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Abstract
Consider a linear network composed of 2-terminal devices. Its 
interconnection structure is described by a graph G. The volt-
ages or the currents of a subset of devices can independently 
be prescribed if and only if the subset of the corresponding 
edges in the graph G is circuit-free or cut set free, respectively.  
This classical result of Kirchhoff can be generalized for net-
works containing multiterminal devices as well: the indepen-
dence structure can be described by the circuits and cut sets 
of a more general abstract mathematical structure, a matroid 
M. However, these matroids will not always be graphic. Using 
some recent mathematical results for characterizing graphic 
structures among the matroids, here we give a physical char-
acterization of subclasses of those active networks where M 
happens to be graphic.
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1 Introduction
Electric network analysis was the first real application of 

graph theory, almost 170 years ago. The laws of Kirchhoff [1] 
related the voltages and the currents of the devices to the circuits 
and cut sets, respectively, of the graph of the interconnection.

These classical results can be applied if the network consists 
of 2-terminal devices only. Let us consider the interconnection 
of various linear multiports leading to a linear network. If the 
multiterminal devices are modelled by controlled sources then 
the interconnection can still be described by a graph but, due 
to the controls among the edges, the independence structure of 
the network will not always remain graphic. Since the network 
is linear, it can be described by a matrix and there is a math-
ematical tool, matroid theory, to describe the combinatorial 
properties of the independence structure of the columns of this 
matrix but these matroids will rarely be graphic (that is, the 
cycle matroids M(G) of some graph G).

The matroid operation union (also called sum) turned out 
to be the appropriate tool to describe the effect of control, as 
found independently by [2, 3] and [4]. However, the subset of 
graphic matroids is not closed with respect to union, in fact, the 
union of two graphic matroids is often outside the more general 
subset of binary matroids.

The fundamental results of [5] and [6] characterize those graphic 
matroids whose union is the free matroid (the cycle matroid of a 
tree). If the union of several copies of the same graphic matroid is 
considered then one can decide if this union is graphic [7] but the 
question is still open for general addends. A possible approach is 
to fix a graph G0 or its cycle matroid M0=M(G0) and study those 
graphs G where the union of M(G) and M0 is graphic. If M0 con-
sists of loops only or it contains bridges then the problem is trivial 
hence the first interesting question was if G0 consists of a circuit 
of length two (two parallel edges) and any number of loops. In 
the language of electric network analysis this corresponds to the 
linear active networks composed of 2-terminal passive devices 
plus a single current controlled current source. This case has been 
solved in [8] – mathematically it was a Kuratowski-type charac-
terization of G which had a physical interpretation as the lack of 
feedback, see Theorems A through D below.
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The results of [8] have recently been generalized for the 
case if G0 consists of either n series or n parallel edges in addi-
tion to the loops, see [9] for n =3 and [10] for any n. In the 
present paper we study the interpretation of the structure of G0 
in terms of controlled sources, and formulate the mathemati-
cal meaning of these recent results in the language of electric 
network analysis.

2 Former Results
Throughout, we use the notation of [11]. Suppose that a net-

work is composed of 2-terminal devices and current controlled 
current sources (CCCS). The graph of the network is defined 
in the usual way (each CCCS corresponds to a pair of edges), 
and we assign orientation to each edge arbitrarily. There are 
several equations among the currents of the devices, some of 
them are the Kirchhoff Current Laws, describing the topology 
of the network, some others describe the controls. In what fol-
lows, we shall refer to these sets of equations as the graphic 
and the algebraic sets of equations, respectively. For example, 
the graph of the network of Fig. 1a is shown in Fig. 1b, the set 
of the graphic equations consists of

i i i
i i i
1 2 3

3 4 5

0

0

+ + =
− − =

(and any linear combinations of them), while there is a single 
algebraic equation

i c i
5 2
= ⋅ .

Fig. 1 A network and the corresponding graph

Hence there are three linear equations referring to the five 
currents and these equations can be summarized by the coef-
ficient matrix

M
c

1

1 1 1 0 0

0 0 1 1 1

0 0 0 1

= − −
−

















In contrast, the network of Fig. 2 has a different kind of con-
trol, namely i5 = c · i3 , hence our matrix will be

M
c

2

1 1 1 0 0

0 0 1 1 1

0 0 0 1

= − −
−

















Fig. 2 A network, similar to that of Fig. 1 but with a different kind of control

If the five column vectors of the matrices are considered 
then in case of  M1 „any three out of the five vectors except 
{1, 3, 4} are linearly independent” while in case of  M2 „a set 
of three vectors are linearly independent if and only if the set 
does not contain both the first and the second vectors.” (In the 
first case we suppose c ≠ 0, c ≠ –1 and in the second case we 
suppose that c ≠ 0, c ≠ 1, see the remark on genericity at the end 
of the paper as well.)

In the second case the italicized sentence can be rephrased as 
follows: „a set of three vectors are linearly independent if and 
only if the corresponding three edges form a spanning tree in 
the graph of Figure 3.” On the other hand, no such reformula-
tion is possible in the first case – no one can draw a graph with 
four vertices and five edges so that {1, 3, 4} is a circuit and any 
other set of three edges forms a spanning tree.

Using the terminology of matroid theory we may conclude 
that the matroid describing the second network is graphic while 
that for the first one is non-graphic.

In both cases the first two rows of the matrices refer to the 
graphic set of equations and the last row refers to the algebraic 
one. This partition of the rows leads to a graphic and to an alge-
braic submatrix. One can easily see that a subset of columns 
of both graphic submatrices is linearly independent if an only 
if the corresponding edges form a circuit-free subgraph of the 
graph of Fig. 4. On the other hand, such a subset of columns of 
the algebraic submatrix of the first and the second network is 
linearly independent if and only if the corresponding edge set is 
circuit-free in the graphs of Fig. 5 and 6, respectively.

Fig. 3 A graph 
representing M2

Fig. 4 The graph representing 
the interconnection of both networks

Fig. 5 The independence structure 
of the control of Fig. 1

Fig. 6 The independence structure 
of the control of Fig. 2
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Needless to say, this last sentence is unnecessarily compli-
cated – for example, instead of saying that a subgraph is cir-
cuit-free in Fig. 5 one rather says that only the second or the 
fifth element is permitted but not both. However, we wanted to 
illustrate that the independence structures could, in this case, be 
illustrated by a graph as well.

The above examples illustrate the necessity of the condition 
in the following theorem:

Theorem A [8]: Let G0 consist of  a circuit of length two (two 
parallel edges a, b) and any number of loops. Let M0 denote 
the cycle matroid M(G0). Let G be an arbitrary graph on the 
same edge-set. Then the union of M(G) and M0 is graphic if 
and only if G does not contain any subgraph isomorphic to 
the graph of Fig. 7 or to its subdivision, with a and b in the 
indicated positions.

Fig. 7 The graph whose existence characterizes the presence of feedback

If a network is composed from 2-terminal devices and of a 
single CCCS (whose edges will play the role of a and b) then 
the existence of the subgraph of Fig. 7 or its subdivision (with 
a and b in the requested positions) means the presence of a 
feedback F, no matter what kind of subnetworks N1, N2  are 
interconnected, see Fig. 8. Hence the above theorem can be 
reformulated as follows:

Theorem B [8]: Suppose that a network is composed of 
2-terminal devices and of a single current controlled current 
source. The independence structure describing the currents of 
the devices is graphic if and only if there is no feedback in the 
network.

Fig. 8 Feedback in a general network

The graph G in Theorem A was arbitrary. In network theory 
applications we may always suppose that the underlying graph 
of the electric network is connected, in fact, even 2-connected 
if there is no control in the network. Moreover, if a subgraph is 

connected along two points to the rest of the graph and none of 
the edges of this subgraph is a controlling or a controlled ele-
ment then the whole subgraph can be replaced by a single edge. 
Using these replacements if applicable, we obtain the reduced 
graph of the network. For a more formal description of this 
matroid theoretical reduction see Section 2 of [10]. 

In view of this, feedback is formally defined as the pres-
ence of at least one circuit in the complement of {a, b} in the 
reduced network graph. Then one can reformulate Thorem A 
as follows:

Theorem C: Suppose that the reduced graph of the network 
is 2-connected and a, b are two non-serial edges. Then there 
is a subgraph isomorphic to Fig. 7 or its subdivision, with a 
and b in the specified positions, if and only if the complement 
of {a, b} in the reduced network graph contains at least one 
circuit.

In the next section we shall refer to the negative of this refor-
mulation:

Theorem D: Suppose that a network is composed of 2-termi-
nal devices and of a single current controlled current source 
involving the edges a, b. We may suppose without loss of gen-
erality that the reduced graph of the network is 2-connected and 
a, b are two non-serial edges. Then the independence structure 
describing the currents of the devices is graphic if and only if 
there is no feedback in the network, that is, if the complement 
of {a, b} in the reduced network graph is circuit-free.

In what follows we shall generalize Theorems B and D for 
more general types of control. Recall that in case of a CCCS 
the current of a single source is controlled by the current of a 
single resistor. We have found analogous results if only one of 
these restrictions remains.

3 New Results, Part One
3.1 Several Controlled Sources and a Single 
Controlling Element

Suppose that the current of a single resistor  R0  controls sev-
eral current sources  I1 , I2 , …, Ik  as described by the respective 
equations  ij =cj · i0  for every  j = 1, 2, …, k. We may suppose 
that the set [n] of the corresponding edges  e0, e1, e2 …, ek  does 
not contain any cut-set in the graph of the network, since other-
wise there were an additional equation  Σ±ij = 0  among some 
of these currents, which, together with the control equations 
ij = cj · i0 , would lead to a singular network.

Since there are k controls in the network, the above definition 
of the feedback is modified as the presence of at least one circuit 
in the complement of the set [n] in the reduced network graph.
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Theorem 1. Suppose that a network is composed of 2-terminal 
devices and the current of a resistor  R0  controls several current 
sources  I1, I2, …, Ik  as described by the respective equations 
ij = cj·i0  for every  j = 1, 2, …, k  (where the control constants 
c1, c2 …, ck  are generic parameters, that is, they are algebra-
ically independent over the field of the rational numbers). We 
may suppose without loss of generality that the above set [n] 
is cut set free. Then the independence structure describing the 
currents of the devices is graphic if and only if there is no feed-
back in the network, that is, if the complement of [n] in the 
reduced network graph is circuit-free.

Proof: The system of equations  ij = cj · i0  for every  j = 1, 2,..., k  
leads to an algebraic submatrix representing a matroid M1 which 
consists of loops and a single circuit of length  k + 1 . Let M2 
denote the matroid, represented by the graph of the interconnet-
ion. Proposition 14 of [10] states that the union of the reduced 
matroids M1’ and M2’ is graphic if and only if either [n] contains 
a cut-set or M2’ \ [n] is the free matroid. Since the former case 
is excluded, the reduced network graph without the edges in [n] 
must be circuit-free. □

3.2 Several Controlling Elements and a Single 
Controlled Source

Suppose that a single current source  I0  is controlled by the 
current of several resistors  R1 , R2 , …, Rk  as described by the 
equation  i0 = Σcj · ij   where the summation is for every  j = 
1, 2, ..., k . We may suppose without loss of generality that the 
network graph is either 2-connected or the set [n] of the corre-
sponding edges  e0 , e1 , e2 , …, ek  has at least one edge from each 
2-connected component.

Since there is a single control involving  k + 1  elements in 
the network, the above definition of the feedback is modified 
as the presence of at least one circuit in the complement of any 
two-element subset of the set [n] in the reduced network graph.

Theorem 2. Suppose that a single current source  I0  is con-
trolled by the current of several resistors  R1 , R2 , …, Rk  as 
described by the equation  i0 = Σcj · ij  where the summation 
is for every  j = 1 , 2 , …, k . Like in Theorem 1, we suppose 
that the control constants  c1 , c2 …, ck  are generic parameters, 
that is, they are algebraically independent over the field of the 
rational numbers. We may suppose without loss of generality 
that the network graph is either 2-connected or the set [n] of the 
corresponding edges  e0 , e1 , e2 …, ek  has at least one edge from 
each 2-connected component. Then the independence structure 
describing the currents of the devices is graphic if and only 
if there is no feedback in the network, that is, if the comple-
ment of the edge set {a, b} is circuit-free for any two non-serial 
edges a, b of [n] in the same 2-connected component of the 
reduced network graph.

Proof: The equation  i0 = Σcj · ij  leads to an algebraic submatrix 
representing a matroid  M1  which consists of loops and  k + 1 
parallel edges. Proposition 22 of [10] states that the union of 
the reduced matroids  M1’  and  M2’  is graphic if and only if no 
2-connected component of the reduced network graph  G  has 
two non-serial edges  a, b  so that  G – {a, b}  contains a circuit. 
This is clearly equivalent to the condition of Theorem 2. □

4 Examples and a Remark
Example 1. Consider the network of Fig. 9 where  i0 = c1 · i1 + 
c2 · i2 . The graph of the network is given in Fig. 10. The coeffi-
cient matrix for the system of equations for the currents of the 
elements will be

−

















1 c c
1 2

0 0 0

1 1 0 1 0 0

1 0 0 0 1 0

0 0 1 0 0 1

Fig. 9 The network of Example 1

Fig. 10 The graph of the network of Example 1

The matroid represented by the columns of this matrix has 
six elements and rank four. This matroid is non-graphic – if we 
contract elements 4 and 5 then the resulting minor is the rank 2 
uniform matroid on the set {0, 1, 2, 3} which is known not to be 
binary, let alone graphic. Based on Theorem 2 one could reach 
the same conclusion: The elements 0 and 1 are non-serial edges 
in the same 2-connected component of the graph of Fig. 10, still 
the complement of the set {0, 1} contains a circuit, namely {2, 5}.

Example 2. The network of Fig. 11 illustrates Theorem 1. Let 
the controls be  i1 = c1 · i0  and  i2 = c2 · i0 . The graph of the 
network is given in Fig. 12 and the coefficient matrix for the 
system of equations for the currents of the elements will be
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c
c
1

2

0 0 0 0 0

0 0 0 0 0

1 1 0 1 1 0 0

0 1 0 0 0 1

0 0 0 0 1 1

−
−

−
−























1

1

1

1

Fig. 11 The network of Example 2

Fig. 12 The graph of the network of Example 2

The corresponding matroid has seven elements and rank five. 
One can see that it is non-graphic – if we contract elements 0, 2 
and 6, the resulting minor is the rank 2 uniform matroid on the 
set of the remaining elements. Based on Theorem 1 one could 
reach the same conclusion: If we delete the edges of the set 
[n] = {0, 1, 2} from the graph of Fig. 12, the remaining graph 
contains a circuit, namely {3, 4, 5}.

Remark: Results applying matroid union for engineering ap-
plications frequently require a genericity-type condition like 
the one we had in Theorems 1 and 2 concerning the control 
constants c1 , c2 ..., ck . The basic reason of this has been dis-
covered by Edmonds [12] during his study about the relation 
between rank and term rank of the matrices. If such an assump-
tion is missing, the statement might be wrong. 

For example, suppose that  c1 = –1  in Example 1. Then 
the set {0, 1, 4} will become a circuit and the matroid will 
be graphic (a circuit formed by {0, 1, 4} and another formed 
by {1, 2, 3, 5}, sharing a common edge). Physically, it corre-
sponds to a singular network: The relation  c1 =  –1  leads to a 
control equation  i0 = –i1 + c2 · i2 ; hence the Kirchhoff equation 
i3 = – (i1 + i0)  would lead to a relation  i3 = c2 · i5  between two 
independent current sources. 
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