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Abstract
Tapered roller element bearings are generally applied in 
machines and transmission gearboxes. In manufacturing outer 
ring, inner ring and the rollers usually suffer damages. It is a 
challenging task to reveal and classify the defects. This paper 
presents an efficient method for fault classification by support 
vector machines. The faults on the bearing parts created by 
laser beam machine have similar shape and surface topog-
raphy as the grinding faults from the manufacturing process. 
Vibration signature is collected by sensitive transducer and 
high resolution data acquisition unit. A test-rig is constructed 
to model the circumstances of the operation of the built-in 
tapered roller bearings. Moreover, test-rig is planned with the 
aim to mitigate the harmful vibration components from the 
environment that influence the precision of the vibration mea-
surement. Feature extraction is executed by wavelet decompo-
sition. Decomposition level is determined by FFT considering 
the structural frequencies of the bearing elements. The proper 
wavelet is selected by the Energy-to-Shannon Entropy crite-
ria from Daubechies and Symlet wavelet families. The fault 
classification is done by R Cran software using support vector 
machine classifiers. Time domain parameters of the vibration 
signature such as kurtosis, skewness, crest factor and range are 
provided to the classifier. Classification rates are high enough 
to ensure the efficiency of the method in all cases in the study.
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1 Introduction 
It is a vital task to select the waste bearing parts from man-

ufacturing to ensure safety and high quality level. This paper 
introduces a method with machine learning for fault detection 
of tapered roller bearing combined with wavelet decomposition 
and maximum Energy-to-Shannon entropy method.

In the following we overview some important researches 
in the field of bearing diagnostics related to the area of this 
research. Wavelet transform is widely used in technical diag-
nosis to detect faults of machines and bearings. Support Vec-
tor Machine (SVM) offers efficient classification method for 
machine fault diagnosis and bearing fault diagnosis.

Paya et al. [1] applied artificial neural network for gears and 
bearings, defects on inner race of bearing and gear tooth irreg-
ularity were analyzed with Daubechies4 wavelets with 96% 
classification rate.

Nikolaou and Antoniadis [2] achieved experiments with rolling 
element bearings by Daubechies_12, mean and standard deviation 
of wavelet packet coefficients were used in their experiments.

Prabhakar et al. [3] investigated rolling element bearings, 
one scratch mark each on inner race and outer race with 
Daubechies_04 wavelet where RMS and kurtosis of the signal 
were the inputs for the machine learning system.

Saravanan et al. [4] measured gear tooth breakage, gear with 
crack at root with face wear by Morlet wavelet. Statistical fea-
tures standard deviation, variance, kurtosis, range were added 
to SVM to achieve bearing fault classification.

Rafiee et al. [5] used machine learning for defects classifi-
cation of ball, cage, outer race, and on gears with 324 mother 
wavelets from various wavelet families like Haar, Symlet, 
Daubechies, Morlet, Gaussian. Time domain parameters such 
as variance, kurtosis, skewness were fedded to artificial neural 
network. They recommended Daubechies_44 wavelets.

Kankar et al. [6-9] combined SVM fault classification 
with wavelet transform for fault detection of ball bearings in 
their researches.

Purushotham et al. [10] investigated the complex cepstrum 
of rolling element bearings with Daubechies wavelets and 
applied Hidden Markov Model classifiers.
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Applicability of SVM is proved in different fields of engi-
neering system analysis. Mankovits et al. [11] executed the opti-
mization of the shape of axi-symmetric rubber bumpers by sup-
port vector regression that shows the efficiency of the method in 
other engineering applications. Vámosi [12] solved a nonlinear 
classification problem of rubber elements with support vector 
classification. Manickam [13] applied soft computing methods, 
back propagation neural network for prediction of shell mould-
ing parameters that showed the efficiency of machine learning 
methods. Kalácska et al. [14] analyzed the sliding properties of 
steels on other materials in their research combined with classi-
fication. Deák et al. [15] investigated the defect size of tapered 
roller bearings with wavelet transform by entropy optimization.

The efficiency of SVM classification of tapered roller bear-
ings with manufacturing fault modelling has already not inves-
tigated according to the overview of literature.

2 Background of SVM for fault classification
Support Vector Machine is a classification and regression 

method which can be interpreted as a transformation to put 
the lower dimensional data to a higher dimension space. 
Support vector machine constructs a hyperplane or set of 
hyperplanes in a high or infinite-dimensional space, which can 
be used for classification or regression. The hyperplanes in the 
higher dimensional space are defined as the set of points whose 
dot product with a vector in that space is constant. SVM provides 
non-separable patterns to separated patterns. The xisting failure 
or incipient failure is getting more identifiable because failure 
diagnostics is in the higher dimensional space. More important 
features get higher score of weights, less important ones get 
smaller values or nearly zero.

For calculating the SVM we see that the goal is to correctly 
classify the data set   { x  1   , …,  x  n  }   by the following

if   y bi = + + ≥1 1; wxi

if   y bi = − + ≤1 1; wxi

where   y  i    are the labels of points. To define support vector ma-
chines and first linear classifiers, a data point is viewed as a  p 
-dimensional vector and the purpose is to decide whether data 
set can be separated by a   (p − 1)   dimensional hyperplane with 
positive margin. This is called a linear classifier. Best hyper-
plane should be chosen that represents the largest margin be-
tween the two classes. Maximum margin is

arg min .
w

bwx
w
+
2

In this case the distance from the hyperplanes to the nearest 
data point on each side is maximized. If such a hyperplane 
exists, it is known as the maximum-margin hyperplane and 
the linear classifier it defines is known as a maximum margin 
classifier.

Support Vector machines uses hypthetic space of a linear 
functions in a high dimensional feature space. SVM can be 
trained with a learning algorithm from optimization theory.

The hyperplane can be expressed with the use of the support 
vectors as:

wx + = ∈ ∈b w bN
0, , 

where the vector  w  defines the boundary,  x  is the input vec-
tor of dimension  N  and  b  is a scalar threshold. At the margins, 
where the SVs are located, the equations for classes  A  and  B , 
respectively, are

wx wx+ = + = −b b1 1  and  .

Good separation is achieved by the hyperplane that has the 
largest distance to the nearest training data point of any class, 
the functional margin. The SVM decision function is an applica-
tion of the kernel function and Lagrangian optimization method 
is used to obtain the optimal decision function from the training 
data [16]. SVM is generally suitable for two-class tasks. 
As SVs correspond to the extremities of the data for a given 
class, a decision function can be created to specify whether a 
given data point belongs to either  A  or  B . This is defined as

f x b( ) = +( )sign wx .

The optimal hyperplane can be obtained as a solution to the 
optimization problem:

1

2

2w → min

subject to: y b i ni wxi +( ) ≥ = …1 1, , ,

where  n  is the number of training sets.
The solution of the constrained quadratic programming opti-

mization problem can be obtained as

w xi=∑vi
i

where   x  i    are SVs obtained from training, thus

f v bi
i

x xxi( ) = +





∑sign

In cases where the linear boundary in input spaces is not be 
able to separate the two classes accurately, a hyperplane is cre-
ated that allows linear separation in the higher dimension feature 
space. Vapnik suggested a way to create nonlinear classifiers by 
applying the kernel trick to maximum-margin hyperplanes.

This is achieved through the use of a transformation  Φ , 
which transforms the data from an  N -dimensional input space 
to  Q -dimensional feature space.

f v bi
i

x x xi( ) = ( )( ) +





∑sign Φ Φ( )

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)
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The function must be continuous and positive definite. 
The kernel function  K (x, y)   is defined as

K x y x y,( ) = ( ) ( )Φ Φ

The decision function is accordingly modified as

f K b
i

x x y( ) = ( ) +





∑sign ,

The parameters   v  i    are used as weighting factors to determine 
which of the input vectors are actually support vectors. 
Frequently used kernel functions are 

the linear kernel function:

K x y xy,( ) =

the polynominal kernel:

K px y xy, ,( ) = +( )1

the radial basis kernel:

K x y
x y

, ,( ) = −
−











exp

2

2
2σ

the sigmoid kernel:

K v cx y xy, .( ) = +( )tanh

In the non-separable cases a constraint 

0 < <v Ci

is proposed where parameter  C  is a penalty constant for those 
sample points which are mis-separated by the optimal separa-
tion plane. The role of  C  is to strike a proper balance between 
the calculation complexity and the separating error. For the 
separable case,  C  is infinity while for non-separable case, it 
may be varied, depending on the number of allowable errors in 
the trained solution: few errors are permitted for high  C , while 
low  C  allows a higher proportion of errors in the solution. To 
control the generalization capability of SVM, there are a few 
free parameters like the limiting term  C  and the kernel param-
eters like RBF width  σ .

In this content with penalty constant  C  the SV classifica-
tion is to

minimize 1

2

2w C+ ∑ξi
i

subject to y bi i

i

w xT i +( ) ≥ −

≥













1

0

ξ

ξ ,
.

It leads to a maximization problem that could be solved by 
using Lagrange multipliers

W y yi i j i j
i ji

λ λ λ λ
λ

( ) = − ( )∑ ∑
=

1

2
1

x xi j
,

subject to: 0

0 1

≤ ≤

= =












∑

λ

λ
i

i i
i

C

y i N, , ,   

The Sequential Minimal Optimization (SMO) algorithm gives 
an efficient way of solving the dual problem arising from the der-
ivation of the SVM. SMO decomposes the overall quadratic pro-
gramming problem into quadratic programming sub-problems. 

Basically, in SVM theorem is true that with fewer support 
vectors the generalization ability is improved. Furthermore, as 
the decision function is comprised of SVs, having fewer SVs 
can reduce the computation complexity. The optimal solution 
of the SVM is achieved by the use of a quadratic optimization 
problem. The convex property of the formulation makes the 
solution unique. The SVM utilizes the Lagrangian optimiza-
tion method to solve this problem. 

3 Maximum Energy-to-Shannon Entropy ratio criteria 
to wavelet selection

Fault detection procedures based on time-frequency meth-
ods usually rely on visual observation of contour plots. It is also 
known that if the wavelet matches well with the shape of the 
signal at a specific scale and location a large transform value 
is obtained. However, a low transform value is obtained if the 
signal and wavelet do not correlate well. To avoid defects of 
visual observation a more precise way of determining the best 
suited wavelet is presented here.

The combination of the energy and Shannon entropy content 
of the wavelet coefficients of the signal, denoted by Energy to 
Shannon Entropy ratio is an appropriate indicator to choose 
the best wavelet for diagnosis and it can be calculated in the 
following form [6, 7].

ξ n E n S n( ) = ( ) ( )entropy .

The energy content of signal wavelet coefficients is given as

E n Cn i
i

m

( ) =∑ , ,
2

where  m  is the number of wavelet coefficients,   C  n,i    is the  i th 
wavelet coefficient of  n th scale.

The entropy of signal wavelet coefficients is given by

S n p pi i
i

m

( ) = −
=
∑ log ,2

1

where   ( p  1   , …,  p  n  )   is the energy probability distribution of the 
wavelet coefficients defined by

p C E ni n i= ( ), .
2

Seven different wavelets are considered for the present 
study that could be used for the wavelet decomposition. 
A comparison was executed between Daubechies and Symlet 
wavelet families which are basically appropriate for bearing 
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fault diagnosis according to the scientific papers of researches. 
An appropriate base wavelet should extract the maximum 
amount of energy with minimizing the Shannon entropy of 
the corresponding wavelet coefficients. Averaged values of the 
Energy to Shannon Entropy ratios considering the faults on the 
different bearing parts are in the Table 1. Symlet_08 wavelet 
provided the highest  E / S  ratio meaning the best efficiency for 
wavelet decomposition.

Table 1 Optimal wavelet selection on the basis of Energy-to-Shannon 
Entropy ratio

Wavelet type Energy-to-Shannon Entropy

Daubechies_02 84.47

Daubechies_06 101.68

Daubechies_10 107.46

Daubechies_14 116.12

Symlet_02 86.51

Symlet_05 103.79

Symlet_08 119.34

4 Feature extraction and fault classification by SVM 
in R Cran software

For this study an experimental test rig (Fig. 1) has been 
constructed to measure properly the vibration signatures of the 
tapered roller bearings.

Fig. 1 Test rig for tapered roller bearing measurement

The shaft in the test rig is supported by two tapered roller 
bearings. The one under investigation is No. 30205 tapered 
roller bearing. Four tapered roller bearings with different 
manufacturing defect width on the outer race (OR1-4) were 
investigated in our experiments (Table 1). The shaft is driven 
by an alternating current motor of 0.75 kW (made by Cemer), 
frequency of 50 Hz, and nominal speed of 2770 rpm which is 
reduced to 1800 rpm with variable speed drive device. Rubber 
V-belt between the electric engine and the shaft provides 
smooth running and low vibration which help accurate and 
precise measurements. Rubber bumpers are installed to 
reduce vibration of the electric motor to the bearing housing 
in order to minimize harmful vibrations. Additional acoustic 

chamber provides the possibility for acoustic measurements. 
The arrangement realizes the option of different speeds by 
Schneider ATV32HU22M2 variable speed drive device. Test 
bearing is spanned by screw mechanism to supply the sufficient 
axial force to the measurements. Constant spanning force during 
the measurements is measured by strain gauges in Wheatstone-
bride mode on the basis of difference in voltage measurement.

Sampling frequency was 25600 Hz in this experiment and 
102400 samples were collected, (therefore length of the mea-
surement was 4.0 s). Loading conditions was basically constant 
during the measurement with no significant speed variants. NI 
9234 DAQ was applied which was a 4-channel C Series dynamic 
signal acquisition module with 102 dB of dynamic range and 16 
bit resolution. IMI 603C01 vibration transducer was applied for 
sampling the vibration signature. The accelerometer is placed 
on the previously ground surface of the top of the bearing house 
with screw mechanism exactly perpendicular to the axis of the 
rotation of the shaft. 32 bit AMD Athlon II X2 M300 2.0 GHz 
processor is used for data processing. Wavelet decomposition 
was executed in Labview environment and SVM fault classifi-
cation was done by the R open source software.

Healthy, outer race (OR) fault, inner race (IR) fault, roller fault 
(RF), multi fault (MF), inner race back support fault (IRB) for 
the raw signal and the 3rd level wavelet decomposition were ana-
lyzed in the experiment. Fig. 5 shows some of the faults under 
investigation in this experiment. Defects on the outer race are a 
rectangular shape defects with the width of 0.1 mm created by 
precision laser beam machine. Defect parameters were measured 
by both Mahr Perthometer and Garant MM1-200 video micro-
scope. The surface topology of these artificial faults are similar 
to the real grinding faults in manufacturing however it has a bit 
smoother edges at the entry and exit points of the rollers. This 
model has a good correlation to the real circumstances and offer 
the possibility to analyze the classification capability of the SVM. 

Fig. 4 shows the wavelet decomposition tree. Level cD3 as 
3rd level wavelet decomposition provides the right frequency 
range where the structural frequencies of the bearing elements 
are emphasized. These frequencies come from the FFT of the 
time domain signals of the different bearing elements in the 
experiment (Fig. 2 and 3 present the signal in the time domain 
and its Fourier spectrum). The structural frequencies of the inner 
ring fault, roller fault, inner race back support fault and multi-
fault could be analyzed by Fourier transform. However, defect 
size can not be easily detected by traditional ways of signal pro-
cessing namely Fourier transform. However, tiny faults of this 
size could mitigate the lifetime of the bearing after installation 
to the machine. Instead of Fourier transform, wavelet transform 
is used because it can detect the sharp edges and sudden changes 
in the vibration signature more efficiently. Therefore, higher 
SVM classification rate is supposed to obtain. Previous experi-
ments proved that Fourier transform is not effective enough for 
this kind of fault detection of bearing elements.
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Fig. 2 Time domain signal of the OR defect

Fig. 3 Fourier spectra of the signal

Fig. 4 Wavelet decomposition graph of the original vibration signal by MRA

Fig. 5 Roller fault and OR faults in the experiment

R Cran software is a language and environment for statisti-
cal computing and graphics [17]. A sample training and testing 
vectors were created to R Cran. Total 432 instances of healthy 
bearing and 4 time domain statistical features were extracted for 
further study: range, kurtosis, skewness, crest factor which are 
totally 192 parameters for the software. Experiments were exe-
cuted from 60 to 2880 rpm. In case of OR fault, IR fault, roller 
fault, multi fault and IR back fault, 20 revolutions were measured 
as control and check data for SVM. It is appropriate the 20% rule 
of SVM classification. Raw data were measured by NI DAQ 
9234 and processed data after 3rd level wavelet decomposition 

were calculated by Labview VI. In the whole experiment 824 data 
were processed for the overall SVM classification. 

Crest Factor is accepted to describe small size defects because 
it is equal to ratio of the peak acceleration to the RMS value. Kur-
tosis, the fourth normalized statistical moment, corresponds to the 
peak value of the data. For an undamaged bearing, the value is 
equal to three. Skewness is a measure of the asymmetry of the 
probability distribution of a real-valued random variable about its 
mean. Significant skewness and kurtosis clearly indicate that data 
are not normal and the bearing suffers from damages. Crest Fac-
tor is the ratio of the peak acceleration to the RMS value. Crest 
factor is a good indicator of small size defects; although, when 
localized damage grows, the value of the crest factor decreases 
significantly because of the increasing RMS.

5 Results and discussion
Recognition rate is calculated by the formula:

Recognition rate
Number of correctly classified samples

Tot
=

aal number of testing samples
%×100

Table 2 Confusion matrix for SVM with raw data

OR IR IRB RF MF Classified 

25 0 0 0 0 OR

0 24 0 0 0 IR

0 0 22 0 0 IRB

0 0 0 24 0 RF

0 0 0 0 26 MF

Table 3 Confusion matrix for SVM with data by 3rd level 
wavelet decomposition

OR IR IRB RF MF Classified 

27 0 0 0 0 OR

0 26 0 0 0 IR

0 0 25 0 0 IRB

0 0 0 26 0 RF

0 0 0 0 27 MF

Table 4 Results of the SVM classification

Classified
Classification rate with 
raw data without filtering

Classification rate with data after 
3rd level wavelet decomposition

OR 89.3 % 96.4 % 

IR 85.7 % 92.8 % 

IRB 78.5 % 89.3 % 

RF 85.7 % 92.8 % 

MF 92.8 % 96.4 % 

Mean value: 86.4 % 93.5 %

Effectiveness of the SVM classification is in Table 2-4. 
Sigmoid kernel has been applied for SVM classification. 
Wavelet decomposition successfully removed the additional 
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noise components from the vibration signature, behaved as 
a band-filter and enhanced the useful frequency content that 
involved the unique feature of faults themselves. Using the 
filtered signal obtains higher classification rates. As the result 
shows it is unambiguous task to classify inner race back support 
faults. The explanation could be that the axial force depends on 
the spanning of the bearing and usually it is lower than the 
radial forces where higher accelerations values are generated 
therefore fault classification is easier.

6 Conclusion
A novel method was presented for classification of tapered 

roller bearings with grinding faults from the manufacturing 
process using SVM classifier and optimal wavelet decomposi-
tion according to the Energy-to-Shannon entropy principle. The 
faults on the bearing parts created by laser beam machine have 
similar shape and surface topography as the grinding faults from 
the manufacturing process. Therefore, they could be used for 
modelling the real problem and for teaching the SVM classifier. 
A test-rig was planned and constructed that ensures the mea-
surement of the bearings with basically low structural vibration 
level. However, the raw vibration signature contained additional 
noise so wavelet decomposition up to the 3rd level has been 
applied to obtain clear signal for teaching the SVM classifier. 
The optimal wavelet for the decomposition was selected by 
the Energy-to-Shannon entropy principle. Symlet_08 wavelet 
proved to be the best for the faults in the experiment. Statistical 
parameters of the time domain data were calculated such as kur-
tosis, skewness, crest factor and range. All of these parameters 
were good indicators of the bearing status and present the faults 
of the bearing elements. Both raw data set and the filtered data 
set after wavelet decomposition were added to the SVM clas-
sifier. Classification effectiveness was higher with the filtered 
data set than with the raw data in all cases. 96.4% classification 
rate was given for outer race fault that is remarkable for indus-
trial application. Averaged value of the classification rate was 
93.5% by using wavelet decomposition.
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