the SemaphoreNeighbor query is more complex than 

RouteSensor, it allows more sophisticated optimization meth-
ods. We designed six query plans: 

• Variants  A–D use different orders for the join/antijoin 
operators. 

• Similarly to query RouteSensor, there are query plans 
requiring a Cartesian product: both  E  and  F  perform a 
join on relations without common attributes.

Figures 15–20 show the layouts for these plans. 

� ∶ �������≠������
(
⇑(���∶ ������������)
(���∶ ������������) [∶ ����������] ⋈

⇑(�������∶ ������)
(���∶ ������������) [∶ ����������] ⋈⇑(�������∶ ������)

(���∶ ������������) [∶ ����������] ⋈

⇑
(���������∶ ���������)
(������∶ 
�	��) [∶ ����] ⋈⇑(�������∶ ������)

(������∶ 
�	��) [∶ ���	����] ⋈

⇑(�������∶ ������)
(������∶ 
�	��) [∶ ���	����]

)
⊳ ⇑

(���������∶ ���������)
(������∶ 
�	��) [∶ ����]

� ∶ �������≠������
(
⇑(���∶ ������������)
(���∶ ������������) [∶ ����������] ⋈

⇑(�������∶ ������)
(���∶ ������������) [∶ ����������] ⋈⇑(�������∶ ������)

(������∶ 
�	��) [∶ ���	����] ⋈

⇑(�������∶ ������)
(���∶ ������������) [∶ ����������] ⋈⇑(�������∶ ������)

(������∶ 
�	��) [∶ ���	����]
)
⋈

⇑
(���������∶ ���������)
(������∶ 
�	��) [∶ ����]⊳ ⇑

(���������∶ ���������)
(������∶ 
�	��) [∶ ����]

� ∶ �������≠������
(
⇑(���∶ ������������)
(���∶ ������������) [∶ ����������] ⋈

⇑(�������∶ ������)
(���∶ ������������) [∶ ����������] ⋈⇑(�������∶ ������)

(���∶ ������������) [∶ ����������] ⋈

⇑(�������∶ ������)
(������∶ 
�	��) [∶ ���	����] ⋈⇑

(���������∶ ���������)
(������∶ 
�	��) [∶ ����] ⋈

⇑(�������∶ ������)
(������∶ 
�	��) [∶ ���	����]

)
⊳ ⇑

(���������∶ ���������)
(������∶ 
�	��) [∶ ����]

� ∶ �������≠������
(
⇑(���∶ ������������)
(���∶ ������������) [∶ ����������] ⋈

⇑
(���������∶ ���������)
(������∶ 
�	��) [∶ ����] ⋈⇑(�������∶ ������)

(������∶ 
�	��) [∶ ���	����] ⋈

⇑(�������∶ ������)
(���∶ ������������) [∶ ����������] ⋈⇑(�������∶ ������)

(���∶ ������������) [∶ ����������] ⋈

⇑(�������∶ ������)
(������∶ 
�	��) [∶ ���	����]

)
⊳ ⇑

(���������∶ ���������)
(������∶ 
�	��) [∶ ����]
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� ∶ �������≠������
(
⇑
(���������∶ ���������)
(������∶ �����) [∶ ����] ⋈⇑(�������∶ ������)

(������∶ �����) [∶ ��������]
)
⊳

⇑
(���������∶ ���������)
(������∶ �����) [∶ �����] ⋈⇑(�������∶ ������)

(������∶ �����) [∶ ��������] ⋈

⇑(�������∶ ������)
(���∶ ����
	�����) [∶ �����������] ⋈⇑(���∶ ����
	�����)

(���∶ ����
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(���∶ ����
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(
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(���∶ ����
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(���∶ ����
	�����) [∶ �����������] ⋈⇑(�������∶ ������)

(������∶ �����) [∶ ��������] ⋈

⇑(�������∶ ������)
(������∶ �����) [∶ ��������]

)
⋈⇑

(���������∶ ���������)
(������∶ �����) [∶ ����] ⋈
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(������∶ �����) [∶ �����]

6 Evaluation
We performed a series of measurements to assess the per-

formance of various Rete layouts for evaluating a query and a 
corresponding transformation.

6.1 Benchmark Setup
For the measurements, we used the open-source Train 

Benchmark [33] framework (which also provided the example 
in Section 2.1).

Goal. The goal of our experiments was to measure the execu-
tion time and scalablity of incremental query evaluation. This 
alignes with the goals originally defined in the Train Bench-
mark, but instead of comparing different tools, our goal is to 
compare the performance of different query plans.

Framework. The Train Benchmark provides an extensible 
framework to allow implementations of the benchmark for differ-
ent tools. The framework features end-to-end automation, includ-
ing building the source code, generating instance models, running 
benchmarks, and visualizing results. For the measurements in this 
paper, we implemented an extension in the framework that al-
lowed us to use different query plants for the same query. 

Methodology. The measurements were performed according 
to the workflow of the Repair scenario, shown in Fig. 9. In this 
scenario, the model is loaded and validated (Read and Check 
phases). Next, a subset of the model is transformed and reval-
idated (Repair and Recheck phases). This aims to simulate a 
workload similar to a user applying quick fixes to the model. 

During the benchmark, each measurement was exe-
cuted 10 times (k = 10) in a separate Java Virtual Machine 

(instantiated for each measurement), with 100 iterations for the 
Repair–Recheck phases (n = 100). Each measurement had to 
complete within a timeout limit of 15 minutes, else its process 
was terminated and its results were discarded.

Environment. The benchmark was performed on a virtual ma-
chine with an eight-core, 2.4 GHz Intel Xeon E5-2650L CPU 
with 16 GBs of RAM, and an SSD hard drive. The machine 
was running a 64-bit Ubuntu 16.04 server operating system and 
the Oracle JDK 1.8.0_111 with 12 GBs of heap memory. The 
Rete-based query engine is implemented in Scala 2.11.3

6.2 Results Analysis
Figure 10 and 11 show the results of the benchmarks. The 

x-axis shows the model size (number of triples), while the  
y-axis shows the time required for each phase. Both axes use 
logarithmic scale.

RouteSensor. Variants  A  and  B  provide similar performance. 
However, variant  C , which requires the computation of a Car-
tesian product, shows much worse scalability characteristics, 
only scaling for small models (up to 66k elements). Also, both 
the batch validation (Read and Check) and the incremental re-
validation (Transformation and Recheck) are slower for variant   
C  than for the other variants.

SemaphoreNeighbor. Variants   A–D  show similar perfor-
mance, despite some differences in their query plans. The per-
formance of variant  E  is significantly worse, while variant  
F  offers the worst performance among the query plans, only 
scaling for small models (with 15k elements).

Analysis. The results show that different incremental graph 
query plans that avoid Cartesian products do not show signifi-
cant differences in performance. A possible explanation for this 
is that for query plans avoiding Cartesian products, indexing 
the graph dominates the execution time. After the graph is in-
dexed, join and filtering operations can be calculated quickly 
(compared to indexing), even if their ordering is not optimal.

Read Repair RecheckCheck

Iteration: ×nRun: ×k
Model

Query
Benchmark results
{# of invalid elements,
execution times}execution timeexecution time # of invalid elements,

execution time
# of invalid elements,

execution time

Fig. 9 Phases of the Repair scenario.

3 The implementation is available as an open-source project at 
https://github.com/FTSRG/ingraph.

https://github.com/FTSRG/ingraph
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Fig. 10 Execution times for the RouteSensor query variants (A–C).
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6.3 Utilization of the Results
The results suggest that similarly to relational query optimi-

zation engines, graph query optimization engines should focus 
on avoiding Cartesian products in the query plan. In the future, 
we plan to implement a graph query optimizer utilizing design 
space exploration (DSE) techniques, e.g. the Viatra-DSE [1] 
engine, which will feature both heuristic optimization tech-
niques (e.g. pushing selection operators closer to leaf nodes) 
and cost-based query plans transformations.

7 Related Work
Graph query optimization techniques have been proposed 

for various algorithms and technological spaces. We discuss 
both non-incremental and incremental approaches.

7.1 Non-Incremental Approaches
Database technologies. Zhao et al. [43] proposed a sophisti-
cated query optimization method for graph queries. The op-
timization uses neighborhood and path analysis for speeding 
up the queries. Incremental queries were not considered in the 
paper, but were listed as future work. Krause et al. [16] defined 
an SQL-based query language for graph pattern matching. For 
evaluating graph queries, their approach uses SAP HANA, a 
relational database, including its optimization engine.

Model-driven technologies. The Fujaba [22] graph transfor-
mation tool performs local search starting from the vertex se-
lected by the system designer and extends the matching step-
by-step by neighbouring vertices and edges. Fujaba fixes a 
single, breadth-first traversal strategy at compile-time, using 
simple heuristics, e.g. that navigation along an edge with an 
at most one multiplicity constraint precedes navigations along 
edges with arbitrary multiplicity. PROGRES [29] uses a so-
phisticated cost model for basic operations and generates the 
search plan at compile-time by a greedy algorithm. 

The approach of G. Varró et al. [38] uses both metamodel- 
and instance model-level information to adaptively optimize 
graph queries based on statistical data collected from the cur-
rent instance model. GrGen.NET [11] provides a dynamic, run-
time optimization engine, which uses a mix of heuristical and 
cost-based techniques [11]. Recently, G. Varró et al. [39] pro-
posed a dynamic programming-based algorithm using model 
statistics for optimizing search plans for pattern matching on 
EMF models.

7.2 Incremental Approaches
Rete algorithm for graph queries. The Rete algorithm was 
originally created by Charles Forgy for rule-based expert sys-
tems [9]. Bunke et al. [6] were the first to propose the Rete 
algorithm in the context of graph transformations. 

Incremental algorithms. The TREAT algorithm aims at minimiz-
ing memory usage, while having the same algorithmic complex-
ity as Rete. It stores only the input facts (input relations) and the 
conflict sets, and does not store partial pattern matches. Another 
improvement of Rete is the LEAPS algorithm [31], which aims 
to provide better space-time complexity. Rete itself has many im-
proved versions (e.g. Rete II, Rete III, Rete-NT), however, unlike 
the original algorithm, these are not publicly available. Gator is a 
generalization the Rete and TREAT algorithms [5]. The authors 
of [12] optimized Gator networks using randomized state-space 
searching algorithms, which turned out to be superior to dynamic 
programming approaches in their use cases. 

Doorenbos [7] proposed runtime optimization techniques, 
including left and right unlinking which aim to minimize to 
communication in the network. G. Varró et al. [37] presented 
an algorithm for constructing Rete networks with the goal of 
minimizing the size of the Rete network, using dynamic pro-
gramming for identifying shared subpatterns. 

Bergmann et al. adapted and improved the Rete algo-
rithm for the Eclipse Modeling Framework (EMF) [2] in the 
EMF-IncQuery project [3], now called Viatra Query [36]. 
This approach provides Viatra Query Language (VQL), a 
high-level declarative language for specifying queries. The 
query engine generates the query plan from the query specifi-
cation using a greedy algorithm and utilizes subpattern reuse.

Rule engines. Drools [24], a business rule management system 
uses PHREAK, an enhanced version of the Rete algorithm, in-
cluding a lazy loading optimization technique, which is benefi-
cial for knowledge bases with a lot of rules/queries. Ishida [15] 
presented optimization techniques for Rete-based rule engines 
using a large number of rules. 

Semantic technologies. Rete-based query evaluation is used 
for processing Linked Data as well. INSTANS [25] uses this 
algorithm to perform complex event processing on streaming 
RDF [41]. Diamond [21] also uses a Rete network to evaluate 
SPARQL queries on RDF data sets. Also, Peters et al. [23] pro-
posed a Rete-based, parallel rule engine, which utilizes GPUs 
to parallelize transformations on RDF data.

Distributed graph queries. Some authors of this paper de-
signed and implemented a distributed Rete-based incremental 
graph query engine, IncQuery-D [31], which relies on the op-
timizer of EMF-IncQuery and is able to scale for large models.

8 Conclusion and Future Work
In this paper, we presented optimization methods for incre-

mental graph query plans, performed benchmarks and discussed 
the effect of optimization on the query execution time and scal-
ability. The results show that query plans that unnecessary cal-
culate Cartesian products slow down the evaluation by orders 
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of magnitude. However, query plans without unnecessarily 
Cartesian products provide acceptable evaluation times and 
quick reevaluation. Reordering join and filtering operations in 
such plans only results in minor differences in execution times. 

For future work, we plan to use multidimensional graph met-
rics [32] for optimizing query plans. Also, we plan to run per-
formance experiments with query and transformation mixes, 
i.e. multiple queries and transformations executed at once. 
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Appendix A
Rete Layouts

Figure 12–20 show possible Rete layouts for the RouteSensor 
and SemaphoreNeighbor queries. 

Input nodes are marked with dashed lines, while worker 
nodes are marked with solid lines. For due to the sake of con-
ciseness, production nodes were omitted in the figures. All 
Rete networks have a single production node as a parent of 
their depicted root node.
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Fig. 12 Rete layout  A  for pattern RouteSensor .
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Fig. 13 Rete layout  B  for pattern RouteSensor .
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Fig. 15 Rete layout  A  for pattern SemaphoreNeighbor .
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Fig. 17 Rete layout  C  for pattern SemaphoreNeighbor .
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Fig. 19 Rete layout  E  for pattern  SemaphoreNeighbor .
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Fig. 20 Rete layout  F  for pattern  SemaphoreNeighbor .
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