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Abstract

We study the combinatorial properties associated with an ear-

lier published, geometric algorithm capable of generating con-

vex bodies in any primary equilibrium class (i.e. bodies with

arbitrary numbers of equilibrium points) from a single ancestor.

Primary equilibrium classes contain several topological sec-

ondary classes based on the arrangement of the equilibrium

points. Here we show that the associated graph expansion al-

gorithm is incomplete in the sense that using the same ancestor,

not all secondary classes can be generated and we point out the

nontrivial set of ancestors necessary to generate all secondary

classes.
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1 Introduction

Our work is motivated by the classification system of convex,

homogeneous 3D bodies introduced by [20]. They map each

body into its primary equilibrium class defined by the numbers

of the stable and unstable equilibrium points of the body surface.

Moreover, the isomorphism classes of the topologies of the equi-

libria provides a refined, secondary classification system, where

such a topology can be genuinely represented by a 2-coloured

quadrangulation [7].

1.1 Generating multiquadrangulations

A quadrangulation of the sphere is a loopless graph embed-

ded in the sphere having every face bounded by a closed walk of

length 4. We allow parallel edges, and the boundary walk may

repeat edges or vertices. This definition was also used by [14],

however, [1] applied the word “pseudoquadrangulation” instead

for multigraphs. If we want to emphasize that the quadrangula-

tion may have parallel edges, it is called a multiquadrangulation,

if a quadrangulation has no parallel edges, it is called a simple

quadrangulation. Note that the 2-path P2 (the path of length 2

with two edges and three vertices) is the smallest quadrangula-

tion, and the 4-cycle C4 (the cycle of length 4) is the smallest

simple quadrangulation, illustrated on Fig. 5.

Two quadrangulations are considered isomorphic, if there is a

homeomorphism from one to another that either preserves or re-

verses the orientation of the embedding. Equivalently, the cyclic

ordering of the incident edges at each vertex is either preserved

or reversed, so e.g. a graph is isomorphic to its reflection. Such

an isomorphism class is also called an unsensed, unrooted map

in the literature [22]. Let Q denote the family of all multiquad-

rangulations, and Q1 the family of all simple quadrangulations.

We say a graph family F is generated from the starting set

K ⊂ F by some given graph operations, if each graph in F

can be constructed from some graph of K by applying a finite

series of the given graph operations. All our graph operations

are based on the vertex splitting, depicted on Fig. 1, explained

as follows.

The embedding (the cyclic ordering) of the graphs showed

is also important so the small open triangles denote that other
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Fig. 1. Vertex splitting of degree m.
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Fig. 2. The monotone vertex splittings S 1,2. The 2-splitting has two variants:

simple case and parallel case.

edges may occur only at that position so they clarify the cyclic

ordering of the edges in the original (left to the arrow) and in

the resulting (right to the arrow) graph. Vertex splitting is also

known in the literature as the inverse of face contraction.

[3, 18] showed that the splittings generate Q1 from C4. There

are a number of related results regarding inductive generation

of certain simple quadrangulation families, e.g. [3] gave induc-

tive definition of 3-connected quadrangulations, [16] generated

quadrangulations with minimum degree 3, [5] improved effi-

ciency for all these families above. While [3, 17, 18] mainly

focus on simple quadrangulations, the following observation is

a straightforward extension of their results: the splitting gener-

alized for parallel case as well (m = 1 on Fig. 1b.) generates Q

from P2.

As shown on Fig. 1, the splittings replace a vertex v with ver-

tices w and v′ dividing the edges of v. The degree of a splitting

is D := min{d(v′), d(w)} where d(v) denotes the degree of the

vertex v. Note that 1 ≤ D ≤ bd(v)/2c always holds. We con-

sider restricted splittings S i, j with a limited range of D such that

1 ≤ i ≤ D ≤ j ≤ bd/2c. [5] showed that the restricted split-

tings S 2,3 (with 2 ≤ D ≤ 3) are enough to generate Q1 from C4.

Their result can be easily extended for parallel graphs using the

generalized vertex splitting, so our previous observation can be

improved as follows:

Theorem 1. The restricted splittings S 1,3 generate Q from P2.

In this paper we investigate the hierarchy generated by re-

stricting the splittings S 1,2 (see Fig. 2), and we also show some

application of restrictions S 1,1, S 2,2 and S 3,3.

The main reason we focus on splittings S 1,2 is that these are

not only local modifications but they purely extend the graph

without removing any edge. Formally, we say a graph operation

is monotone if the original graph is the embedded subgraph of

the resulting one. Actually S 1,2 are the only monotone opera-

tions on quadrangulations introducing only one new vertex. The

local monotone operations are also called face subdivisions in

the literature meaning one face is divided into smaller regions

(e.g. [14, 19]). [19] called the order of a face subdivision the

number of the introduced vertices in the operation, although he

applied this concept on triangulations. So on quadrangulations

the monotone vertex splittings are exactly the face subdivisions

of order 1.

For the splitting S D,D with a given D, we use the short-

hand D-splitting, and we call its inverse D-contraction. If a

D-contraction is applicable to a graph, we say the graph is D-

contractible, otherwise we say the graph is D-irreducible. It is

known that among the simple quadrangulations, C4 is the only

graph which is D-irreducible for any D [3, 18]. It follows from

Theorem 1 that among the multiquadrangulations, only P2 is D-

irreducible for any D, hence P2 is also referred to as the only

ancestor of all quadrangulations. However, restricting the split-

tings to S 1,2 also admits other, nontrivial ancestors. Throughout

this paper we say a graph is an irreducible ancestor (or shortly

irreducible) if it is 1-irreducible and 2-irreducible. We mention

that the concept of irreducible graphs with respect to some given

graph operations was analogously used in e.g. [17, 18].

We characterise the irreducible graphs as the ones with min-

imum degree 3, and extend a result of [3] that the small graphs

with less than 8 vertices are not irreducible, except P2:

Theorem 2. Every quadrangulation with less than 8 vertices is

generated from P2 by monotone splittings.

We strengthen this theoretical result with observations on a

data set generated by our computer program which we devel-

oped to explicitly enumerate every possible quadrangulation for

a given size, based on the software plantri [6]. Further-

more, our data set also shows that there are only three irreducible

graphs up to a size of 10 vertices. Besides P2, the other ones are

the radial graphs (a.k.a. vertex-face incidence graphs [15]) of the

skeletons of the two smallest polyhedra. The radial graph R(G)

of an embedded graph G is a bipartite embedded graph such

that one of the independent vertex sets of R(G) corresponds to
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Fig. 3. Morse–Smale graph of the ellipsoid. The axes of the ellipsoid

are rotated for presentation purposes. Colouring notation: red: stable, blue:

unstable, white: saddle.

the vertex set of G, the other one to the face set of G. Two

vertices are connected in R(G) with the same multiplicity as the

incidence multiplicity of their preimages in G (i.e. the appear-

ance count of a vertex in the boundary walk of a face), with the

obvious cyclic orderings. In addition, we prove

Theorem 3. The radial graph of any polyhedral skeleton is ir-

reducible, and they are generated from the radial graphs of the

pyramids with polygonal base by the restricted splitting S 3,3.

Then we prove that the irreducible ancestor of any graph is

unique, i.e. a graph cannot be generated starting from two dif-

ferent irreducible graphs:

Theorem 4. If a quadrangulation can be generated from both

irreducible ancestors A1 and A2 by monotone splittings, then A1

is isomorphic to A2.

1.2 Generating secondary equilibrium classes

The main goal of this paper is twofold: one is to contribute

some observations on the reachability of quadrangulations i.e.

which quadrangulations can be generated from others, the other

is to apply them on the geometric interpretation mentioned ear-

lier. So finally, we translate our observations into the context of

topology of the equilibrium points of convex bodies. A generic

convex body is given by its scalar height function R(θ, ϕ) which

gives the distance between the surface and the mass center for

any direction. A surface point is an equilibrium if the gradient

of the height function R is zero at that point (illustrated on the

ellipsoid on Fig. 3). An equilibrium is stable if R takes a lo-

cal minimum value, unstable if R takes a local maximum value,

otherwise it is a saddle point. According to the Poincaré–Hopf

theorem [2], the cardinality of stable, unstable and saddle equi-

libria of a body, denoted respectively by s, u, h, are deeply re-

lated: s + u − h = 2, thus the pair {s, u} defines unambiguously

the primary equilibrium class of the body [20]. The primary

equilibrium classes can be refined into secondary equilibrium

classes which determine also the topology of the equilibria de-

fined by the Morse–Smale complex of the height function R [7].

This topology is usually given by a 3-coloured spherical quad-

rangulation, where the vertices are the equilibria, the colour of

a vertex defines its equilibrium type (stable, unstable or sad-

dle), and an edge is a particular path on the surface connecting

two equilibria, whose tangent vectors agree with the gradient

vectors of R (Fig. 3). We transform these 3-coloured surface

graphs with a bijection to generic 2-coloured quadrangulations

keeping the underlying geometric meaning, and we use this lat-

ter form to define the secondary class as a fully combinatorial

object. We mention that a spherical quadrangulation is always

bipartite [1, 12] hence the 2-colouring is possible.

The data set yielded by our program enables us to present

some statistics on the number of possible secondary classes as

well. Because of the 1-1 correspondence of 2-coloured quadran-

gulations and connected plane graphs [5,11], our numbers agree

with the numbers of the unrooted and unsensed maps calculated

by [24], and exhaustively enumerated by [21, 23]. [22] surveys

different types of map census results achieved both exhaustive

search and with formulae. We are also able to give statistics

on the number of multiquadrangulations using a trivial relation

between the number of maps, quadrangulations and self-dual

quadrangulations for a fixed size.

[20] constructed the geometry of a representative body of

the primary class {1, 1} referred as mono-monostatic body, also

known as Gömböc. They also concluded that every primary

class for all s, u ≥ 1 is generated from the Gömböc via their

specific geometric transformations called Columbus’ algorithm.

Columbus’ algorithm is a sequence of sensitive modifications on

a body perturbing the surface only at the vicinity of an equilib-

Generating quadrangulations by restricted vertex splittings 132012 56 1



S1

G

plane

U0

H1

(a) Cutting the surface with a plane near U0

S1 H1
U0

(b) Modified gradient field of −R

Fig. 4. Applying a step of Columbus’ algorithm on an egg-shaped surface.

Two equilibria appear on the surface: S 1,H1.

rium, such that the body belonging to the primary class {s, u} is

transformed to another one belonging to {s + 1, u} or {s, u + 1}

(illustrated on Fig. 4). Because of the geometric feasibility of

Columbus’ algorithm, i.e. the transformations always can be ap-

plied around any equilibrium, they referred to the Gömböc as

the ancestor of every primary class.

The combinatorial equivalent of the original Columbus’ al-

gorithm is the sequence of monotone coloured splittings. The

result of [20] can be reformulated as follows: for any s, u, some

secondary class in the primary class {s, u} is generated from the

Gömböc using the monotone coloured splittings. (We detail the

secondary class of Gömböc in Section 4.) We extend this state-

ment with the following corollaries of our theorems:

Corollary 1. Not every secondary class is generated from the

Gömböc using the monotone coloured splittings, but the ones

with s + u < 8 are all generated from the Gömböc.

We say a polyhedron is a minimal polyhedron if its every face

contains one stable and its every vertex is an unstable equilib-

rium. With respect to the monotone coloured splittings (and the

original Columbus’ algorithm), they are also ancestors:

Corollary 2. The secondary classes of the minimal polyhedra

are irreducible so not generated from any other secondary class.

Finally, if we aim to generate a secondary class from every

primary class, it is enough to use one of the two monotone

coloured splittings:

Corollary 3. It is enough to use either the coloured splitting S 1,1

or S 2,2 to generate every primary class from a finite starting set

of secondary classes.

We mention that the coloured splittings are also a restricted

subset of the operations called "cancellations" in computational

geometry by [10] and [4, Fig. 7.3], who used them to simplify

a multi-resolution mesh structure. Domokos, Lángi and Szabó

[7] showed recently that the geometric counterparts of the un-

restricted coloured splittings generate the whole family of sec-

ondary classes, however, this is beyond the scope of this paper.

1.3 Organization of this paper

The paper is organized as follows. Section 2 analyzes the

vertex splitting and establishes its properties on the reachability

of quadrangulations. Section 3 presents the hierarchy of irre-

ducible quadrangulations: the reachability of small graphs, the

polyhedral irreducible quadrangulations and the uniqueness of

ancestors. Section 4 interprets our results on the equilibrium

topologies of convex bodies. Finally we show some statistics on

our data set in Section 5.

2 The properties of vertex splitting

In order to generalize the splitting for parallel case (with the

notations illustrated on Fig. 1), let σ(v) denote the cyclic order-

ing of the vertex v in clock-wise order, so σ(v) =
(
e1, . . . , ed(v)

)
.

Let ni denote the other endpoint of the edge ei.

Definition 1. A vertex splitting on a quadrangulation G is a

graph operation transforming G to G′, specified by a walk

n1e1vemnm of G. The vertex v of G is replaced by vertices w

and v′ in G′ dividing the edges of v. The cyclic ordering of w is

σ(w) = (e′
1
, . . . , e′m), where e′

i
has the same other endpoint as ei

had; the cyclic ordering of v′ is σ(v′) = (e1, e
′′
m, em+1, . . . , ed(v)),

keeping some edges of the former vertex v, and e′′m = em if

m > 1, otherwise e′′m has the same other endpoint as e′m and

em had.

Note that if m > 1 and n1 is identical to nm then e1 and em are

distinct parallel edges. The new face introduced by the splitting

is bounded by the walk v′e1n1e′
1
we′mnme′′mv′. Observe that the de-

gree of the new vertices are d(w) = m and d(v′) = d(v) − m + 2.

In addition, the splitting specified by the walk n1e1vemnm cre-

ates the very same graph that the one specified by the walk

nmemve1n1. Hence the degree of a splitting, denoted by D, is in-

variant to reflection, and D := min{d(v′), d(w)} = min{m, d(v) −

m + 2}.

Let n denote the number of vertices of the quadrangulation.

There are exactly four quadrangulations such that n ≤ 4, shown

on Fig. 5, where C4 is generated from P2 with a 2-splitting,

and Q3,Q4 are generated from P2 with a 1-splitting. For larger

graphs, we have

Proposition 1. For a quadrangulation such that n > 4,

(i) if it has a vertex of degree 1, then it is 1-contractible even

for n = 4,

(ii) if it has a vertex of degree 2, then it is 2-contractible,

(iii) if its minimum degree is k, then it is k-contractible, and not

l-contractible for any l < k,

(iv) it is irreducible if and only if its minimum degree is 3.
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Fig. 5. The four smallest quadrangulations with n ≤ 4.
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Fig. 6. 3-splitting. The half edge at v denotes that there must be an edge

otherwise it would be a 2-splitting.

Proof. Part ( i) is a straightforward consequence of the quadran-

gulated faces.

For part ( ii), suppose a vertex w is incident to two edges

going to n1 and n2. If n1 and n2 are distinct vertices, then the

graph is 2-contractible as depicted on Fig. 2. If n1 = n2 and n1

was not incident to any other parallel edge, the graph would be

isomorphic to Q3 (see Fig. 5). If there are other parallel edges

incident to n1, then the graph is 2-contractible, the parallel case

is applicable (see Fig. 2).

Part ( iii) follows from the definition of the degree of splitting

and from the observation that a k-splitting introduces a vertex of

degree k.

Part ( iv) follows from ( i)-( iii) as the monotone splittings

introduce a vertex of degree 1 or 2.

Proposition 1 provides the necessary observations to prove

that the splittings S 1,3 generate Q.

Proof of Theorem 1. The statements follows from Proposition 1

and from the fact that the minimum degree of a multiquadran-

gulation is either 1, 2 or 3 by Euler’s formula.

It is clear that the 1-splitting and the 2-splitting are monotone,

and modify only one face of the graph in the vicinity of a point.

Hence the perturbation of the graph is minimal. Monotonicity is

also sufficient to characterize these splittings:

Proposition 2. Every plane graph operation defined on quad-

rangulations which adds one vertex and is monotone, is a re-

stricted splitting S 1,2.

Proof. Consider any operation satisfying the conditions, putting

the new vertex w into an original quadrilateral face bounded by

the walk x1x2x3x4x1, listing only the vertices of the walk. Note

that some of the vertices xi may coincide. By Euler’s formula,

we need to add two edges in addition to the new vertex, so con-

nect, without loss of generality, w and x1 with an edge. Then, we

have an “almost quadrangulation”: except for one face which is

bounded by the walk x1wx1x2x3x4x1 of length 6. This face can

be divided into two quadrilateral faces by adding one edge in

three ways: connecting x1 and x2 (the fourth and the seventh

elements of the walk sequence), or x1 and x4 (third and sixth

elements), or w and x3 (second and fifth) with an edge. The first

and the second case is applying a 1-splitting, the third case is

applying a 2-splitting.

3 Irreducible quadrangulations

As being irreducible for n > 3 is equivalent to having mini-

mum degree of 3, one can easily verify that e.g. the radial graph

of the skeleton of the tetrahedron is irreducible (see Fig. 7(a)).

According to Theorem 2, it is the smallest irreducible quadran-

gulation after P2. In preparation of proving it, we need to gen-

eralize slightly an earlier result:

Proposition 3 ([3]). Every simple 3-connected quadrangulation

has at least 8 vertices of degree 3.

The generalization of Batagelj’s proof for our need is straight-

forward as his statement still holds for multigraphs and instead

of 3-connectivity it is enough to assume the minimum degree is

3. The latter observation has already been made in [5]. Hence

we use the following statement:

Proposition 4. Every quadrangulation with minimum degree 3

has at least 8 vertices of degree 3.

Proof. The layout of this proof is similar to Batagelj’s proof, but

the conditions are relaxed. From Euler’s formula we have that

the sum of the degrees of a quadrangulation of size n := s + u is

4n − 8. If it has k vertices of degree 3 and n − k other vertices

of degree at least 4, then the sum of the degrees is also at least

3k + 4(n − k), implying k ≥ 8.

Proof of Theorem 2. By Proposition 1 and Proposition 4, we

have that the only irreducible ancestor such that n < 8 is P2.

So the theorem can be proved by induction.

The data set generated by our program has strengthened The-

orem 2, as we could count easily the irreducible ones for n ≤ 10

by Proposition 1. The statistics showed that there are exactly

three irreducible graphs among them: P2 and the radial graphs

of the two polyhedral skeletons shown on Fig. 7. Theorem 3

states that the radial graphs of polyhedral skeletons are all irre-

ducible. Moreover, it gives an inductive definition for them, as

they cannot be generated by monotone splittings.

Proof of Theorem 3. Any polyhedral skeleton is simple and 3-

connected by Steinitz’ theorem [15]. LetQ4 denote the family of

simple and 3-connected quadrangulations having no separating

4-cycles. It is known [5] that a graph is simple and 3-connected

if and only if its radial graph belongs to Q4, proving the first part

of the theorem.

It was also shown [5] that Q4 is generated by the restricted

splitting S 3,3 starting from the pseudo-double wheels. A pseudo-

double wheel is a cycle of even length, with its inner and outer

face subdivided by a vertex, such that the inner vertex is adjacent

Generating quadrangulations by restricted vertex splittings 152012 56 1



(a) Radial graph (left) and the skeleton (right) of the tetrahedron (b) Radial graph (left) and the skeleton (right) of the square pyramid

Fig. 7. Irreducible quadrangulations.

to the odd-numbered vertices of the cycle, the outer vertex is

adjacent to the even-numbered vertices of the cycle [6]. It is

easy to verify that a pseudo-double wheel of size n = 2k + 2 is

the radial graph of the skeleton of a pyramid with a k-sided base

which completes the proof.

Now we show that the irreducible ancestor of a quadrangu-

lation is unambiguously defined, so a quadrangulation cannot

be generated from different irreducible ancestors at the same

time. Consequently, for any two different irreducible quadran-

gulations A1 , A2 the families generated starting from {A1} and

from {A2} are disjoint, thus the set of irreducible quadrangula-

tions leads to a natural partition of Q.

Proof of Theorem 4. Without loss of generality, suppose A1 is

not isomorphic to P2 thus the minimum degree of A1 is 3. Let

G0,G1, . . . ,Gp be the series of graphs yielded by the genera-

tion process of G from A1 where G0 = A1 and Gp = G, and,

indexed in reverse order, Gp+q, . . . ,Gp+1,Gp the graphs yielded

by the generation process from A2 where Gp+q = A2, for some

p, q > 0. We will prove that the edges of G0 remain intact de-

spite applying any monotone vertex splitting or monotone face

contraction, i.e. G0 is the embedded subgraph of every Gk for all

0 ≤ k ≤ p + q, so A1 is the subgraph of A2, and vice versa.

We say an edge of a graph Gi is ancient if it is also in G0.

By induction, assume that G0 is the embedded subgraph of the

graphs G0, . . . ,Gk−1 for some k, which trivially holds for k = 1.

If Gk is created from Gk−1 by a monotone splitting, clearly no

edge is removed due to the definition of monotonicity. If Gk

is created from Gk−1 by a 2-contraction, then we use a basic

property of the 2-contraction that if it removes an edge, then

one endpoint of the edge is also removed and the degree of the

removed endpoint is 2. However, according to the induction

hypothesis, each ancient edge of Gk−1 has endpoints with degree

at least 3 thus no 2-contraction is applicable to Gk−1 to remove

an ancient edge.

The last case is where Gk is created from Gk−1 by a 1-

contraction, removing two edges: e′
1

and e′′
1

(see the definition of

vertex splitting and Fig. 1b.). Edge e′
1

cannot be ancient because

of having and endpoint of degree 1 as explained in the previous

case. If edge e′′
1

is ancient and e1 is not, then again no ancient

edge is removed as it is only a technicality if we actually remove

the edge e′′
1

or e1 because of the symmetry of the 1-contraction.

If both edges e′′
1

and e1 would be ancient and e′
1

would not be,

then, because of the induction hypothesis, there would be a face

in G0 bounded by the walk v′e1n1e′′
1

v′ contradicting the assump-

tion that G0 is a quadrangulation. Thus a 1-contraction cannot

remove an ancient edge either.

Consequently, as neither the splittings nor the contractions

alter the embedding of the rest of the graph, G0 remains the

embedded subgraph of Gk for all k.

4 Generating secondary equilibrium classes

In this section we interpret our results on generating sec-

ondary equilibrium classes as coloured surface graphs of convex

bodies. Some of these observations were already outlined in the

conference version of this paper [13].

The idea of representing a 3D body with some surface graph

appears in multiple disciplines. Most famous are the polyhedral

graphs that are the skeletons of the convex polyhedra, charac-

terized by Steinitz’s theorem [15]. Another related appearance

is the mesh generation of physical shapes in computational ge-

ometry, when some Morse–Smale complex of a body is drawn

as a surface graph, see e.g. [8]. However, the underlying func-

tion used for meshing is not necessarily the height function R,

thus the nodes of the mesh and the equilibrium points do not

necessarily coincide.

4.1 Geometric interpretation of quadrangulations and ver-

tex splittings

To determine the secondary class of a body, we need to in-

troduce some concepts from Morse theory [2, 10], illustrated on

Fig. 3. In generic case, we say a path on the surface is a hetero-

clinic orbit, if its tangent vectors agree with the gradient vectors

of the height function R, and its endpoints are two equilibria

of different type (see Fig. 3(b) and Fig. 3(f)). It is known the

heteroclinic orbits incident to a saddle point are isolated on the

surface, and there are only a finite number of them.

These isolated orbits divide the body surface into quadrilat-

eral cells (see Fig. 8(a)), and in each cell an infinite number

of non-isolated, heteroclinic orbits are going from the unstable

to the stable point which we disregard for now. In this way, the

body surface defines a vertex-coloured multigraph embedded on

the sphere, where the vertices are the equilibria, the edges are

the isolated heteroclinic orbits connecting saddle and non-saddle

vertices, the faces are the quadrilateral cells, and the colour of a

vertex gives its type of equilibrium.

This graph is referred as the Morse–Smale graph, which

means possessing three properties [2, 10]. (1) The graph is a

quadrangulation of the plane unless the body is in the primary
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(a) Morse–Smale graph (b) Triangulation (c) Quasi-dual

(isolated orbits)

Fig. 8. Determining the secondary class of the ellipsoid.

C0 C0

Fig. 9. Columbus’ algorithm: auxiliary coloured splitting C0 defined only

on the quasi-dual P1 of the Gömböc.

class of the Gömböc. (2) Every quadrilateral boundary walk is

a sequence of a saddle, a stable, a saddle and an unstable vertex.

(3) The degree of every saddle vertex is 4.

We perform two invertible transformations on the Morse–

Smale graph, to yield a more compact graph which is still a

genuine representation of the geometry. First, we connect the

stable and unstable points in each quadrangulated face, creating

a triangulation (see Fig. 8(b)). The geometric interpretation of

this operation could be that from each cell, we pick one orbit ar-

bitrarily from the infinite set of unstable-stable orbits. Then we

remove the saddle points and the edges incident to them, cre-

ating another quadrangulation leaving only the edges created in

the previous step (see Fig. 8(c)). This idea also appears in [8] as

the quasi-dual of the Morse–Smale complex, however, as their

goal is to simplify of the mesh structure, they do not mention

that it can be shown that these transformations are invertible, so

we lost no information by removing the saddles. We use the

resulting quasi-dual graph to define the secondary class of the

body, summarized in the following

Definition 2. A quasi-dual is a 2-coloured multiquadrangula-

tion, where the independent sets are called the stable and the

unstable equilibria, of size s and u, respectively, if s + u > 2. A

quasi-dual of a body is the quasi-dual obtained with the process

described above. For technicality, in case s + u = 2, we define

the quasi-dual of the Gömböc as the path P1 of length 1 (with

one edge) connecting a stable and an unstable equilibrium (see

Fig. 9). Obviously n = s + u. A secondary equilibrium class is

an isomorphism class of quasi-duals, where the isomorphism is

expected to preserve the colouring as well.

While the derivation process above requires the existence of

the gradient field of the height function, we would also like to

consider some reasonable body surfaces with no gradient, e.g. a

polyhedra. As the construction of the Morse–Smale complex is

already extended for some non-smooth functions as well [10],

we believe the definition of the quasi-dual and the secondary

class of a polyhedron could be understood by intuition and needs

no rigorous theoretical background.

If a quadrangulation admits multiple non-isomorphic colour-

ings, then its possible secondary classes form a partition of its

map. It is easy to verify that a quadrangulation admits either two

non-isomorphic colourings, i.e. switching the colours results in

another secondary class, or only one colouring. In the latter case

we call the secondary class a self-dual.

Assigning a quasi-dual to a convex body is a generalization of

assigning a radial graph to a polyhedral skeleton. Radial graphs

are all quadrangulations, and every quadrangulation is the radial

graph of some spherical surface graph [5,15]. Moreover, assign-

ing to a generic connected plane graph G its 2-coloured radial

graph R(G) and colouring the images of the vertices of G “unsta-

ble” in R(G), and the images of the faces of G “stable” defines a

bijection [11]. For a fixed s, u, the bijection is between the set of

secondary classes in the primary class {s, u} and the set of maps

of generic connected plane graphs with u vertices, s faces and

h = s + u − 2 edges. E.g. in the case of the minimal polyhedra,

the quasi-dual is actually the coloured radial graph of the skele-

ton, thus the Poincaré–Hopf theorem can be replaced by Euler’s

formula.

The steps of Columbus’ algorithm are defined and their geo-

metric feasibility were proved in [20], where feasibility means

they transform any convex body to another convex one. Observ-

ing the change of the quasi-dual of the underlying body, the steps

of Columbus’ algorithm are combinatorial operators on quasi-

duals we call the coloured splittings. A coloured splitting of a

quasi-dual consists of a vertex splitting of the underlying quad-

rangulation followed by the proper colouring of the introduced

vertex. We add that the coloured splittings corresponding to the

original steps of Columbus’ algorithm are all monotone. So each

coloured splitting corresponds to two dual versions of a splitting

of the quadrangulation: to one adding a new stable vertex, and

to one adding a new unstable vertex.

For technicality, we add an auxiliary coloured splitting C0 ap-

plicable only on the quasi-dual P1 of the Gömböc, which is not

literally a vertex splitting of a quadrangulation. Applying C0

either results in the quasi-dual in the class {1, 2}, or in the quasi-

dual in the class {2, 1}, see Fig. 9. So the definition of coloured

splitting is relaxed to allow C0 as well, considered a 1-splitting

(i.e. S 1,1).

4.2 Generating secondary classes by monotone coloured

splittings

While the monotone coloured splittings generate every pri-

mary class from P1, they do not generate every secondary class,

so they admit a nontrivial family of irreducible ancestors. We

say a secondary class is irreducible if it cannot be created with

a monotone coloured splitting. In other words its underlying

quadrangulation with n > 3 is irreducible, or n = 2. So the

secondary classes in {1, 2}, {2, 1} are not considered irreducible

(see Fig. 9), but P1 in {1, 1} is. By Proposition 1, we can charac-

terise the irreducible secondary classes for n > 3 as bodies with

a quasi-dual of minimum degree 3.
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Fig. 10. Hierarchy of secondary classes. Nota-

tion: I+: all secondary classes, G+: generated from

P1, F : small secondary classes s.t. s + u < 8, I:

irreducible ancestors, M: minimal polyhedra, M+:

generated from minimal polyhedra.

I+I+

G+FM+ M

I

Tab. 1. Cardinalities e(s, u) of the equilibrium

classes.

s = 1 s = 2 s = 3 s = 4 s = 5 s = 6 s = 7 s = 8 s = 9

u = 1 1 1 1 2 3 6 12 27 65

u = 2 1 2 5 13 35 104 315 1021

u = 3 1 5 20 83 340 1401 5809

u = 4 2 13 83 504 2843 15578

u = 5 3 35 340 2843 21420

u = 6 6 104 1401 15578

u = 7 12 315 5809

u = 8 27 1021

u = 9 65

The results of this subsection are outlined in Fig. 10 which we

reveal gradually. Let G denote the starting set consisting of the

secondary class of the Gömböc, i.e. G = {P1}, and G+ the family

generated from P1 by monotone coloured splittings. Through-

out this section, for any starting set of secondary classes X, let

X+ denote the family of secondary classes generated from X by

the monotone coloured splittings. So let I denote the family of

irreducible secondary classes, then I+ denotes the family of all

possible secondary classes.

The first part of Corollary 1 states that I contains secondary

classes besides P1, which clearly follows from the fact that there

is an infinite set of non-isomorphic irreducible quadrangula-

tions. For the second part, let F denote the family of secondary

classes in the primary classes {s, u} such that s + u < 8. The

second part states that F ⊂ G+, which follows from Theorem 2

with the help of the auxiliary splitting C0.

Note that G+ ∩ I contains only P1 by definition. Corollary 2

gives a geometric characterisation of a special family within I

called the minimal polyhedra. Recall that a polyhedron is a

minimal polyhedron if its every face contains one stable and its

every vertex is an unstable equilibrium, and let M denote the

family of their secondary classes. E.g. the Platonic solids or

a right prism are all minimal polyhedra, however, an oblique

prism may not be a minimal polyhedron: there may be a face

which does not contain a stable point. Corollary 2 states that

M ⊂ I (see Fig. 10). As there are only three irreducible sec-

ondary classes until s + u ≤ 10 according to our data set, we

can safely say that every secondary class such that s + u ≤ 10

are generated either from the Gömböc or from a minimal poly-

hedron, i.e. {S ∈ I+ : s + u ≤ 10} ⊂ G+ ∪M+.

Nevertheless, there are other irreducible secondary classes as

well, e.g. Fig. 11 shows a method to enumerate some of them

with parallel edges. Clearly a minimal polyhedron cannot have

parallel edges.

Finally, Theorem 4 states that the irreducible ancestor of a

secondary class is unique, because the quadrangulations of the

irreducible secondary classes and the irreducible quadrangula-

Fig. 11. Irreducible secondary class with parallel edges created by reflecting

a simple one.

tions coincide for n > 3. Consequently, e.g. G+ and M+ are

disjoint. Theorem 4 also results in an algorithm to determine the

irreducible ancestor of a body: we simply need to apply mono-

tone contractions iteratively to its quasi-dual, until we get the

irreducible ancestor. This algorithm is trivial because we can

choose the contractions arbitrarily: the resulting irreducible an-

cestor is unique hence is independent of the actual choices, as

any contraction sequence would result in the same ancestor.

4.3 Generating primary classes by restricted splittings

The restricted coloured splittings S 1,2 (i.e. the monotone

ones) can generate every primary class from the Gömböc [20],

but not every secondary class by Corollary 1. We consider fur-

ther restrictions in this subsection summarized by Corollary 3.

In detail, the coloured splitting S 1,1 generates every primary

class from P1, and the coloured splitting S 2,2 generates every

primary class from the starting set of the secondary classes of the

singleton primary classes {{1, 1}, {2, 1}, {3, 1}, {1, 2}, {1, 3}}. Note

that according to Table 1 in Section 5 these are the only single-

ton primary classes.

Proof of Corollary 3. First we consider restricting the mono-

tone coloured splittings to S 1,1. As 1-splitting is always ap-

plicable at any part of the graph if n > 2, any primary class

can be reached with coloured 1-splittings from {1, 2} or from

{2, 1}. So the primary classes are generated from the starting set

{{1, 1}, {1, 2}, {2, 1}}, and this set can be generated from P1 by

C0.

Now we consider restricting the monotone coloured splittings

to S 2,2. The quadrangulations of the classes {2, 1}, {3, 1}, {1, 2},

{1, 3} are 2-irreducible (see Fig. 5), so they has to be in the start-
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Tab. 2. The number of multiquadrangulations (q), self-dual secondary

classes (eSD) and secondary classes (
∑

e).

q(n) eSD(n)
∑

s e(s, n − s)

n = 3 1 - 2

n = 4 3 2 4

n = 5 7 - 14

n = 6 30 8 52

n = 7 124 - 248

n = 8 733 50 1416

n = 9 4586 - 9172

n = 10 33373 380 66366

Tab. 3. Ancestor secondary classes with respect to S 1,1 (third column), S 2,2

(second column), S 1,2 (fourth column) and non-ancestors (first column).

1-2-contractible 2-irreducible 1-irreducible irreducible

n = 4 0 3 1 0

n = 5 6 2 6 0

n = 6 32 4 16 0

n = 7 172 10 66 0

n = 8 1071 33 311 1

n = 9 7370 114 1688 0

n = 10 55766 474 10125 1

ing set. The 2-splitting is always applicable around a vertex v

with d(v) ≥ 2 introducing a vertex w of the same colour as v. It

is clear that if n > 3, both independent sets of a bipartite quad-

rangulation contains vertices of degree at least 2. As C4 in {2, 2}

is 2-contractible, the 2-splittings can be arbitrarily combined to

generate some secondary class in any primary class {s, u} such

that s + u > 4.

In the next section we show statistics on the number of 1-

irreducible and 2-irreducible secondary classes for a limited size

in Table 3.

5 Computational results

This section presents some statistics on the data set attained

by the computer program. As plantri supports dividing the

computation into independent parts, we could perform this com-

putation in parallel in a grid infrastructure using the Saleve

framework [9]. Some of the numbers have been already pre-

sented in [13].

Table 1 shows the cardinalities of the classes {s, u} with s +

u ≤ 10. The table is symmetric because a secondary class such

that s , u is clearly not self-dual. These numbers were already

published as the cardinalities of the unrooted and unsensed maps

by [21, 23, 24].

Table 2 shows the number of multiquadrangulations q(n),

which is the first publication of these numbers, up to our best

knowledge. To compute q(n) from the same program-generated

data set, observe a relation between the number of secondary

classes in the class {s, u}, the number of self-dual secondary

classes and the number of quadrangulations of size n = s + u

and, denoted respectively by e(s, u), eSD(s, u), q(n):

2q(n) − eSD (n/2, n/2) =

n−1∑
s=1

e(s, n − s). (1)

Table 3 shows the number of ancestor secondary classes with

respect to splittings with different restriction criteria: S 2,2, S 1,1

and S 1,2.
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