
175Evaluation of Optimization Strategies for Incremental Graph Queries 2017 61 2

Evaluation of Optimization Strategies
for Incremental Graph Queries

Gábor Szárnyas1,2*, János Maginecz1, Dániel Varró1,2

Received 20 July 2016; accepted after revision 27 November 2016

Abstract
The last decade brought considerable improvements in dis-
tributed storage and query technologies, known as NoSQL
systems. These systems provide quick evaluation of simple
retrieval operations and are able to answer certain complex
queries in a scalable way, albeit not instantly. Providing scal-
ability and quick response times at the same time for querying
large data sets is still a challenging task. Evaluating com-
plex graph queries is particularly difficult, as it requires lots
of join, antijoin and filtering operations. This paper presents
optimization techniques used in relational database systems
and applies them on graph queries. We evaluate various query
plans on multiple datasets and discuss the effect of different
optimization techniques.

Keywords
graph queries, relational algebra, query optimization

1 Introduction
The key components of Big Data are often defined as vari-

ety, velocity and volume [28] of data. Applications operating
on continuously changing graphs are a prime example: the
semi-structured graph-like nature introduces a high variety,
changes happen at high velocity, and datasets are often high-vol-
ume. Such applications include fraud detection in financial
transactions [27], validation of engineering models [3], and
static analysis of source code repositories [35]. These use cases
provide a set of complex queries that need to be evaluated con-
tinuously on each change of the underlying graph.

Traditional approaches need to reevaluate each query upon
each change, which often takes minutes on a large dataset. In
contrast, incremental query evaluation caches interim results,
hence it only requires reevaluation on a small fragment of
the dataset impacted by the change. This leads to significant
speedup for large and continuously changing data. Although
several approaches exist for incremental query evalua-
tion [9, 20] in the context of expert systems, incremental query
evaluation is not in widespread use in graph databases.

In order to predict query performance at runtime, relational
databases synthesize and evaluate different query plans which
impose a certain ordering on relational algebraic operations
prescribed by the query. Optimizing query plans is a challeng-
ing task, since a wide variety of query plans may exist even
for simple queries with different costs. Database engines use
heuristics-based optimization techniques and evaluate a cost
function for the different query plans [10].

Query plans have been adapted for graph query engines
using a local-search based query evaluation strategy where it is
called the search plan. Optimization techniques may exploit the
type and multiplicity information defined in the graph schema
(or metamodel) [29, 22] or rely upon runtime statistics of the
instance graph [11, 38, 39].

In case of incremental graph query engines, the structure and
the content of caches have the most significant impact on query
performance. Therefore, optimization is directed to reduce exe-
cution time and memory consumption imposed by a complex
network of caches [37].

1 Department of Measurement and Information Systems, Faculty of Electrical
Engineering and Informatics, Budapest University of Technology and
Economics, H-1117 Budapest, Magyar tudósok körútja 2., Hungary
2 MTA-BME Lendület Research Group on Cyber-Physical Systems, Hungary
* Corresponding author, e-mail: szarnyas@mit.bme.hu

61(2), pp. 175-192, 2017
https://doi.org/10.3311/PPee.9769

Creative Commons Attribution b

research article

PPPeriodica Polytechnica
Electrical Engineering
and Computer Science

https://doi.org/10.3311/PPee.9769

176 Period. Polytech. Elec. Eng. Comp. Sci. G. Szárnyas, J. Maginecz, D. Varró

In this paper, we use heuristic optimization techniques to
create different query plans for the incremental evaluation
of graph queries describing model validation constraints. We
investigate the execution time and scalability of the generated
query plans for incremental query evaluation workloads using
the open-source Train Benchmark project [33]. The results
show that using basic optimization techniques avoiding Carte-
sian products already results in efficient query plans that scale
for models with 9M+ elements, while applying further optimi-
zations (e.g. swapping the operands of join operators) did not
have a significant impact.

This paper is an extended version of [17], which evaluates
the effect of various optimization techniques on the perfor-
mance of incremental queries.

Structure of the paper. Section 2 presents the running ex-
ample, introduces model validation with graph patterns, and
demonstrates the usage of graph transformations on models.
Section 3 presents labeled graphs, their representation as rela-
tions, and the extended relational algebraic operators for pro-
cessing graphs. Section 4 summarizes the basics of relational
graph queries and presents Rete, a widely used incremental
graph query algorithm. Section 5 features a set of optimiza-
tion techniques and shows their application on Rete query net-
works. Section 6 presents and discusses the results of the per-
formance experiments. Section 7 lists the related optimization
approaches, while Section 8 summarizes the paper and out-
lines future research directions. Appendix A shows the query
plan layouts used for the evaluation.

2 Preliminaries
Model-Driven Engineering (MDE) is a widely used tech-

nique in many application domains such as automotive, avi-
onics or other cyber-physical systems [40]. MDE facilitates
the use of models in different phases of design and on vari-
ous levels of abstraction. These models enable the automated

synthesis of various design artifacts (such as source code, con-
figuration files, documentation) and help catch design flaws
early by model validation techniques.

In this section, we present the running example and the con-
cepts used in the paper.

2.1 Domain Models for Critical Systems: the Train
Benchmark

We use the Train Benchmark [33] as a running example to
present both the concepts used in the paper and also as a bench-
mark framework for evaluating our results. The benchmark
defines a domain model for railway networks—the railway
domain itself reflects that model validation scenarios are typi-
cal in design tools of critical systems.

The railway networks used in the benchmark are composed
of typical railroad items, including routes, semaphores, and
switches. An example model graph is shown in Fig. 1, while
the metamodel of the model graph is shown in Fig. 2.

Fig. 2 Metamodel of the railway graph.

Formally, structural models (such as this railway network)
are often represented as labeled graphs (or typed graphs),
where vertices and edges are annotated with labels (e.g. Sema-
phore, Route, entry, etc.). Labeled graphs are introduced in
Section 3.1.1.

Fig. 1 Example railway instance model as a labeled graph.

177Evaluation of Optimization Strategies for Incremental Graph Queries 2017 61 2

2.2 Model Validation with Graph Queries
Model validation highly depends on repeatedly checking

multiple design rules and well-formedness constraints captured
in the form of graph patterns [3, 4] over large (graph) mod-
els to highlight invalid model elements to systems engineers.
A graph pattern is a list of symbolic object parameters and
the constraints to be satisfied by the parameters. Constraints
include positive conditions, negative conditions, and filter con-
ditions. Positive conditions define the structure and labels of
the vertices and edges that must be satisfied, while negative
conditions define subpatterns which must not be satisfied, while
filter conditions express additional constraints (e.g. inequality
of vertices). These patterns can be formulated as graph queries
(or validation queries).

A pattern match maps each symbolic parameter to a model
object, where the mapping satisfies the conditions defined by
the constraints. Upon evaluating the validation query on a
model graph, the result is a match set that contains all matches
for a given pattern. An empty match set for a validation
query indicates that the model is well-formed w.r.t.a certain
well-formedness constraint, while the matches in a non-empty
match set mark the invalid elements that violate the corre-
sponding well-formedness constraint.

The Train Benchmark specifies a set of well-formedness
constraints for validating these networks. The benchmark also
defines a set of model transformations, including Repair trans-
formations, which define quick fix-like operations for automat-
ically correcting errors in the model. In total, the benchmark
defines six well-formedness constraints with their validation
queries and transformations. Here, we only elaborate the two
constraints used in the paper. The full set of constraints and
transformations of the Train Benchmark are described in [33].

2.2.1 The RouteSensor Constraint
Well-formedness constraint. The RouteSensor well-formed-
ness constraint requires that all Sensors that are associated with
a Switch that belongs to a Route must also be associated directly
with the same Route.

Validation query. The RouteSensor query (Fig. 3) looks for
Sensors (sensor) that are connected to a Route (route) through
a Switch (switch) and a SwitchPosition (swP), but the Sensor
and the Route are not connected with a requires edge.

Repair transformation. The missing requires edge is inserted
from the route vertex to the sensor vertex in the match (Fig. 4),
which fixes the violation of the constraint.

Example. In the example model (Fig. 1), Route 2 violates this
constraint, as it is connected to Sensor 5 through SwitchPo-
sition 14 and Switch 9, but the Sensor and the Route are not
directly associated. Hence, the validation query return these

invalid elements. Running the repair transformation fixes this
by inserting a requires edge from Route 2 to Sensor 5.

monitoredBy
requires target

follows

sw: Switch

swP: SwitchPositionroute: Route

sensor: Sensor

NEG

Fig. 3 The RouteSensor pattern.

requires
«new» target

follows

sw: Switch

swP: SwitchPositionroute: Route

sensor: Sensor

NEG
monitoredBy

Fig. 4 Repair transformation of the RouteSensor pattern.

2.2.2 The SemaphoreNeighbor Constraint
Well-formedness constraint. The SemaphoreNeighbor
well-formedness constraint requires Routes which are con-
nected through a pair of Sensors and a pair of TrackElements
to belong to the same semaphore.

Validation query. The SemaphoreNeighbor query (Fig. 5)
checks for Routes (route1) which have an exit Semaphore
(semaphore) and a Sensor (sensor1) connected to a TrackEle-
ment (te1). This TrackElement is connected to another Track-
Element (te2), which is connected to another Sensor (sensor2),
which belongs to another, different Route (route2), but the
Semaphore is not on the entry of this Route (route2).

connectsTo

requires

exit

monitoredBy monitoredBy

requires

entry

route1 ≠ route2

te1: TrackElement

sensor1: Sensor

route1: Route

semaphore: Semaphore

te2: TrackElement

sensor2: Sensor

route2: Route

NEG

Fig. 5 The SemaphoreNeighbor pattern.

Repair transformation. The route2 vertex is connected to the
semaphore vertex with an entry edge (Fig. 6), which fixes the
violation of the constraint.

Example. In the example model (Fig. 1), Routes 2 and 4 vio-
late this constraint, as they are connected (through Sensors 6, 7
and TrackElements 11, 12), but they do not belong to the same
Semaphore. Hence, the validation query returns these elements
as invalids. Running the repair transformation fixes this by in-
serting an entry edge from Route 4 to Semaphore 3.

178 Period. Polytech. Elec. Eng. Comp. Sci. G. Szárnyas, J. Maginecz, D. Varró

connectsTo

requires

exit

monitoredBy monitoredBy

requires

route1 ≠ route2

te1: TrackElement

sensor1: Sensor

route1: Route

te2: TrackElement

sensor2: Sensor

entry
«new» NEG
route2: Route

semaphore: Semaphore

Fig. 6 Repair transformation of the SemaphoreNeighbor pattern.

3 Relational Query Processing
In this paper, we use the notation of relational algebra for for-

malizing graph queries. Here, we present the mapping of graphs
to relations and present the operators used for defining patterns.

3.1 Relations and Relational Schemas
In relational database theory [10], a relation is a subset of

the Cartesian product of domains, containing a set of tuples.
Each tuple has the same set of attributes. The set of attribute
names for a given relation are called the relational schema.
Relations are denoted with small letters, while relational sche-
mas are denoted with capital letters, e.g. r is a relation with a
corresponding relational schema R .

Note on order of attributes. In the database literature, some
authors define a relational schema as a list of attributes [8],
while others define it as a set of attributes [10, 18]. In this paper,
we define the relational schema as a set of attributes, as this
choice allows us to formalize queries in a more succinct way.

3.1.1 Labeled Graphs
The notation presented here is based on [14] and [26] with

minor adaptations to simplify presentation.
A labeled graph is defined as G = (V, E, src_trg,

Lv , Le , lv , le), where V is a set of vertices, E is a set of directed
edges, src_trg : E → V × V assigns the source and target
vertices to edges.1 Both vertices and edges in the graph are
labeled (or typed):

• Lv is a set of vertex labels, lv : V → 2Lv assigns a set of
labels to each vertex.

• Le is a set of edge labels, le : E → Le assigns a single
label to each edge.

Property graphs are labeled graphs with attributes
(properties) on their vertices and edges. For the sake of brevity,

we do not discuss property graphs in this paper and refer the
interested reader to [14].

3.1.2 Representing Labeled Graphs as Relations
We map vertices and edges in the graph to tuples in rela-

tions. For each vertex label and edge label, we define a separate
relation. For the sake of simplicity, we presume that both verti-
ces and edges in the graph have a unique identifier.

Mapping vertices to tuples. Vertices can be trivially mapped
to relations of 1-tuples by introducing a relation for each label.
The vertices of the example graph in Fig. 1 constitute the fol-
lowing relations:

• Route(route) = {á2ñ, á4ñ}
• Segment(segment) = {á8ñ, á10ñ, á11ñ, á13ñ}
• Semaphore(semaphore) = {á1ñ, á3ñ}
• Sensor(sensor) = {á5ñ, á6ñ, á7ñ}
• Switch(switch) = {á9ñ, á12ñ}
• SwitchPosition(switchPosition) = {á14ñ, á15ñ}
• TrackElement(trackElement) = {á8ñ, á9ñ, á10ñ, á11ñ, á12ñ, á13ñ}

Mapping edges to tuples. Each edge is represented by a triple

ásource vertex, edge, target vertexñ.

The edges of the example graph in Fig. 1 constitute the fol-
lowing relations:

• connectsTo(trackElement1, connectsTo, trackElement2) =
{á8, m, 9ñ, á9, n, 10ñ, á10, o, 11ñ, á11, p, 12ñ, á12, q, 13ñ}

• entry(route, entry, semaphore) = {á2, a, 1ñ}
• exit(route, exit, semaphore) = {á2, b, 3ñ}
• follows(route, follows, switchPosition) = {á2, c, 14ñ, á4, e, 15ñ}
• requires(route, requires, sensor) = {á2, d, 6ñ, á4, f, 7ñ}
• monitoredBy(trackElement, monitoredBy, sensor) =

{á8, g, 5ñ, á9, h, 5ñ, á10, i, 6ñ, á11, j, 6ñ, á12, k, 7ñ, á13, l, 7ñ}
• target(switchPosition, target, switch) =

{á14, r, 9ñ, á15, s, 12ñ}

Note that in the representation above, attribute names of
tuples are only denoted in the relational schemas and not in the
tuples of the relation. Without the schema, we cannot deter-
mine the semantics of tuples, e.g. we cannot decide if the ele-
ments in á8, m, 9ñ and á4, f, 7ñ have the same labels. Hence,
we often specify the attribute names for each tuple:

• átrackElement1 : 8, connectsTo : m, trackElement2 : 9ñ,
• ároute : 4, requires : f, sensor : 7ñ.
Using this notation, the requires relation can be defined as:

requires = {ároute : 2, requires : d, sensor : 6ñ ároute : 4,
requires : f, sensor : 7ñ}.

3.2 Extended Relational Algebra
Relational algebra is a widespread formalism for defining

queries on the relational data model. Relational algebra has

1 While the terms nodes and vertices are often used as synonyms, we only
use the term vertices for the graph elements to avoid confusion with Rete nodes
(introduced in Section 4.1).

179Evaluation of Optimization Strategies for Incremental Graph Queries 2017 61 2

several extensions, including graph-specific ones [14]. For a
detailed discussion of relational algebra operators, the reader is
referred to database textbooks [8, 30, 10].

We list basic operators of relational algebra along with
graph-specific extensions. We present an example for each
operator using the example graph of Fig. 1.

3.2.1 Nullary Operators
Get-vertices. The get-vertices operator ○ …v t t: ∧ ∧()1 n

 returns a
relation of a single attribute ν , containing vertices that have all
labels of t1 , … , tn .

The relations for vertices in Section 3.1.2 can be simply
defined using the get-vertices operator. For example, the Route
relation can be expressed as:

Route = :() route Route

Get-edges. The get-edges operator ⇑ []()
()
src :
trg :

srcLabels
trgLabels e : edgeLabel

operator returns a relation of three attributes. Each row rep-
resents an edge and its vertices: the source vertex src (with
all labels of srcLabels), the edge e (with label edgeLabel) and
the target vertex trg (with all labels of trgLabels).

The relations listed in Section 3.1.2 can be simply defined
using the get-edges operator. For example the requires relation
can be expressed as:

requires =⇑ ::()
()
route
sensor requires

 :

Route
Sensor requiress[]

If the edge variable is not used elsewhere in the expres-
sion, we often omit its name and use the operator as
⇑ []()
()
src :
trg :

srcLabels
trgLabels edgeLabel : .

3.2.2 Unary Operators
Projection. The projection operator π reduces the dimen-
sion of the relation by only keeping a specific set of attributes:
t = πA1, … An

(r).
For example, the following expression returns the route ver-

tices from the requires relation.

π route route routerequires() = : , :{ }2 4

Selection. The selection operator σ filters the relation accord-
ing to some criteria: t = σθ (r) , where predicate θ is a propo-
sitional formula. The operator selects all tuples in r for which
θ holds.

For example, the following expression returns edges from
the requires relation, which start from route 2.

σ route route requires sensor= () = : , : , :{ }2
2 6requires d

3.2.3 Binary Operators
Cartesian Product. The × operator produces the Cartesian
product

t r s= × ,

where t holds all tuples that are a union of exactly one tuple
from r and exactly one tuple from s .

For example, the following expression produces the Carte-
sian product of the follows and requires relations:

follows × requires = {
⟨������ ∶ 2, ������� ∶ c, �������������� ∶ 14, ������ ∶ 2, �������� ∶ d, ������ ∶ 6⟩,
⟨������ ∶ 2, ������� ∶ c, �������������� ∶ 14, ������ ∶ 4, �������� ∶ f , ������ ∶ 7⟩,
⟨������ ∶ 4, ������� ∶ e, �������������� ∶ 15, ������ ∶ 2, �������� ∶ d, ������ ∶ 6⟩,
⟨������ ∶ 4, ������� ∶ e, �������������� ∶ 15, ������ ∶ 4, �������� ∶ f , ������ ∶ 7⟩

}

Natural Join. The result of the natural join operator ⋈ is
determined by creating the Cartesian product of the relations,
then filtering those tuples which are equal on the attributes that
share a common name. The combined tuples are projected:
from the attributes present in both of the two input relations,
we only keep a single one. Thus, the join operator is defined as:

� ⋈ � = ��∪�
(
��.��=�.�� ∧…∧ �.��=�.��) (� × �)

)
,

where R and S are the relational schemas of relations r and
s , respectively; {A1 , … , An} is the set of attributes that oc-
cur both in schemas R and S , i.e. R Ç S = {A1 , … , An} .
Note that if the set of common attributes is empty, the natural
join operator is equivalent to the Cartesian product of the rela-
tions. The join operator is both commutative and associative:
� ⋈ � = � ⋈ � and (� ⋈ �) ⋈ � = � ⋈ (� ⋈ �).

The join operator can connect vertices, edges and subgraphs
to each other. For example, subgraphs of three vertices and two
edges along the follows and requires edges can be queried as:

follows ⋈ requires = {
⟨����� ∶ 2, ������� ∶ c, �������������� ∶ 14, �������� ∶ d, ������ ∶ 6⟩,
⟨����� ∶ 4, ������� ∶ e, �������������� ∶ 15, �������� ∶ f , ������ ∶ 7⟩

}

Antijoin. The antijoin operator (also known as left
anti semijoin) collects the tuples from the left relation r
which have no matching pair in the right relation s :

� = � ⊳ � = � ⧵ �� (� ⋈ �) ,

where πR denotes a projection operator, which only keeps the
attributes of the schema over relation r . The definition can be
also formulated using the set of common attributes R Ç S :

� = � ⧵ �� (� ⋈ �) = � ⧵
(
� ⋈ ��∩� (�)

)

Unlike the natural join operator, the antijoin operator is not
commutative and not associative.

The antijoin operator can express negative conditions. For
example, the triples for follows edges that do not have an exit
edge on their route can be queried as:

follows ⊳ exit = {⟨����� ∶ 4, ������� ∶ e, �������������� ∶ 15⟩}

180 Period. Polytech. Elec. Eng. Comp. Sci. G. Szárnyas, J. Maginecz, D. Varró

Note on operator precedence. The join and antijoin operators
have the same precedence, i.e. if the order between join and
antijoin operations is not indicated, the query is processed from
left to right.

3.3 Graph Patterns in Relational Algebra
The graph patterns (such as the validation queries introduced

in Section 2.2) can be formalized using relational algebra: edges
of the pattern are selected with the get-edges operator, connec-
tions are enforced using the natural join operator, negative sub-
patterns are translated using antijoin, and filtering is captured by
the selection operator. Following this definition, we give rela-
tional algebra expressions for both validation queries.

3.3.1 Query RouteSensor
The RouteSensor query can be formalized as:

⇑(���∶ ��������������)
(�����∶ �����) [∶ �������] ⋈⇑(��∶ ������)

(���∶ ��������������) [∶ �����] ⋈

⇑(������∶ ������)
(��∶ ������) [∶ ���������
]⊳ ⇑(������∶ ������)

(�����∶ �����) [∶ ��������]

This query is of medium complexity, using 4 get-edges,
2 natural join and 1 antijoin operators.

3.3.2 Query SemaphoreNeighbor
The SemaphoreNeighbor query can be formalized as:

�������≠������
(
⇑(���∶ ������������)
(���∶ ������������) [∶ ����������] ⋈

⇑(�������∶ ������)
(���∶ ������������) [∶ ����������] ⋈⇑(�������∶ ������)

(���∶ ������������) [∶ ����������] ⋈

⇑
(���������∶ ���������)
(������∶
�	��) [∶ ����] ⋈⇑(�������∶ ������)

(������∶
�	��) [∶ ���	����] ⋈

⇑(�������∶ ������)
(������∶
�	��) [∶ ���	����]

)
⊳ ⇑

(���������∶ ���������)
(������∶
�	��) [∶ ����]

This query is significantly more complex, using 7 get-edges,
5 natural join, 1 antijoin and 1 selection operators.

4 Incremental Query Evaluation
In many use cases, queries are continuously evaluated, while

the data only changes rarely and to a small degree. The valida-
tion queries in MDE are a typical example of such a workload.
The goal of incremental query evaluation is to speed up such
queries, using the (partial) results obtained during the previous
executions of the query and only computing the effect of the
latest set of changes.

Incremental query evaluation algorithms typically use addi-
tional data structures for caching interim results. This implies
that they usually consume more memory than non-incremen-
tal, search-based algorithms. In other words, they trade mem-
ory consumption for execution speed. This approach, called
space–time tradeoff, is well-known and widely used in com-
puter science [13].

Numerous algorithms were proposed for incremental pat-
tern matching. Mostly, these algorithms originate from the field
of rule-based expert systems. In this paper, we use the Rete

algorithm [9], which creates a dataflow network for evaluating
relational queries.

4.1 Overview of Rete Networks
The Rete algorithm constructs a network of three types of

nodes. Following Fig. 7, from bottom to top:
1. Input nodes are responsible for indexing the graph, i.e.

they store the appropriate tuples for vertices and edges in
the graph. They are also responsible for sending change
sets as update messages to worker nodes that are sub-
scribed to them.

2. Worker nodes perform a relational algebraic operation
on their input and propagate the results to other worker
nodes or production nodes. Some worker nodes are state-
ful: they store partial query results in their memory to
allow incremental reevaluation. Worker nodes have two
types: unary nodes have a single input slot, binary nodes
have two input slots.

3. Production nodes are terminators that provide an inter-
face for fetching the results.

W
or

ke
r

no
de

s
P

ro
du

ct
io

n
no

de
s

In
pu

t
no

de
s

Worker node

Production node

Input node

Worker node

Input nodeInput node

Worker node

Production node Production node

Worker node

Fig. 7 The structure of the Rete propagation network.

The Rete network operates as follows. First, the network
computes the set of pattern matches in the graph. Then upon a
change in the graph, the network is incrementally maintained
by propagating update messages (also known as deltas, denoted
with the Δ character). Adding new graph matches to the result
set is expressed as positive update messages, while removing
matches results in negative update messages.

In the following, we discuss Rete nodes in detail. For unary
and binary nodes, we formulate the maintenance operations,
which are performed upon receiving an update message. For
these operations, we denote the output relation by t , the updated
output relation by t' , and the propagated update message on the
output by Δt . If the propagated update message is a positive
update, t' = t È Δt , if it is a negative update, t' = t \ Δt.

4.2 Input Nodes

Input nodes provide the relations for each label of the
graph. For example, the input node for the requires edge label
of example the graph (Fig. 1) returns tuples that are currently
in the requires relation: {á2, d, 6ñ, á4, f, 7ñ} . This input node is

181Evaluation of Optimization Strategies for Incremental Graph Queries 2017 61 2

also responsible for propagating changes to worker nodes in
the network:

• If a requires edge ‘t’ is inserted from vertex 2 to 5, the
input node sends a positive update message to its sub-
scriber nodes with the change set {á2, t, 5ñ} .

• If the edge ‘d’ between vertices 2 and 6 is deleted, the
input node sends a negative update to its subscriber nodes
with the change set {á2, d, 6ñ} .

The relations contained by input nodes can be defined with
nullary operators (Section 3.2.1): input nodes indexing vertices
implement the get-vertices operator, while input nodes index-
ing edges implement the get-edges operator.

4.3 Unary Nodes
Unary nodes have one input slot. They filter or transform

the tuples of the parent node according to certain criteria. In the
following, the relation representing the input tuples is denoted
with r , the relation representing the output tuples is denoted
with t , and the operator processing the input is denoted with α :

t r= ().α

Maintenance. In the following, we assume that the α operator
is distributive w.r.t. the union (È) and set minus (\) operators.
If a unary node receives an update Δr , it performs the operation
and computes the change set. For positive updates, the result
(t') and the change set (Δt) are:

′ ≡ ∪∆()
= ()∪ ∆()
= ∪ ∆()

∆

t r r

r r

t r
t

α

α α

α���

Similarly, for negative updates:

′ ≡ ∆()
= () ∆()
= ∆()

∆

t r r

r r

t r
t

α

α α

α

���

Unary nodes are often implemented as stateless nodes, i.e.
they do not store the results of the previous executions. Instead,
these results are cached in their subscribers, e.g. indexers of
binary nodes (Section 4.4) or production nodes (Section 4.5).

As their name suggests, unary nodes implement unary rela-
tional algebraic operators (Section 3.2.1):

• The projection node performs a projection operation on
the input relation.

• The selection node performs a selection operation on the
input relation.

As both the projection and the selection operators are distrib-
utive w.r.t. the union and set minus operators, their results can be
maintained by performing the operation for the change set Δr .

4.4 Binary Nodes
Binary nodes have two input slots: the primary (p) and the

secondary (s). Binary node implementations typically cache
both their input relations in indexers.

4.4.1 Natural Join Node
Maintenance. In the following, we define the maintenance op-
erations for natural join nodes. If a natural join node receives a
positive update Δp on its primary input slot, the result (t') and
the change set (Δt) are determined as follows:

�′ ≡ (� ∪ Δ�) ⋈ �
= (� ⋈ �) ∪ (Δ� ⋈ �)
= � ∪ (Δ� ⋈ �)

⏟⏞⏟⏞⏟
Δ�

If the node receives a positive update Δs on its secondary
input slot, the result (t') and the change set (Δt) are the
following:

�′ ≡ � ⋈ (� ∪ Δ�)
= (� ⋈ �) ∪ (� ⋈ Δ�)
= � ∪ (� ⋈ Δ�)

⏟⏞⏟⏞⏟
Δ�

For negative updates, the change set is the same, but it is
propagated as a negative update. The result is �′ = � ⧵ (Δ� ⋈ �)
and �′ = � ⧵ (� ⋈ Δ�), , for updates messages on the primary and
the secondary input slots, respectively.

4.4.2 Antijoin Node
Maintenance. As the antijoin operator is not commutative,
handling update messages requires us to distinguish between
the following cases:

• Update on the primary slot.
- Positive update: send a positive update for each in-

coming tuple for which there is no match on the sec-
ondary indexer.

′ ≡ ∪∆()
= ()∪ ∆()
= ∪ ∆()

∆

t p p s

p s p s

t p s
t

�

� �

���� ��

- Negative update: send a negative update with the fol-
lowing tuples:

∆ = ∆t p s

182 Period. Polytech. Elec. Eng. Comp. Sci. G. Szárnyas, J. Maginecz, D. Varró

• Update on the secondary slot. This case is more difficult
to handle, so we recall the definition of the antijoin oper-
ator from Section 3.2.3 for relations p and s :

� ≡ � ⊳ � = � ⧵
(
� ⋈ ��∩� (�)

)
,

- For positive updates, the result set can be expressed as:

�′ ≡ � ⊳ (� ∪ Δ�)
= � ⧵

(
� ⋈ ��∩� (� ∪ Δ�)

)

Positive updates on the secondary indexer result in
negative updates on the result set, so that t' = t \ Δt ,
hence Δt = t \ t' .
For sets A, B ⊆ C , the following equality holds:
(C \ A) \ (C \ B) = B \ A . Applying this with
C = p and using the distributive property of the natu-
ral join operator, the change set can be determined as:

Δ� = � ⧵ �′ =

�
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞[
� ⧵

(
� ⋈ ��∩� (�)

)]
⧵

�′
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞[
� ⧵

(
� ⋈ ��∩� (� ∪ Δ�)

)]

=
(
� ⋈ ��∩� (� ∪ Δ�)

)
⧵
(
� ⋈ ��∩� (�)

)

= � ⋈ ��∩� (Δ�)

This implies that we send a negative update for each
tuple in the primary indexer, which have a match in
the incoming tuples.

- For negative updates, the result set can be expressed as:

�′ ≡ � ⊳ (� ⧵ Δ�)
= � ⧵

(
� ⋈ ��∩� (� ⧵ Δ�)

)
,

Negative updates may result in positive updates on the
result set. Since t' = t È Δt , we can define Δt = t' \ t :

Δ� = �′ ⧵ � =

�′
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞[
� ⧵

(
� ⋈ ��∩� (� ⧵ Δ�)

)]
⧵

�
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞[
� ⧵

(
� ⋈ ��∩� (�)

)]

=
(
� ⋈ ��∩� (�)

)
⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟

�

⧵
(
� ⋈ ��∩� (� ⧵ Δ�)

)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

�

Although this change set may seem difficult to cal-
culate, we point out that both x and y can be main-
tained incrementally. Furthermore, they only grow
linearly in the size of p , as the join operator does not
introduce new attributes, hence it can only reduce the
number of elements in the relation.

4.5 Production Nodes
Production nodes are terminators that provide an interface

for fetching results of a query (the match set) and also propa-
gate the changes introduced by the latest update message.2

Maintenance. The change set is defined as:

∆ ≡ ∆ ,
=

t r
i

n

i
1

where Δr1 , Δr2 , … , Δrn are the update messages triggered by
the last change.

5 Rete Network Optimization
This section provides an overview of the query optimiza-

tion process and discusses optimization techniques for Rete
networks.

5.1 Relational Query Optimization
5.1.1 Workflow

Figure 8 shows the generic workflow of relational query opti-
mization [10]. Users and developers typically formulate their
query specification in a high-level declarative language (such
as SQL for relational databases, SPARQL for semantic data-
bases [42] or Cypher for graph databases [34]). The query is
interpreted by a query parser and compiled to a query plan, con-
sisting of input relations and relational algebraic operations.

Modern database management systems use a sophisticated
query optimizer module, which generates an efficient query
plan for evaluating the query. The query engine uses the query
plan for evaluating the query on the database.

Fig. 8 Generic workflow of query optimization in databases.

2 In popular Rete implementations, client are usually subscribed to the
production nodes and notified about the changes in the result set.

183Evaluation of Optimization Strategies for Incremental Graph Queries 2017 61 2

5.1.2 Optimization Techniques
Cost-based optimization. Cost-based query optimizers typi-
cally use a cost function for estimating the resources required
for executing the query (e.g. execution time, memory consump-
tion, number of disk operations). The goal of the optimization
process is to minimize the cost function. Finding the best query
plan for a certain query is a computationally expensive task. In
particular, exhaustive search is often infeasible in practice. For
example, due to the commutative and associative properties of
the join operation, the join of n relations can be formalized
as 2 1

1

n
n
−()()!
−()! different expressions [30], all of which produce the

same results, but may vary largely in performance.

Heuristic optimization. Instead of implementing sophisticated
cost estimation algorithms, optimizers often use simple heuris-
tics, e.g. they push selections closer to the leaves of the rela-
tional algebra tree and reorder joins using their associativity.

5.2 Optimization of Rete Networks
A relational algebraic query plan can be trivially transformed

to a Rete network by instantiating the appropriate Rete nodes.
Nullary operators are transformed to input nodes. Unary and
binary operators are transformed to worker nodes. For fetching
the results, a production node is inserted to the root of the tree.

However, simply transforming a “well-optimized” query
plan by itself does not guarantee that the Rete network have
good performance. For Rete networks, one of the most import-
ant optimization goals is to minimize the query execution time.
In general, optimization of Rete network layouts has three key
subgoals:

1. Reduce the size of the Rete network, i.e. the number of
Rete nodes [37].

2. Reduce communication between Rete nodes [19], i.e. the
amount of update messages required for evaluating (and
reevaluating) the query.

3. Reduce the number of tuples stored in Rete nodes, i.e. the
total memory consumption of the Rete network.

These goals are interdependent: optimizing along one goal is
often beneficial for other goals as well.

5.3 Optimization of the Train Benchmark Validation
Queries

To investigate the effect of the layout of the query plan
on query performance, we took the queries introduced in
Section 2.2 and manually generated different query plans
using heuristic optimization techniques: reordering join/
antijoin operators or pushing selection operators close to the
leaves or root of the tree. We derived 3 different query plans
for RouteSensor and 6 query plans for SemaphoreNeighbor.
For each query plan, the corresponding Rete network layout is
presented in Appendix A (Fig. 12–20).

5.3.1 Optimization of Query RouteSensor
We designed three query plans for the RouteSensor query.

Figures 12–14 show the layouts for these plans.

� ∶ ⇑(���∶ ��������������)
(�����∶ �����) [∶ �������] ⋈⇑(��∶ ������)

(���∶ ��������������) [∶ �����] ⋈

⇑(������∶ ������)
(��∶ ������) [∶ ���������
]⊳ ⇑(������∶ ������)

(�����∶ �����) [∶ ��������]

� ∶ ⇑(��∶ ������)
(���∶ ��������������) [∶ �����] ⋈⇑(������∶ ������)

(��∶ ������) [∶ ���������
] ⋈

⇑(���∶ ��������������)
(�����∶ �����) [∶ �������]⊳ ⇑(������∶ ������)

(�����∶ �����) [∶ ��������]

� ∶ ⇑(���∶ ��������������)
(�����∶ �����) [∶ �������] ⋈⇑(������∶ ������)

(��∶ ������) [∶ ���������
]⊳

⇑(������∶ ������)
(�����∶ �����) [∶ ��������] ⋈⇑(��∶ ������)

(���∶ ��������������) [∶ �����]

Variants A and B only differ in the order of the join oper-
ations. However, variant C uses a join without common attri-
butes, which results in a Cartesian product operation.

5.3.2 Optimization of Query SemaphoreNeighbor
As the SemaphoreNeighbor query is more complex than

RouteSensor, it allows more sophisticated optimization meth-
ods. We designed six query plans:

• Variants A–D use different orders for the join/antijoin
operators.

• Similarly to query RouteSensor, there are query plans
requiring a Cartesian product: both E and F perform a
join on relations without common attributes.

Figures 15–20 show the layouts for these plans.

� ∶ �������≠������
(
⇑(���∶ ������������)
(���∶ ������������) [∶ ����������] ⋈

⇑(�������∶ ������)
(���∶ ������������) [∶ ����������] ⋈⇑(�������∶ ������)

(���∶ ������������) [∶ ����������] ⋈

⇑
(���������∶ ���������)
(������∶
�	��) [∶ ����] ⋈⇑(�������∶ ������)

(������∶
�	��) [∶ ���	����] ⋈

⇑(�������∶ ������)
(������∶
�	��) [∶ ���	����]

)
⊳ ⇑

(���������∶ ���������)
(������∶
�	��) [∶ ����]

� ∶ �������≠������
(
⇑(���∶ ������������)
(���∶ ������������) [∶ ����������] ⋈

⇑(�������∶ ������)
(���∶ ������������) [∶ ����������] ⋈⇑(�������∶ ������)

(������∶
�	��) [∶ ���	����] ⋈

⇑(�������∶ ������)
(���∶ ������������) [∶ ����������] ⋈⇑(�������∶ ������)

(������∶
�	��) [∶ ���	����]
)
⋈

⇑
(���������∶ ���������)
(������∶
�	��) [∶ ����]⊳ ⇑

(���������∶ ���������)
(������∶
�	��) [∶ ����]

� ∶ �������≠������
(
⇑(���∶ ������������)
(���∶ ������������) [∶ ����������] ⋈

⇑(�������∶ ������)
(���∶ ������������) [∶ ����������] ⋈⇑(�������∶ ������)

(���∶ ������������) [∶ ����������] ⋈

⇑(�������∶ ������)
(������∶
�	��) [∶ ���	����] ⋈⇑

(���������∶ ���������)
(������∶
�	��) [∶ ����] ⋈

⇑(�������∶ ������)
(������∶
�	��) [∶ ���	����]

)
⊳ ⇑

(���������∶ ���������)
(������∶
�	��) [∶ ����]

� ∶ �������≠������
(
⇑(���∶ ������������)
(���∶ ������������) [∶ ����������] ⋈

⇑
(���������∶ ���������)
(������∶
�	��) [∶ ����] ⋈⇑(�������∶ ������)

(������∶
�	��) [∶ ���	����] ⋈

⇑(�������∶ ������)
(���∶ ������������) [∶ ����������] ⋈⇑(�������∶ ������)

(���∶ ������������) [∶ ����������] ⋈

⇑(�������∶ ������)
(������∶
�	��) [∶ ���	����]

)
⊳ ⇑

(���������∶ ���������)
(������∶
�	��) [∶ ����]

184 Period. Polytech. Elec. Eng. Comp. Sci. G. Szárnyas, J. Maginecz, D. Varró

� ∶ �������≠������
(
⇑
(���������∶ ���������)
(������∶ �����) [∶ ����] ⋈⇑(�������∶ ������)

(������∶ �����) [∶ ��������]
)
⊳

⇑
(���������∶ ���������)
(������∶ �����) [∶ �����] ⋈⇑(�������∶ ������)

(������∶ �����) [∶ ��������] ⋈

⇑(�������∶ ������)
(���∶ ����
	�����) [∶ �����������] ⋈⇑(���∶ ����
	�����)

(���∶ ����
	�����) [∶ ���������] ⋈

⇑(�������∶ ������)
(���∶ ����
	�����) [∶ �����������]

� ∶ �������≠������
(
⇑(�������∶ ������)
(���∶ ����
	�����) [∶ �����������] ⋈

⇑(�������∶ ������)
(���∶ ����
	�����) [∶ �����������] ⋈⇑(�������∶ ������)

(������∶ �����) [∶ ��������] ⋈

⇑(�������∶ ������)
(������∶ �����) [∶ ��������]

)
⋈⇑

(���������∶ ���������)
(������∶ �����) [∶ ����] ⋈

⇑(���∶ ����
	�����)
(���∶ ����
	�����) [∶ ���������]⊳ ⇑

(���������∶ ���������)
(������∶ �����) [∶ �����]

6 Evaluation
We performed a series of measurements to assess the per-

formance of various Rete layouts for evaluating a query and a
corresponding transformation.

6.1 Benchmark Setup
For the measurements, we used the open-source Train

Benchmark [33] framework (which also provided the example
in Section 2.1).

Goal. The goal of our experiments was to measure the execu-
tion time and scalablity of incremental query evaluation. This
alignes with the goals originally defined in the Train Bench-
mark, but instead of comparing different tools, our goal is to
compare the performance of different query plans.

Framework. The Train Benchmark provides an extensible
framework to allow implementations of the benchmark for differ-
ent tools. The framework features end-to-end automation, includ-
ing building the source code, generating instance models, running
benchmarks, and visualizing results. For the measurements in this
paper, we implemented an extension in the framework that al-
lowed us to use different query plants for the same query.

Methodology. The measurements were performed according
to the workflow of the Repair scenario, shown in Fig. 9. In this
scenario, the model is loaded and validated (Read and Check
phases). Next, a subset of the model is transformed and reval-
idated (Repair and Recheck phases). This aims to simulate a
workload similar to a user applying quick fixes to the model.

During the benchmark, each measurement was exe-
cuted 10 times (k = 10) in a separate Java Virtual Machine

(instantiated for each measurement), with 100 iterations for the
Repair–Recheck phases (n = 100). Each measurement had to
complete within a timeout limit of 15 minutes, else its process
was terminated and its results were discarded.

Environment. The benchmark was performed on a virtual ma-
chine with an eight-core, 2.4 GHz Intel Xeon E5-2650L CPU
with 16 GBs of RAM, and an SSD hard drive. The machine
was running a 64-bit Ubuntu 16.04 server operating system and
the Oracle JDK 1.8.0_111 with 12 GBs of heap memory. The
Rete-based query engine is implemented in Scala 2.11.3

6.2 Results Analysis
Figure 10 and 11 show the results of the benchmarks. The

x-axis shows the model size (number of triples), while the
y-axis shows the time required for each phase. Both axes use
logarithmic scale.

RouteSensor. Variants A and B provide similar performance.
However, variant C , which requires the computation of a Car-
tesian product, shows much worse scalability characteristics,
only scaling for small models (up to 66k elements). Also, both
the batch validation (Read and Check) and the incremental re-
validation (Transformation and Recheck) are slower for variant
C than for the other variants.

SemaphoreNeighbor. Variants A–D show similar perfor-
mance, despite some differences in their query plans. The per-
formance of variant E is significantly worse, while variant
F offers the worst performance among the query plans, only
scaling for small models (with 15k elements).

Analysis. The results show that different incremental graph
query plans that avoid Cartesian products do not show signifi-
cant differences in performance. A possible explanation for this
is that for query plans avoiding Cartesian products, indexing
the graph dominates the execution time. After the graph is in-
dexed, join and filtering operations can be calculated quickly
(compared to indexing), even if their ordering is not optimal.

Read Repair RecheckCheck

Iteration: ×nRun: ×k
Model

Query
Benchmark results
{# of invalid elements,
execution times}execution timeexecution time # of invalid elements,

execution time
of invalid elements,

execution time

Fig. 9 Phases of the Repair scenario.

3 The implementation is available as an open-source project at
https://github.com/FTSRG/ingraph.

https://github.com/FTSRG/ingraph

185Evaluation of Optimization Strategies for Incremental Graph Queries 2017 61 2

Read Check Read and Check

Transformation Recheck Transformation and Recheck

0.01
0.02
0.05

0.1
0.2
0.5

1
2
5

10
20
50

100
200
500

1000
2000
5000

10000
20000
50000

0.01
0.02
0.05

0.1
0.2
0.5

1
2
5

10
20
50

100
200
500

1000
2000
5000

10000
20000
50000

0.01
0.02
0.05

0.1
0.2
0.5

1
2
5

10
20
50

100
200
500

1000
2000
5000

10000
20000
50000

0.005
0.01
0.02

0.05
0.1
0.2

0.5
1
2

5
10
20

50
100

0.005
0.01
0.02

0.05
0.1
0.2

0.5
1
2

5
10
20

50
100

0.005
0.01
0.02

0.05
0.1
0.2

0.5
1
2

5
10
20

50
100

1
8k

2
15k

4
33k

8
66k

16
135k

32
271k

64
566k

128
1.1M

256
2.2M

512
4.6M

1024
9.3M

1
8k

2
15k

4
33k

8
66k

16
135k

32
271k

64
566k

128
1.1M

256
2.2M

512
4.6M

1024
9.3M

1
8k

2
15k

4
33k

8
66k

16
135k

32
271k

64
566k

128
1.1M

256
2.2M

512
4.6M

1024
9.3M

Model size
#Elements

Ex
ec

ut
io

n
tim

es
 [m

s]

A B C

RouteSensor

Fig. 10 Execution times for the RouteSensor query variants (A–C).

Read Check Read and Check

Transformation Recheck Transformation and Recheck

0.01
0.02
0.05

0.1
0.2
0.5

1
2
5

10
20
50

100
200
500

1000
2000
5000

10000
20000
50000

100000

0.01
0.02
0.05
0.1
0.2
0.5

1
2
5

10
20
50

100
200
500

1000
2000
5000

10000
20000
50000

100000

0.01
0.02
0.05
0.1
0.2
0.5

1
2
5

10
20
50

100
200
500

1000
2000
5000

10000
20000
50000

100000

0.005

0.01

0.02

0.05

0.1

0.2

0.5

1

2

5

0.005

0.01

0.02

0.05

0.1

0.2

0.5

1

2

5

0.005

0.01

0.02

0.05

0.1

0.2

0.5

1

2

5

1
8k

2
15k

4
33k

8
66k

16
135k

32
271k

64
566k

128
1.1M

256
2.2M

512
4.6M

1024
9.3M

1
8k

2
15k

4
33k

8
66k

16
135k

32
271k

64
566k

128
1.1M

256
2.2M

512
4.6M

1024
9.3M

1
8k

2
15k

4
33k

8
66k

16
135k

32
271k

64
566k

128
1.1M

256
2.2M

512
4.6M

1024
9.3M

Model size
#Elements

Ex
ec

ut
io

n
tim

es
 [m

s]

A B C D E F

SemaphoreNeighbor

Fig. 10 Execution times for the SemaphoreNeighbor query variants (A–F).

186 Period. Polytech. Elec. Eng. Comp. Sci. G. Szárnyas, J. Maginecz, D. Varró

6.3 Utilization of the Results
The results suggest that similarly to relational query optimi-

zation engines, graph query optimization engines should focus
on avoiding Cartesian products in the query plan. In the future,
we plan to implement a graph query optimizer utilizing design
space exploration (DSE) techniques, e.g. the Viatra-DSE [1]
engine, which will feature both heuristic optimization tech-
niques (e.g. pushing selection operators closer to leaf nodes)
and cost-based query plans transformations.

7 Related Work
Graph query optimization techniques have been proposed

for various algorithms and technological spaces. We discuss
both non-incremental and incremental approaches.

7.1 Non-Incremental Approaches
Database technologies. Zhao et al. [43] proposed a sophisti-
cated query optimization method for graph queries. The op-
timization uses neighborhood and path analysis for speeding
up the queries. Incremental queries were not considered in the
paper, but were listed as future work. Krause et al. [16] defined
an SQL-based query language for graph pattern matching. For
evaluating graph queries, their approach uses SAP HANA, a
relational database, including its optimization engine.

Model-driven technologies. The Fujaba [22] graph transfor-
mation tool performs local search starting from the vertex se-
lected by the system designer and extends the matching step-
by-step by neighbouring vertices and edges. Fujaba fixes a
single, breadth-first traversal strategy at compile-time, using
simple heuristics, e.g. that navigation along an edge with an
at most one multiplicity constraint precedes navigations along
edges with arbitrary multiplicity. PROGRES [29] uses a so-
phisticated cost model for basic operations and generates the
search plan at compile-time by a greedy algorithm.

The approach of G. Varró et al. [38] uses both metamodel-
and instance model-level information to adaptively optimize
graph queries based on statistical data collected from the cur-
rent instance model. GrGen.NET [11] provides a dynamic, run-
time optimization engine, which uses a mix of heuristical and
cost-based techniques [11]. Recently, G. Varró et al. [39] pro-
posed a dynamic programming-based algorithm using model
statistics for optimizing search plans for pattern matching on
EMF models.

7.2 Incremental Approaches
Rete algorithm for graph queries. The Rete algorithm was
originally created by Charles Forgy for rule-based expert sys-
tems [9]. Bunke et al. [6] were the first to propose the Rete
algorithm in the context of graph transformations.

Incremental algorithms. The TREAT algorithm aims at minimiz-
ing memory usage, while having the same algorithmic complex-
ity as Rete. It stores only the input facts (input relations) and the
conflict sets, and does not store partial pattern matches. Another
improvement of Rete is the LEAPS algorithm [31], which aims
to provide better space-time complexity. Rete itself has many im-
proved versions (e.g. Rete II, Rete III, Rete-NT), however, unlike
the original algorithm, these are not publicly available. Gator is a
generalization the Rete and TREAT algorithms [5]. The authors
of [12] optimized Gator networks using randomized state-space
searching algorithms, which turned out to be superior to dynamic
programming approaches in their use cases.

Doorenbos [7] proposed runtime optimization techniques,
including left and right unlinking which aim to minimize to
communication in the network. G. Varró et al. [37] presented
an algorithm for constructing Rete networks with the goal of
minimizing the size of the Rete network, using dynamic pro-
gramming for identifying shared subpatterns.

Bergmann et al. adapted and improved the Rete algo-
rithm for the Eclipse Modeling Framework (EMF) [2] in the
EMF-IncQuery project [3], now called Viatra Query [36].
This approach provides Viatra Query Language (VQL), a
high-level declarative language for specifying queries. The
query engine generates the query plan from the query specifi-
cation using a greedy algorithm and utilizes subpattern reuse.

Rule engines. Drools [24], a business rule management system
uses PHREAK, an enhanced version of the Rete algorithm, in-
cluding a lazy loading optimization technique, which is benefi-
cial for knowledge bases with a lot of rules/queries. Ishida [15]
presented optimization techniques for Rete-based rule engines
using a large number of rules.

Semantic technologies. Rete-based query evaluation is used
for processing Linked Data as well. INSTANS [25] uses this
algorithm to perform complex event processing on streaming
RDF [41]. Diamond [21] also uses a Rete network to evaluate
SPARQL queries on RDF data sets. Also, Peters et al. [23] pro-
posed a Rete-based, parallel rule engine, which utilizes GPUs
to parallelize transformations on RDF data.

Distributed graph queries. Some authors of this paper de-
signed and implemented a distributed Rete-based incremental
graph query engine, IncQuery-D [31], which relies on the op-
timizer of EMF-IncQuery and is able to scale for large models.

8 Conclusion and Future Work
In this paper, we presented optimization methods for incre-

mental graph query plans, performed benchmarks and discussed
the effect of optimization on the query execution time and scal-
ability. The results show that query plans that unnecessary cal-
culate Cartesian products slow down the evaluation by orders

187Evaluation of Optimization Strategies for Incremental Graph Queries 2017 61 2

of magnitude. However, query plans without unnecessarily
Cartesian products provide acceptable evaluation times and
quick reevaluation. Reordering join and filtering operations in
such plans only results in minor differences in execution times.

For future work, we plan to use multidimensional graph met-
rics [32] for optimizing query plans. Also, we plan to run per-
formance experiments with query and transformation mixes,
i.e. multiple queries and transformations executed at once.

Acknowledgements
This work was partially supported by the MONDO (EU

ICT-611125) project and the MTA-BME Lendület Research
Group on Cyber-Physical Systems.

We would like to thank Gábor Bergmann and István Ráth
for their suggestions. We are also thankful to József Marton for

his comments on the draft of this paper, and to DigitalOcean,
Inc. (http://digitalocean.com/) for generously providing cloud
virtual machines for executing the benchmarks.

Appendix A
Rete Layouts

Figure 12–20 show possible Rete layouts for the RouteSensor
and SemaphoreNeighbor queries.

Input nodes are marked with dashed lines, while worker
nodes are marked with solid lines. For due to the sake of con-
ciseness, production nodes were omitted in the figures. All
Rete networks have a single production node as a parent of
their depicted root node.

⊳
⟨�����, ���, ��, ������⟩

⋈
⟨�����, ���, ��, ������⟩

⋈
⟨�����, ���, ��⟩

⇑(���∶ ��������������)
(�����∶ �����)
[∶ �������]
⟨�����, ���⟩

⇑(��∶ ������)
(���∶ ��������������)

[∶ �����]
⟨���, ��⟩

⇑(������∶ ������)
(��∶ ������)

[∶ ���������
]
⟨��, ������⟩

⇑(������∶ ������)
(�����∶ �����)
[∶ ��������]

⟨�����, ������⟩

Fig. 12 Rete layout A for pattern RouteSensor .

⊳
⟨���, ��, ������, �����⟩

⋈
⟨���, ��, ������, �����⟩

⋈
⟨���, ��, ������⟩

⇑(��∶ ������)
(���∶ ��������������)

[∶ ������]
⟨���, ��⟩

⇑(������∶ ������)
(��∶ ������)

[∶ ����������]
⟨��, ������⟩

⇑(���∶ ��������������)
(�����∶ �����)
[∶
�		���]
⟨�����, ���⟩

⇑(������∶ ������)
(�����∶ �����)
[∶ ��������]

⟨�����, ������⟩

Fig. 13 Rete layout B for pattern RouteSensor .

http://digitalocean.com

188 Period. Polytech. Elec. Eng. Comp. Sci. G. Szárnyas, J. Maginecz, D. Varró

⋈
⟨�����, ���, ��, ������⟩

⊳
⟨�����, ���, ��, ������⟩

⋈
⟨�����, ���, ��, ������⟩

⇑(���∶ ��������������)
(�����∶ �����)
[∶ �������]
⟨�����, ���⟩

⇑(������∶ ������)
(��∶ ������)

[∶ ����������]
⟨��, ������⟩

⇑(������∶ ������)
(�����∶ �����)
[∶ ��
�����]

⟨�����, ������⟩

⇑(��∶ ������)
(���∶ ��������������)

[∶ �	����]
⟨���, ��⟩

Fig. 14 Rete layout C for pattern RouteSensor .

⊳
⟨���, ���, �������, �������, ������, ���������, ������⟩

�������≠������
⟨���, ���, �������, �������, ������, ���������, ������⟩

⋈
⟨���, ���, �������, �������, ������, ���������, ������⟩

⋈
⟨���, ���, �������, �������, ������, ���������⟩

⋈
⟨���, ���, �������, �������⟩

⋈
⟨���, ���, �������⟩

⇑(���∶ ������������)
(���∶ ������������)
[∶ ����������]

⟨���, ���⟩

⇑(�������∶ ������)
(���∶ ������������)
[∶ ����������]
⟨���, �������⟩

⇑(�������∶ ������)
(���∶ ������������)
[∶ ����������]
⟨���, �������⟩

⋈
⟨������, ���������, �������⟩

⇑
(���������∶ ���������)
(������∶
�	��)

[∶ ����]
⟨������, ���������⟩

⇑(�������∶ ������)
(������∶
�	��)
[∶ ���	����]

⟨������, �������⟩

⇑(�������∶ ������)
(������∶
�	��)
[∶ ���	����]

⟨������, �������⟩

⇑
(���������∶ ���������)
(������∶
�	��)

[∶ ����]
⟨������, ���������⟩

Fig. 15 Rete layout A for pattern SemaphoreNeighbor .

189Evaluation of Optimization Strategies for Incremental Graph Queries 2017 61 2

⊳
⟨���, ���, �������, ������, �������, ������, ���������⟩

⋈
⟨���, ���, �������, ������, �������, ������, ���������⟩

�������≠������
⟨���, ���, �������, ������, �������, ������⟩

⋈
⟨���, ���, �������, ������, �������, ������⟩

⋈
⟨���, ���, �������, ������⟩

⇑(���∶ ������������)
(���∶ ������������)
[∶ ����������]

⟨���, ���⟩

⋈
⟨���, �������, ������⟩

⇑(�������∶ ������)
(���∶ ������������)
[∶ ����������]
⟨���, �������⟩

⇑(�������∶ ������)
(������∶ �����)
[∶ ��
�����]

⟨������, �������⟩

⋈
⟨���, �������, ������⟩

⇑(�������∶ ������)
(���∶ ������������)
[∶ ����������]
⟨���, �������⟩

⇑(�������∶ ������)
(������∶ �����)
[∶ ��
�����]

⟨������, �������⟩

⇑
(���������∶ ����	����)
(������∶ �����)

[∶ ����]
⟨������, ���������⟩

⇑
(���������∶ ����	����)
(������∶ �����)

[∶ ����]
⟨������, ���������⟩

Fig. 16 Rete layout B for pattern SemaphoreNeighbor.

⊳
⟨���, ���, �������, �������, ������, ���������, ������⟩

�������≠������
⟨���, ���, �������, �������, ������, ���������, ������⟩

⋈
⟨���, ���, �������, �������, ������, ���������, ������⟩

⋈
⟨���, ���, �������, �������, ������, ���������⟩

⋈
⟨���, ���, �������, �������⟩

⋈
⟨���, ���, �������⟩

⇑(���∶ ������������)
(���∶ ������������)
[∶ ����������]

⟨���, ���⟩

⇑(�������∶ ������)
(���∶ ������������)
[∶ ����������]
⟨���, �������⟩

⇑(�������∶ ������)
(���∶ ������������)
[∶ ����������]
⟨���, �������⟩

⋈
⟨������, �������, ���������⟩

⇑(�������∶ ������)
(������∶ �����)
[∶ ��
�����]

⟨������, �������⟩

⇑
(���������∶ ����	����)
(������∶ �����)

[∶ ����]
⟨������, ���������⟩

⇑(�������∶ ������)
(������∶ �����)
[∶ ��
�����]

⟨������, �������⟩

⇑
(���������∶ ����	����)
(������∶ �����)

[∶ ����]
⟨������, ���������⟩

Fig. 17 Rete layout C for pattern SemaphoreNeighbor .

190 Period. Polytech. Elec. Eng. Comp. Sci. G. Szárnyas, J. Maginecz, D. Varró

⊳
⟨���, ���, ������, ���������, �������, �������, ������⟩

�������≠������
⟨���, ���, ������, ���������, �������, �������, ������⟩

⋈
⟨���, ���, ������, ���������, �������, �������, ������⟩

⋈
⟨���, ���, ������, ���������, �������, �������⟩

⋈
⟨���, ���, ������, ���������, �������⟩

⇑(���∶ ������������)
(���∶ ������������)
[∶ ����������]

⟨���, ���⟩

⋈
⟨������, ���������, �������, ���⟩

⋈
⟨������, ���������, �������⟩

⇑
(���������∶ ���������)
(������∶ ����)

[∶ ����]
⟨������, ���������⟩

⇑(�������∶ ������)
(������∶ ����)
[∶ ��
����]

⟨������, �������⟩

⇑(�������∶ ������)
(���∶ ������������)
[∶ ��������	��]
⟨���, �������⟩

⇑(�������∶ ������)
(���∶ ������������)
[∶ ��������	��]
⟨���, �������⟩

⇑(�������∶ ������)
(������∶ ����)
[∶ ��
����]

⟨������, �������⟩

⇑
(���������∶ ���������)
(������∶ ����)

[∶ �����]
⟨������, ���������⟩

Fig. 18 Rete layout D for pattern SemaphoreNeighbor .

⋈
⟨������, ���������, ������, �������, �������, ���, ���⟩

⋈
⟨������, ���������, ������, �������, �������, ���, ���⟩

⋈
⟨������, ���������, ������, �������, �������, ���⟩

⋈
⟨������, ���������, ������, �������, �������⟩

⊳
⟨������, ���������, ������, �������⟩

�������≠������
⟨������, ���������, ������, �������⟩

⋈
⟨������, ���������, ������, �������⟩

⇑
(���������∶ ���������)
(������∶ �����)

[∶ ����]
⟨������, ���������⟩

⇑(�������∶ ������)
(������∶ �����)
[∶ ��������]

⟨������, �������⟩

⇑
(���������∶ ���������)
(������∶ �����)

[∶ �����]
⟨������, ���������⟩

⇑(�������∶ ������)
(������∶ �����)
[∶ ��������]

⟨������, �������⟩

⇑(�������∶ ������)
(���∶ ����
	�����)
[∶ �����������]
⟨���, �������⟩

⇑(���∶ ����
	�����)
(���∶ ����
	�����)
[∶ ���������]

⟨���, ���⟩

⇑(�������∶ ������)
(���∶ ����
	�����)
[∶ �����������]
⟨���, �������⟩

Fig. 19 Rete layout E for pattern SemaphoreNeighbor .

191Evaluation of Optimization Strategies for Incremental Graph Queries 2017 61 2

⊳
⟨���, �������, ���, �������, ������, ������, ���������⟩

⋈
⟨���, �������, ���, �������, ������, ������, ���������⟩

⋈
⟨���, �������, ���, �������, ������, ������, ���������⟩

�������≠������
⟨���, �������, ���, �������, ������, ������⟩

⋈
⟨���, �������, ���, �������, ������, ������⟩

⋈
⟨���, �������, ���, �������, ������⟩

⋈
⟨���, �������, ���, �������⟩

⇑(�������∶ ������)
(���∶ ������������)
[∶ ����������]
⟨���, �������⟩

⇑(�������∶ ������)
(���∶ ������������)
[∶ ����������]
⟨���, �������⟩

⇑(�������∶ ������)
(������∶ �����)
[∶ ��
�����]

⟨������, �������⟩

⇑(�������∶ ������)
(������∶ �����)
[∶ ��
�����]

⟨������, �������⟩

⇑
(���������∶ ����	����)
(������∶ �����)

[∶ ����]
⟨������, ���������⟩

⇑(���∶ ������������)
(���∶ ������������)
[∶ ����������]

⟨���, ���⟩

⇑
(���������∶ ����	����)
(������∶ �����)

[∶ ����]
⟨������, ���������⟩

Fig. 20 Rete layout F for pattern SemaphoreNeighbor .

References
[1] Abdeen, H., Varró, D., Sahraoui, H. A., Nagy, A. S., Debreceni, C., He-

gedüs, Á., Horváth, Á. "Multi-objective optimization in rule-based de-
sign space exploration." In: Proceeding of ASE '14 Proceedings of the
29th ACM/IEEE international conference on Automated software engi-
neering, Vasteras, Sweden, Sept. 15-19, 2014, pp. 289-300.

 https://doi.org/10.1145/2642937.2643005
[2] Bergmann, G. "Incremental Model Queries in Model-Driven Design."

Ph.D. dissertation, Budapest University of Technology and Economics,
2013. URL: http://home.mit.bme.hu/~bergmann/download/phd-thesis-
bergmann.pdf.

[3] Bergmann, G., Horváth, Á., Ráth, I., Varró, D., Balogh, A., Balogh, Z.,
Ökrös, A. "Incremental evaluation of model queries over EMF models."
In: Petriu, D. C., Rouquette, N., Haugen, Ø. (eds.) Model Driven En-
gineering Languages and Systems. MODELS 2010. Lecture Notes in
Computer Science, Vol 6394. Springer, Berlin, Heidelberg

 https://doi.org/10.1007/978-3-642-16145-2_6
[4] Bergmann, G., Ujhelyi, Z., Ráth, I., Varró, D. "A Graph Query Language

for EMF models." In: Fourth International Conference on Theory and
Practice of Model Transformations, Vol. 6707, pp. 167–182, Springer,
2011. https://doi.org/10.1007/978-3-642-21732-6_12

[5] Beyhl, T., Blouin, D., Giese, H., Lambers, L. "On the operationalization
of graph queries with generalized discrimination networks." In: Echahed,
R., Minas, M. (eds.) Graph Transformation. ICGT 2016. Lecture Notes
in Computer Science, Vol 9761. Springer, pp. 170–186, 2016.

 https://doi.org/10.1007/978-3-319-40530-8_11
[6] Bunke, H., Glauser, T., Tran, T. "An efficient implementation of graph

grammars based on the RETE matching algorithm." In: Ehrig, H., Kre-
owski, HJ., Rozenberg, G. (eds.) Graph Grammars and Their Application
to Computer Science. Graph Grammars 1990. Lecture Notes in Com-
puter Science, Vol 532, Springer, Berlin, Heidelberg. 1991.

 https://doi.org/10.1007/BFb0017389

[7] Doorenbos, R. B. " Production matching for large learning systems."
PhD thesis, University of Southern California, 1995.

[8] Elmasri, R., Navathe, S. B. "Fundamentals of Database Systems." 3rd
Edition, Addison-Wesley-Longman, 2000.

[9] Forgy, C. "Rete: A fast algorithm for the many patterns/many objects
match problem." Artificial Intelligence. 19(1), pp. 17–37. 1982.

 https://doi.org/10.1016/0004-3702(82)90020-0
[10] Garcia-Molina, H., Ullman, J. D., Widom, J. "Database systems – The

complete book." 2nd Edition, Pearson Education, 2009.
[11] Geiß, R., Batz, G. V, Grund, D., Hack, S., Szalkowski, A. "GrGen: A Fast

SPO-Based Graph Rewriting Tool." In: Corradini A., Ehrig H., Montan-
ari, U., Ribeiro, L., Rozenberg, G. (eds.) Graph Transformations. ICGT
2006. Lecture Notes in Computer Science, Vol 4178, Springer, Berlin,
Heidelberg, 2006. https://doi.org/10.1007/11841883_27

[12] Hanson, E. N., Bodagala, S., Chadaga, U. "Trigger condition testing and
view maintenance using optimized discrimination networks" IEEE Trans-
actions on Knowledge and Data Engineering. 14(2), pp. 261–280. 2002.

 https://doi.org/10.1109/69.991716
[13] Hellman, M. E. "A cryptanalytic time-memory trade-off." IEEE Transac-

tions on Information Theory. 26(4), pp. 401–406. 1980.
 https://doi.org/10.1109/TIT.1980.1056220
[14] Hölsch, J., Grossniklaus, M. "An algebra and equivalences to transform

graph patterns in Neo4j." In: GraphQ workshop at EDBT/ICDT, 2016.
[15] Ishida, T. "An optimization algorithm for production systems." IEEE

Transactions on Knowledge and Data Engineering. 6(4), pp. 549–558.
1994. https://doi.org/10.1109/69.298172

[16] Krause, C., Johannsen, D., Deeb, R., Sattler, K., Knacker, D., Niadzel-
ka, A. "An SQL-Based Query Language and Engine for Graph Pattern
Matching." In: Echahed, R., Minas, M. (eds.) Graph Transformation.
ICGT 2016. Lecture Notes in Computer Science, Vol. 9761, Springer,
Cham, 2016. https://doi.org/10.1007/978-3-319-40530-8_10

https://doi.org/10.1145/2642937.2643005
http://home.mit.bme.hu/~bergmann/download/phd-thesis-bergmann.pdf
http://home.mit.bme.hu/~bergmann/download/phd-thesis-bergmann.pdf
https://doi.org/10.1007/978-3-642-16145-2_6
https://doi.org/10.1007/978-3-642-21732-6_12
https://doi.org/10.1007/978-3-319-40530-8_11
https://doi.org/10.1007/BFb0017389
https://doi.org/10.1016/0004-3702(82)90020-0
https://doi.org/10.1007/11841883_27
https://doi.org/10.1109/69.991716
https://doi.org/10.1109/TIT.1980.1056220
https://doi.org/10.1109/69.298172
https://doi.org/10.1007/978-3-319-40530-8_10

192 Period. Polytech. Elec. Eng. Comp. Sci. G. Szárnyas, J. Maginecz, D. Varró

[17] Maginecz, J., Szárnyas, G. "Sharded joins for scalable incremental graph
queries." In: 23rd PhD Mini-Symposium of the Department of Meas-
urement and Information Systems, Budapest University of Technology,
2016.

[18] Maier, D. "The Theory of Relational Databases." Computer Science Press.
1983. URL: http://web.cecs.pdx.edu/~maier/TheoryBook/TRD.html

[19] Makai, J., Szárnyas, G., Horváth, Á., Ráth, I., Varró, D. "Optimization
of incremental queries in the cloud." In: CloudMDE workshop at MOD-
ELS, 2015.

[20] Miranker, D. P., Lofaso, B. J. " The organization and performance of
a TREATbased production system compiler." IEEE Transactions on
Knowledge and Data Engineering. 3(1), pp. 3-10. 1991.

 https://doi.org/10.1109/69.75882
[21] Miranker, D. P., Depena, R. K., Jung, H., Sequeda, J. F., Reyna, C.

"Diamond: A SPARQL query engine, for linked data based on the Rete
match." AImWD, 2012.

[22] Nickel, U., Niere, J., Zündorf, A. "The FUJABA environment." In: ICSE
'00 Proceedings of the 22nd international conference on Software engi-
neering. Limerick, Ireland, June 04-11, 2000. pp. 742–745.

 https://doi.org/10.1145/337180.337620
[23] Peters, M., Brink, C., Sachweh, S., Zündorf, A. "Scaling parallel rule-

based reasoning." In: Presutti, V., d’Amato, C., Gandon, F., d’Aquin, M.,
Staab, S., Tordai, A. (eds.) The Semantic Web: Trends and Challenges.
ESWC 2014. Lecture Notes in Computer Science, Vol 8465, Springer.

 https://doi.org/10.1007/978-3-319-07443-6_19
[24] Red Hat. Drools. URL: https://www.drools.org/
[25] Rinne, M. "SPARQL update for complex event processing." In: Cudré-

Mauroux, P. et al. (eds) The Semantic Web – ISWC 2012. ISWC 2012.
Lecture Notes in Computer Science, Vol. 7650, Springer, Berlin, Hei-
delberg, 2012. https://doi.org/10.1007/978-3-642-35173-0_38

[26] Rodriguez, M. A., Neubauer, P. "The graph traversal pattern." In: Graph
Data Management. Techniques and Applications. IGI Global, pp. 29-46,
2011. https://doi.org/10.4018/978-1-61350-053-8.ch002

[27] Sadowski, G., Rathle, P. G. "Fraud detection: Discovering connections with
graph databases." Technical report, Neo Technology, White paper, 2014.

[28] Sagiroglu, S., Sinanc, D. "Big data: A review." In: 2013 International
Conference on Collaboration Technologies and Systems (CTS), San
Diego, CA, May 20-24, 2013, pp. 42-47.

 https://doi.org/10.1109/CTS.2013.6567202
[29] Schürr, A., Winter, A. J., Zündorf, A. "Handbook of graph grammars and

computing by graph transformation." World Scientific Publishing Co.,
Inc. 1999. https://doi.org/10.1142/9789812815149_0013

[30] Silberschatz, A., Korth, H. F., Sudarshan, S. "Database System Con-
cepts." McGraw-Hill Book Company. 2005.

[31] Szárnyas, G., Izsó, B., Ráth, I., Harmath, D., Bergmann, G., Varró, D.
"IncQuery-D: A distributed incremental model query framework in the
cloud." In: Dingel, J., Schulte, W., Ramos, I., Abrahão, S., Insfran, E.
(eds.) Model-Driven Engineering Languages and Systems. MODELS
2014. Lecture Notes in Computer Science, Vol. 8767, Springer, 2014.

 https://doi.org/10.1007/978-3-319-11653-2_40

[32] Szárnyas, G., Kővári, Z., Salánki, Á., Varró, D. " Towards the Charac-
terization of Realistic Models: Evaluation of Multidisciplinary Graph
Metrics." MODELS '16 Proceedings of the ACM/IEEE 19th Internation-
al Conference on Model Driven Engineering Languages and Systems,
Saint-Malo, France, Oct. 02-07, 2016, pp. 87-94.

 https://doi.org/ 10.1145/2976767.2976786
[33] Szárnyas, G., Izsó, B., Ráth, I., Varró, D. "The Train Benchmark: Cross-

technology performance evaluation of continuous model validation."
Software & Systems Modeling. 2017.

 https://doi.org/10.1007/s10270-016-0571-8
[34] Taylor, A., Jones, A. "Cypher query language." URL: http://www.slide-

share.net/graphdevroom/cypher-query-language, 2012.
[35] Ujhelyi, Z., Szőke, G., Horváth, Á., Csiszár, N. I., Vidács, L., Varró,

D., Ferenc, R. "Performance comparison of query-based techniques for
anti-pattern detection." Information and Software Technology. 65, pp.
147–165. 2015. https://doi.org/10.1016/j.infsof.2015.01.003

[36] Varró, D., Bergmann, G., Hegedüs, Á., Horváth, Á., Ráth, I., Ujhelyi,
Z. "Road to a reactive and incremental model transformation platform:
three generations of the VIATRA framework." Software & Systems Mod-
eling. 15(3), pp. 609–629. 2016.

 https://doi.org/10.1007/s10270-016-0530-4
[37] Varró, G., Deckwerth, F. "A Rete network construction algorithm for in-

cremental pattern matching." In: Duddy, K., Kappel, G. (eds.) Theory
and Practice of Model Transformations. ICMT 2013. Lecture Notes in
Computer Science, Vol. 7909, Springer, Berlin, Heidelberg, 2013.

 https://doi.org/10.1007/978-3-642-38883-5_13
[38] Varró, G., Friedl, K., Varró, D. "Adaptive graph pattern matching for

model transformations using model-sensitive search plans." Electronic
Notes in Theoretical Computer Science. 152, pp. 191–205. 2006.

 https://doi.org/10.1016/j.entcs.2005.10.025
[39] Varró, G., Deckwerth, F., Wieber, M., Schürr, A. "An algorithm for gen-

erating model-sensitive search plans for pattern matching on EMF mod-
els." Software & Systems Modeling. 14(2), pp. 597–621. 2015.

 https://doi.org/10.1007/s10270-013-0372-2
[40] Whittle, J., Hutchinson, J. E., Rouncefield, M. "The state of practice in

model-driven engineering." IEEE Software. 31(3), pp. 79–85. 2014.
 https://doi.org/10.1109/MS.2013.65
[41] World Wide Web Consortium. Resource Description Framework (RDF).

URL: http: //www.w3.org/standards/techs/rdf/.
[42] World Wide Web Consortium. SPARQL query language for RDF.

URL: http://www.w3.org/TR/rdf-sparql-query/.
[43] Zhao, P., Han, J. "On graph query optimization in large networks."

Proceedings of the VLDB Endowment. 3(1), pp. 340–351. 2010.

http://web.cecs.pdx.edu/~maier/TheoryBook/TRD.html
https://doi.org/10.1109/69.75882
https://doi.org/10.1145/337180.337620
https://doi.org/10.1007/978-3-319-07443-6_19
https://www.drools.org/
https://doi.org/10.1007/978-3-642-35173-0_38
https://doi.org/10.4018/978-1-61350-053-8.ch002
https://doi.org/10.1109/CTS.2013.6567202
https://doi.org/10.1142/9789812815149_0013
https://doi.org/10.1007/978-3-319-11653-2_40
https://doi.org/ 10.1145/2976767.2976786
https://doi.org/10.1007/s10270-016-0571-8
http://www.slideshare.net/graphdevroom/cypher-query-language
http://www.slideshare.net/graphdevroom/cypher-query-language
https://doi.org/10.1016/j.infsof.2015.01.003
https://doi.org/10.1007/s10270-016-0530-4
https://doi.org/10.1007/978-3-642-38883-5_13
https://doi.org/10.1016/j.entcs.2005.10.025
https://doi.org/10.1007/s10270-013-0372-2
https://doi.org/10.1109/MS.2013.65
http: //www.w3.org/standards/techs/rdf/
http://www.w3.org/TR/rdf-sparql-query/

	1 Introduction
	1.1 Structure of the paper

	2 Preliminaries
	2.1 Domain Models for Critical Systems: the Train Benchmark
	2.2 Model Validation with Graph Queries
	2.2.1 The RouteSensor Constraint
	2.2.2 The SemaphoreNeighbor Constraint

	3 Relational Query Processing
	3.1 Relations and Relational Schemas
	3.1.1 Labeled Graphs
	3.1.2 Representing Labeled Graphs as Relations

	3.2 Extended Relational Algebra
	3.2.1 Nullary Operators
	3.2.2 Unary Operators
	3.2.3 Binary Operators

	3.3 Graph Patterns in Relational Algebr
	3.3.1 Query RouteSensor
	3.3.2 Query SemaphoreNeighbor

	4 Incremental Query Evaluation
	4.1 Overview of Rete Networks
	4.2 Input Nodes
	4.3 Unary Nodes
	4.4 Binary Nodes
	4.4.1 Natural Join Node
	4.4.2 Antijoin Node

	4.5 Production Nodes

	5 Rete Network Optimization
	5.1 Relational Query Optimization
	5.1.1 Workflow
	5.1.2 Optimization Techniques

	5.2 Optimization of Rete Networks
	5.3 Optimization of the Train BenchmarkValidation Queries
	5.3.1 Optimization of Query RouteSensor
	5.3.2 Optimization of Query SemaphoreNeighbor

	6 Evaluation
	6.1 Benchmark Setup
	6.2 Results Analysis
	6.3 Utilization of the Results

	7 Related Work
	7.1 Non-Incremental Approaches
	7.2 Incremental Approaches

	8 Conclusion and Future Work
	Acknowledgements
	Appendix A Rete Layouts
	References

