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Abstract 
A critical analysis of the scientific literature shows that, con-
trary to helical and other springs widely used in practice, 
slotted cylinder springs have been insufficiently documented 
to date. Currently, given the under exploited potential of their 
particular mechanical properties, a further investigation is 
much necessary in order to extend their use to as many as 
possible areas of technology. This is quite possible thanks to 
the most recent state of mechanical design research and tech-
nology. This paper is a part of a project that aims at develop-
ing specific computer software tools allowing precise analytic 
stress state determination. It develops a statically indetermi-
nate approach of the problem of the stress behaviour of such 
springs, following which previously and three newly proposed 
models are compared one with another on the basis of ratios 
between Von Mises’ stresses. Finally, for the case of two slots 
per section slotted cylinder springs, it is concluded that the 
analytical solution of the two degrees of freedom proposed 
primary system is in good agreement with empirical and 
Computer Aid Design res-olutions. A generalization to higher 
number of slots per section springs is foreseen using the same 
methodology.

Keywords 
slotted cylinder springs, structural modelling, Von Mises’ 
stresses computer simulation

1 Introduction 
Slotted cylinder springs are obtained by machining open 

slots on cylindrical rings. They operate like a set of flat coaxial 
elastic circular beams put in series and linked to one another by 
supports (Fig. 1). They are used where excellent dynamic and 
vibration qualities are needed. 

Fig. 1 Slotted cylinder spring: a) Design parameters, 
b) CAD Multibody modelling

They can secure against propagation of vibrations between 
mechanical systems joined parts. They are capable of absorb-
ing loads to such a range which is impossible in the case of 
conventional helical springs [1, 2]. Used as shock-absorbers or 
vibration isolator [3], they are excellent dissipators and accu-
mulators of energy. They are also used as transducers for the 
generation of seismic waves in electromechanical equipment, 
bridges and buildings and to damp earthquakes. 

Among the many types and forms of springs, slotted springs 
are unique [4] for the reason that they can be used in reduced 
space constructions needing high stiffness elastic elements and 
can be extremely small in size for a very wide range of stiffness 
whose upper bound exceeds by far all stiffness values which 
can reasonably be achieved with conventional elastic elements 
and which come close to that of the solid material. One of 
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their most important advantages over the helical springs coiled 
from round cross-section wire is that the execution of the latter 
is possible only when their minimal diameter is much bigger 
than the wire diameter. Another advantage of constructions 
made with them is simplicity in fastening because their mount-
ing can be designed in such a way that some of parts form one 
unit with the springs and work together in the stretching and 
compression processes. 

Moreover, contrary to springs coiled from wire, their mate-
rial does not suffer from the lack of self-stresses and their 
mechanical characteristics are of high accuracy. So, they are 
to be recommended for use in systems, where compactness, 
great stiffness and high accuracy of positioning are necessary. 
Consequently, their performance and successful implementa-
tion requires a good choice of geometrical parameters, maxi-
mum load and deformation and structural stability. 

Nevertheless, very few research papers and books can 
be found on the study of their behaviour against static and 
dynamic loadings. Generally, the laws governing the static 
behavior of a curved beam are defined by equilibrium equa-
tions. Their interpretation by means of energy equations allows 
to reach good results not only for circular, parabolic and ellip-
tical beams structures loaded in plane [7-12], but also for cir-
cular beams loaded perpendicularly to their planes [13, 14, 15]. 
However, the nature of the ring-support links of the slotted cyl-
inder springs makes more complex their behavior in compar-
ison with that of the curved beams. Besides, on the fringes of 
finite element studies[6, 16, 17], till today, little has been done 
concerning such structures as three-dimensional, non-planar, or 
coupled lateral-torsional statically indeterminate systems. 

2 Experimental and modelling backgrounds
The first scientific published technical information about 

slotted cylinder springs dates from 1963 by Winhelm A. 
Schneider [4] who on the basis of experimental data presented 
an approach to design and application. He emphasized their use 
as elastic elements of controllable compliance in seismic trans-
ducers and established that their performance can be compared 
with that of conventional springs. According to him, this type 
of spring offers unique characteristics of high load capacity and 
low deflection in extremely small size. 

Rivin E. put forward [5] in the year 2003, approximate 
empirical formula for the calculation of the slotted cylinder 
spring characteristics: 

σ
βef
g Nk PD
ab

= 2

where a, b are the height and the thickness of the ring section; 
D, DN– the spring external and nominal diameter; P- the force 
loading the spring, i – the number of active rings, [σ] – the 
admissible normal stress; β and αn, coefficients as a function of 
the ratio b/a.

Krzysztof Michalczyk [6] made an attempt to verify (1) 
by FEM modelling from structural elements SOLID92 in the 
environment of ANSYS software. The configurations that he 
proposed are that with two perpendicular planes of symmetry, 
crossing each other at spring axis. This means that supports are 
not bent to sides as a result of pressing the spring. Therefore 
according to that author, just only a quarter of the ring with sup-
ports propping it up can be modeled as fixed on its edges beam 
with supports shifted in parallel with each other (Fig.2a). He 
assumes that angular deflections of rings are small and concludes 
that in the middle of such a beam (point C) the value of bending 
moment is equal to zero. By cutting this beam in the middle, 
one achieves two beams with one end fixed and the second one 
free. Then, in order to keep the same values of moments in these 
cut beams as in the one not cut, the free ends of beams (Fig. 2b) 
receive. vertical forces in value of quarter of entire load.

Fig. 2 Krzysztof Michalczyk’s modelling of the slotted spring ring [6]

As a result, the bending stress σGp and the shear stress τ1 in 
the ring are: 
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The torsional stress in a rectangular cross section bar is 
given by Saint-Venant’s formula: 

τ
µ

ρMs
sM
ab

P
= =

2
4

where M P
s = 4

ρ  and µ =
+
a

a b3 1 8.
;

Referring to Von Mises formula, the value of substitutional 
stresses is calculated as: 

σ τσ τHMH Gp T Ms= + +( ) 
2 2

1 2

3

Since in real conditions configuration is not flat but spatial, 
the stresses appearing in a considered ring beam will have a 
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complex nature. In this formula, in order to take into account 
stress concentration depending on geometry, two empirical 
coefficients are introduced. Finally, the formula to calculate 
maximum stresses in slotted spring takes the form:

σ α δ σE HMHmax
=

where:
α, stress concentration coefficient: α = 1  for  a / c = 1
and α = 1.3  for  a / c = 1.5
δ, inequality of stress distribution coefficient: 

δ = + 





1

1 2b
D

The corresponding method of calculating stresses in slotted 
cylinder springs is more time-consuming, compared to the ear-
lier, but is worth for its high accuracy relatively to the preced-
ing ones.

3 Using force method to stress analysis of slotted 
cylinder springs
3.1 Some CAD simulation conclusions
3.1.1 Modelling springs with fillet radius r=0

A special test bench using lathe equipment was designed 
and created for the verification of diverse theoretical assump-
tions on the slotted cylinder springs. Its principle consists of 
the comparison of the deflections of the slotted cylinder loaded 
together with a basic helical spring mounted on the lathe axis. 
The external loads are measured by means of comparators with 
1 micron precision. 

In parallel, we carried a study based on:
•	 multi-body part model design (Fig. 1b, Fig. 3b,e) 
•	 hiding and suppressing part components from the created 

multi-body models
•	 static simulation of multi-models comprising hidden or 

suppressed parts.

Accordingly, two slots per section, two rings steel slotted 
cylinder springs were created (Fig. 3a) with a main dimen-
sions range including that recommended [6]: D = 20 – 50mm, 
a = 3 – 5mm, b = 1 – 9mm, c = 2 – 3mm, g = 3 – 5mm, r ≈ 0mm. 

From the static simulation, the following interesting facts 
were observed:

a)	 The ring plane section at point C has no rotation rela-
tively to the ring neutral (or tangential axis).

b)	 The upper ring horizontal at point D for the supports 
directly submitted to external vertical load (Fig. 3a-b) 
turns significantly relatively to the ring neutral axis. The 
horizontal plane of the intermediate ring at point D for 
the spring whose upper ring is directly submitted to the 
external vertical load (Fig. 3c-f) has a very small angular 
deflection relatively to the neutral axis. 

Fig. 3 deflection and stress of springs: a-b) loaded from ring supports; d-e) 
loaded from the upper ring; c-f), stress state around points G and G’

3.1.2 CAD simulation major drawbacks
In reality, the form of the slotted cylinder spring presents 

potentially sources of singularities due to high stress concen-
tration near the 90 degree corners between the supports and 
the rings and at the sharp inner internal edges. On this topic, 
in order to increase the reliability of the meshing in solid-
works, the quality chosen was “fine” and the density parame-
ter “standard”. The difference between the results obtained for 
the mid and the “fine” positions was calculated. Its value is 
less than 5% for a mesh size varying from 1.5-0.08 to 0.03-
0.65. Moreover, in practice, it is unacceptable to manufacture 
springs with r = 0. Chamfer and fillet are introduced by means 
of the cutting tool shape or other method. Radius r = c is easily 
obtained as drawn in Fig. 1. 

3.2 Slotted cylinder springs as one d.o.f 
indeterminate systems (first model) 

A way of solving the problem of displacement in slotted 
cylinder springs is to consider a spring ring as a spatial, stat-
ically indeterminate structure of one degree of freedom made 
of a curved beam. Just as above, let’s study a quarter of a ring 
(Fig. 3a). Assuming that the section C (R, π/4) situated 450 from 
the clamped end section does not rotate relatively to D(R,0), but 
just moves in the axial direction we conclude that in the normal 
section passing through C appear a shearing force Fs = Q and 
an unknown torsional moment X1. Subsequently, the original 
system is replaced by a primary system made of the part of the 
spring ring going from A to C under external loads Q and X1 
(Fig. 4b,c). Note that in this case, C is the X1 application point. 

(6)
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In the following, let’s denote by:
X, Y, unknown internal torsional and bending torques in 
springs, indexes N and T, the radial (bending) and tangential 
(torsional) components,
δij , displacement at Xi application point at Xi direction from 
Xj = 1 only, in the primary system,
δiQ , displacement at Xi application point at Xi direction from 
external load only, the primary system,
∆i , displacement at Xi application point at Xi direction from all 
loads - external load and all unknown values, MQN and MQT , the 
bending and the torsional moments due to the force Q only, at 
the application point,
MQ , the total moment due to the force Q only, applied at the 
application point, in the primary system.
MXi , MXi , the internal moment due to the torque Xi ,
γ the half of the angle corresponding to the support width 
(Fig. 4d).

Fig. 4 Reduction of the internal load to a superposition of the force Q = P/4 
and the torque X1(MN , MT) acting at point C.

The elastic strain energy stored in the quarter of beam along 
the ring neutral axis lλ is determined as:
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From Fig. 4c we have:
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The total bending and torsional moments at point m(R,φ) are:
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Let g be the support width (Fig. 4d) and γ the angle between 
OG and Oη (or between OG’ and Oξ). Then, the total bending 
and torsional moments at G and G’ are:
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3.3 Two degrees of freedom models inspired by 
structural design and static simulation
(models 2 and 3)
3.3.1 Expressions of internal displacement

∆ ∆D D1 2
0= =

From the above, it follows that in the vertical section pass-
ing through D, more than one indeterminate unknown must be 
introduced so as to ensure the non-effective rotation due to the 
applied external load Q.

Henceforth, let’s study a slotted spring under load Q mod-
eled by a structure of two degrees of freedom quarter beam 
with statically indeterminate structures.

We assume that:
a)	 Strains in the two directions of the vertical plane sections 

of the springs are negligible nearby the point D.
b)	 Displacements due to shear forces are negligible.
c)	 The behaviour of the spring under applied load verifies 

the Saint Venant’s static hypothesis according to which 
for a plane section sufficiently far from the application 
point of the external forces, the effect of the given load 
can be replaced by an equivalent couple force-torque. 
The mentioned above very light rotation of the point D 
in the two main horizontal and vertical directions may be 
due to some internal torques XD and YD compensating the 
effect of the torsion displacement supposed to be caused 
by the external load (Fig. 5a,b). This corresponds to the 
primary system (Fig. 5b, c).

Fig. 5 Internal and external loads in a two 
d.o.f primary system of the spring ring

Let’s add to the symbol of displacement δ and to that of the 
unknowns X, Y, … the indexes D and C corresponding to their 
respective values at these points. It is recalled that indexes N 

and T denote the radial (bending) and tangential (torsional) 
components. From the conditions of double symmetry, QA = 
QD = P/4.

We come to the following compatibility equations: 
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•	 Calculation of the unknown internal loads
1)	 Unit load internal reaction at a given point of the ring 

neutral axis m(R,φ).
The moments MXD and MYD due to the internal unknown 
loads XD and YD at m(R,φ) are made of their decompo-
sition into bending and torsional components defined 
(Fig. 5.a):
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2)	 Calculation of displacements due to the unit unknown 
loads: 
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3)	 Internal reaction due to the external load Q in the primary 
system (Fig. 5.b.c)
By analogy with (7-10) have:
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4)	 Calculation of displacements due to the external loads
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3.3.2 Case I: ∆ ∆D D1 2
0= =

Naturally, ∆D2 = 0. In reality, as it was said above, the angle 
of rotation ∆D1 is very small; nevertheless it is not different 
from 0. This condition will be taken into account in the in case 
II. From the system of equations (14), we obtain:
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Finally, the total bending and torsional moments at given 
point m(φ)
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In particular, at D we have:
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3.3.3 Case II: ∆ ∆D C1 2
0 0≠ ≠,

Let’s form a mental image of the ring as a fully determi-
nate system where all the above well-defined loads are taken 
as external loads. In order to determine the unknowns XD and 
YD, let’s write the system of equations corresponding to the 
application of unit new unknown bending and torsional loads 
XCN = 1 and YCN = 0 at point C. This strategy is the same as that 
which consist of finding the internal loads at point C by cutting 
the ring beam. Taking ∆D1 and ∆C2 as new unknowns, we can 
use as boundary conditions the equations:
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Noticing that for the point C, φ = π/4, by analogy to (24):
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On the whole, from (14), (16), (46), (29), we obtain the fol-
lowing system of 6 equations:
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Where Q' is the result of loads applied at D in the previous 
primary system.

We have:
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The bending and torsional components MXC and MYC of the 
internal unknown loads XC and YC at m(R,φC) are defined on 
(Fig. 6.a):
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From (34) and (35) we can note:
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Where b1 , b2 , c1 and c2 are calculated coefficients.
Then (30) and (31) becomes:
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Expressions δ11, δ1Q, δD11, δD12, δD22, δQ1, δQ2, δC11, δC12, δC22, 
δCQ1, b1, c1, b2 and c2 are gathered in Table 1.

3.4 General case of n slots per section springs
The symmetrical and antisymmetrical properties of struc-

tural systems are usually taken into consideration in order to 
facilitate their analysis as statically indeterminate systems. 
The n per section slotted cylinder springs has n-times multi-
ple geometrical, cross-section and physical data symmetries. 
This allows limiting their studies to that of π/nth fragment of the 
spring. Therefore, the corresponding expressions are obtained 
by replacing in the Eqs. (18)-(22) the number  π ⁄2 by π ⁄n. For 
instance:
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4 Numerical application and discussion
4.1 Flowchart for comparison in Excel 

Static simulation was made on the basis of models created 
in Solidworks. This software modelling exploits finite elements 
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Table 1 Summary of expressions of displacements under unit loads

FIRST Model

δ11

R
EI

R
C

R
EIg g2

1

2
2

2

1

2
2

2 4

1

2

1γ γ γ γ γπ
−






 ( ) + + ( )






 + − − +sin sin

22
2

2 4

1

2

1

2
2sin sinγ γ γπ( )






 + + − − ( )








R
C

−δ1P

PR
EI

PR
EI

PR
g

2 2 2

8

1

2
2

8 4

1

2

1

2
2γ γ γ γπ

−





 ( ) + − − + ( )






 +sin sin

44

1

2

1

4
2

4

1

4
2

1

2

1

2

2

C
PR
Cg

− + + ( )





 + − ( ) − − +sin sin sin sinγ γ γ γ γ γ γ 11

4

2

2 8
− −











π

SECOND Model

δ12 

=δ21

R
EI C

R
EI Cg g

γ γπ1 1

2 2
2

1 1
+









 + −






 +







δ11 

=δ22

R
EI C

R
EI Cg g2

1 2
1 1

2
2

1 1
− ( )( ) −









 + ( ) −






cos cosγ γ

−δ1Q

PR
EI

PR
EI

PR
C

PR
Cg g

2 2 2 2

4 4 4 4
1

4
γ γ γ γ γ γπ
+ −






 + − − +( ) + −sin cos cos ssin γ γ γπ

− +







4

−δ2Q

PR
EI

PR
EI

PR
Cg g

2 2 2

8
1 2

8
2

4

1

2
2− ( )( ) + ( ) + − − ( )cos cos cos sin cosγ γ γ γ γ −−






 + − + ( )








1

2 4

1

2
2

2PR
C

sin cos cosγ γ γ

THIRD Model

δc11

R
EI EI Cg g4

1
1 2 2

1

2
2 2

1
1 2 2

1
− + +( ) + − −






 + + −( ) +γ γ π γ γ γ γcos cos cos

CC
π γ γ
2

2 2− +



















cos

δc12

R
EI EI C Cg g4

1
2

1
1 2

1
2

1
1 2sin sin sin sinγ γ γ γ+ −( ) − − −( )













δc22

R
EI EI Cg g4

1
1 2 2

1

2
2 2

1
1 2 2

1
+ −( ) + − +






 + − + +( ) +γ γ π γ γ γ γcos cos cos

CC
π γ γ
2

2 2− −



















cos

−δCQ1

2

32

1
2 4 2 2 2 2

1
2 4 2 2 2 2

1
2R
EI EIg

− + + +( ) + + − − −( ) +γ γ γ π γ γ γcos sin sin cos
CCg

3 4 8 2 2 2 2 2− − −( ) + +( )











γ γ γ γ γcos sin cos sin

+ − + + + −( ) − −( )





1
2 4 8 2 2 2 2

C
π γ γ γ γ γsin sin sin sin

b1
− − + + +( ) + + − − −( ) +R

EI EIg

2

16

1
2 4 2 2 2 2

1
2 4 2 2 2 2

1γ γ γ π γ γ γsin cos sin cos
CC Cg

2 4 2 2 2
1

2 4 2 2 2 2+ − −( ) + − − + +( )












γ γ γ π γ γ γcos sin sin cos

c1

R
EI EI Cg

2

16

1
2 4 2 2 2 2

1
2 4 2 2 2 2

1
− + −( ) + − + + − +( ) +γ γ γ π γ γ γsin cos sin cos

gg C
− − − +( ) + − − + + −( )













2 4 2 2 2 2
1

2 4 2 2 2 2γ γ γ π γ γsin cos sin cos

−δCQ2

2

16

1 1

2

1

2
2

1

2
2

1

4

1

2

1

2
2

1

2

2PR
EI EIg

+ + −





 + + − − +sin cos sin cγ γ π γ γ oos sin cos sin cos2

1 5

2
2 2 2

1

2
2

1

2
2γ γ γ γ γ γ






 − − + + +( ) − +










Cg









− − + − − +( ) −

















1

4
2 2

1

2
2

1

2
2

1

2
2

C
π γ γ γ γ γcos sin sin cos

b2

R
EI EI Cg g

2

16

1
2 4 2 2 2 2

1
2 4 2 2 2 2

1
2+ − +( ) + + − − +( ) + −γ γ γ π γsin cos sin cos ++ − +( ) + − − + −( )













4 2 2 2 2
1

2 4 2 2 2 2γ γ γ π γ γ γsin cos sin cos
C

c2

R
EI EI Cg g

2

16

1
2 4 2 2 2 2

1
2 4 2 2 2 2

1
2+ − −( ) + − − + +( ) + −γ γ γ π γsin cos sin cos ++ + +( ) + + − − −( )













4 2 2 2 2
1

2 4 2 2 2 2γ γ γ π γ γ γsin cos sin cos
C

(39)

(41)

(42)

(43)

(44)

(45)

(46)

(47)

(48)

(49)

(40)

(50)

(51)

(52)

(53)



144 Period. Polytech. Mech. Eng.� G. Mbobda, L. Meva’a, P. L. K. Mbobda

numerical application. It allows to generate meshes and pro-
vides graphical presentation of the displacements and stresses 
related to given design parameters and loads. Provided that the 
simulation accuracy is a function of the mesh density, standard 
parameters and finest mesh were chosen in order that results 
may not be significantly affected by the error of discretization. 

In order to compare one with another the different models, 
a program on the basis of a flowchart (Fig. 6) is elaborated and 
introduced in Excel. The basic data are the same as that of a 
previous works [6] (Table 2). Tables 3-6 give the results of the 
calculation of the stress values respectively for the first, the 
second and the third newly proposed models.

Fig. 6 Flowchart for calculation

When confronted with multiple measurements y1 , y2 , y3 , … 
of the same experiment, one typically reports at least two prop-
erties of the set of scores, namely:

The scaled mean absolute error (SMAE) of the stress ratio:

Table 2 Basic data

No

External 
load

Nominal 
diameter

Spring 
diameter

Spring 
width

Ring 
heigth

Slot 
width

P [N] DN [m] D [m] b [m] a [m] c [m]

1 2000 0.015 0.02 0.005 0.003 0.003

2 2000 0.015 0.02 0.005 0.003 0.003

3 2000 0.015 0.02 0.005 0.003 0.002

4 500 0.019 0.02 0.001 0.003 0.003

5 500 0.018 0.02 0.002 0.003 0.003

6 2000 0.017 0.02 0.003 0.003 0.003

7 2000 0.016 0.02 0.004 0.003 0.003

8 500 0.014 0.015 0.001 0.003 0.002

9 500 0.0135 0.015 0.0015 0.003 0.002

10 1000 0.0225 0.025 0.0025 0.003 0.002

11 2000 0.0195 0.025 0.0055 0.003 0.002
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The coefficient of variation (CV) -standard deviation of the 
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Let’s add the maximum difference stress ratio:

where A is the ideal ratio, and ȳ and SD the absolute mean and 
the standard deviation. The Von Mises’ stress values σGi and σG’i 
of the previous and proposed models are to be compared one 
with another in term of accuracy and precision respectively by 
means of [18].

4.2 Main results and discussion
a)	 One can probe and calculate the angle of rotation of the 

ring symmetrical planes passing through C and D about 
tangential axes respectively by the formula:
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−δ δ δ δδ δ δ δ
2 2 2
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where δ refers to the vertical displacements, D, C, 
respectively d and c to the ring upper and lower surfaces, 
and the indexes ext and int to the external and internal 
ring sides in the simulation graphics. At point D, ∆D is too 
small for the rotation around X1 direction and is equal to 
zero around η axis. On the contrary ∆C is equal to zero for 

(54)

∆i i jy y= ( ) − ( )max max

(55)

(56)

(57)
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the rotation around the tangential axis passing through C. 
For a reason of a lack of precision of the measurement 
equipment of the test bench and the Solidworks 
simulation probe tools, precise values of ∆D1 and ∆C2 
couldn’t be obtained since the order of magnitude of the 
obtained values are comparable with the measurement 
and calculation errors. Hence we could not consider them. 
However, more precise values analytically calculated are 
presented in Table 3.

b)	 An extract of the main results of the static simulation and 
studied models is given in Table 4 for some particular 
points. The calculated ratios and their statistic quantities 
are shown in Table 5. Deduced from it, Table 6 presents 
a classification of models firstly relatively to Rivin’s ex-
perimental formula and secondly relatively to data from 
static solidworks simulation.

c)	 For the fillet radius r = 0, the distribution of Von Mises’ 
stresses at the ring sections passing through points G 
and G’ is very complex (Fig. 3c). The point of maximum 
value is located approximately at the inside ring-support 
contact point belonging to ring radial section passing 
through G or G’. Practically we have,

σ σ σE G EGmax int int
max ,≈ ( )′ 

On the one hand, these stresses are different for two 
points located symmetrically relatively to the neutral 
horizontal plane. On the other hand, they have the same 
value for points located on either sides and belonging to 
opposite supports.

d)	 The first position of the third model in the comparison 
with solidworks (Table 6) confirms the hypothesis on the 
basis of which this model is built and the well-founded of 

the consideration of the rotation of the point D (or D sec-
tion) around η axis. Its higher position compared to that 
of the second model confirms that although the torsional 
deflection of the application point D is small, it is worth 
not neglecting it.

e)	 For the fillet radius r = c, given by the arc EE’ (Fig. 3f), 
the point of the Von Mises maximum value is no longer 
situated in the ring section passing through points G or 
G’, but approximately at the inner point G’’of the bottom 
quarter of the fillet arc. Compared to the precedent values 
the percent error for the maximum Von Mises’ stresses 
have increased irregularly as a function of each of spring 
parameters a, b, c, D, g and r by more than 10% (Table 7) 
This can be explained by the consequent decrease of 
stress concentration in the spring.

Table 3 Internal loads and displacements

No
XD 

[N.m]
YD 

[N.m]
XC 

[N.m]
YC 

[N.m]
∆D1 
[rad.]

∆C2 
[rad.]

1 1.5100 0.5474 2.5532 -1.1968 -0.0037 -0.0034

2 1.0572 0.6736 2.2490 -1.5284 -0.0054 -0.0047

3 1.0411 0.5474 2.2216 -1.5284 -0.0054 -0.0055

4 0.1604 -0.1709 0.3404 -0.8471 -0.0180 -0.0190

5 0.2004 -0.0789 0.4154 -0.7096 -0,0072 -0.0082

6 0.9665 0.0656 1.9746 -2.2754 -0.0146 -0.0161

7 1.0832 0.3753 2.2029 -1.7971 -0.0082 -0.0087

8 0.0604 -0.1352 0.2034 -0.6716 -0.0111 -0.0117

9 0.0456 -0.0637 0.1426 -0.3880 -0.0041 -0.0043

10 0.5025 -0.1608 1.0654 -1.7471 -0.0184 -0.0209

11 1.5624 0.7695 3.0768 -1.7982 -0.0077 -0.0078

Table 4 Von Mises’ stresses

N0

Rivin’s 
Empirical 
Formula

Michalczyk’s 
Theoretical 

Formula

Ansys 
Modeling & 
simulation

SolidWorks 
Modeling & 
simulation

Model 1 Model 2 Model 3

S t r u c t u r a l a n a l y s i s

G G G G*
α0

G and G’ G G’ G G’

σef [Pa] σEmax [Pa] σHMNG [Pa] σsolmax[Pa] σsolmax[Pa] σG2[Pa] σG2’[Pa] σG3[Pa] σG3’[Pa]

1 348000000 513000000 560000000 632852672 0.08 335262073 381753834 562740559 237919873 603385070

2 348000000 477000000 510000000 582047360 0.06 305284544 388696918 558533398 193266731 607382991

3 388000000 667000000 700000000 642282944 0.05 333474239 378422342 556031793 176514796 623174810

4 1852000000 1105999999 1390000000 1694984504 0.31 677318516 1266219609 2233068182 382161118 1913528668

5 517000000 410000000 464000000 574984960 0.1 252601011 390146225 660847083 148185142 624433656

6 999000000 963000000 1105000000 1281839616 0.2 607136106 830190383 1339209689 350134447 1358863683

7 565000000 680000000 785000000 779210048 0.12 432836885 537147015 826372222 247280707 881947140

8 1522000000 1097000000 1255000000 1303347456 0.18 442800079 957439396 1622531064 239826506 1307429028

9 700000000 595000000 500000000 659928128 0.09 243213300 468409803 778424456 127363539 702754634

10 957000000 1008000000 1080000000 1046998976 0.11 234992497 680934798 1151537535 249510536 1155049957

11 403000000 787000000 820000000 679158848 0.04 122441160 432710080 633938036 215494976 727476191
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Table 5 Values of Statistical quantities determining the ratio (σi⁄σj) for different models

N0

Ansys 
Rivin

Ansys 
Mich

Ansys 
Solidw

Michal. 
Rivin

Solidw 
Rivin

Michal. 
Solidw

Rivin 
Solidw

Model I 
Rivin

Model 2 
Rivin

Model I 
Solidw.

Model 2 
Solidworks

Model 3 
Rivin

Model 3 
Solidworks

G* G* G* G* G* G* G* G G G’ G G G’ G G’ G G’

1 1.6 1.09 0.88 1.47 1.82 0.81 0.55 0.96 1.10 1.62 0.53 0.60 0.89 0.68 1.73 0.38 0.95

2 1.46 1.07 0.88 1.37 1.67 0.82 0.60 0.88 1.12 1.60 0.52 0.67 0.96 0.56 1.75 0.33 1.04

3 1.8 1.05 1.09 1.72 1.66 1.04 0.60 0.86 0.98 1.43 0.52 0.59 0.87 0.45 1.61 0.27 0.97

4 0.75 1.26 0.82 0.60 0.92 0.65 1.09 0.37 0.68 1.21 0.40 0.75 1.32 0.21 1.03 0.23 1.13

5 0.9 1.13 0.81 0.79 1.11 0.71 0.90 0.49 0.75 1.28 0.44 0.68 1.15 0.29 1.21 0.26 1.09

6 1.1 1.15 0.86 0.96 1.28 0.75 0.78 0.61 0.83 1.34 0.47 0.65 1.04 0.35 1.36 0.27 1.06

7 1.4 1.15 1.01 1.20 1.38 0.87 0.73 0.77 0.95 1.46 0.56 0.69 1.06 0.44 1.56 0.32 1.13

8 0.82 1.14 0.96 0.72 0.86 0.84 1.17 0.29 0.63 1.07 0.34 0.73 1.24 0.16 0.86 0.18 1.00

9 0.7 0.84 0.76 0.85 0.94 0.90 1.06 0.35 0.67 1.11 0.37 0.71 1.18 0.18 1.00 0.19 1.06

10 1.12 1.07 1.03 1.05 1.09 0.96 0.91 0.25 0.71 1.20 0.22 0.65 1.10 0.26 1.21 0.24 1.10

11 2.04 1.04 1.21 1.95 1.69 1.16 0.59 0.30 1.07 1.57 0.18 0.64 0.93 0.53 1.81 0.32 1.07

SMAE 0.40 0.12 0.12 0.35 0.36 0.17 0.24 0.44 0.19 0.35 0.59 0.33 0.13 0.63 0.40 0.73 0.07

CV% 3.28 0.87 1.32 3.41 2.44 1.54 2.49 4.40 1.95 1.33 2.77 0.68 1.25 4.20 2.21 2.01 0.51

∆y 1.34 0.42 0.45 1.36 0.96 0.51 0.62 0.72 0.49 0.55 0.38 0.16 0.45 0.53 0.95 0.19 0.18

col. N0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Table 6 Comparison of the accuracy of different models empirical

Classification based on Rivin’s formula

Order 1 2 3 4 5 6

SMAE 0.35 Model 2
0.35 

Michalczyk
0.35 Model.1 0.36 Solidwks 0.40 Model 3 0.40 Ansys

CVk % 1.33 Model 2 2.21 Model 3
2.44 

solidworks
3.28 Ansys

3.41 
Michalczyk

4.40 Model 1

∆y 0.55 Model 2 0.72 Model 1 0.95 Model 3 0.96 Soldwks 1.34 Ansys 1.36 Mich.

Classification based on Solidworks’ data

SMAE 0.07 Model 3 0,12 Ansys 0.13 Model 2
0.17 

Michalczyk
0.24 Rivin 0.59 Model 1

CVk % 0.51 Model 3 1.25 Model 2 1.32 Ansys
1.54 

Michalczyk
2.49 Rivin 2.77 Model 1

∆y 0.18 Model 3 0.38 Model 1 0.45 Ansys 0.45 Model 2 0.51 Mich. 0.62 Rivin

Table 7 Comparison of Von Mises stresses for zero and c fillet radii

r=0 r=c

Percent error 
differenceN0

Solidworks Model 3 Percent Solidworks Model 3 Percent

σsolmax max(σG, σG’) error σsolmax max(σG, σG’) error

[Pa] [Pa] [Pa] [Pa]

1 632852672 603385070 4.66 573078080 603385070 5.29 0.63

2 582047360 607382991 4.35 504143520 607382991 20.48 16.13

3 642282944 623174810 2.98 670784128 623174810 7.10 4.12

4 1694984504 1913528668 12.89 1318188160 1913528668 45.16 32.71

5 574984960 624443656 8.60 473096608 624443656 31.99 23.39

6 1281833616 1358863683 6.01 1132198784 1358863683 20.02 14.01

7 779210048 881947149 13.18 735811520 881947149 19.86 6.68

8 1303347456 1307429028 0.31 1134831104 1307429028 15.21 14.90

9 659928128 702754634 6.49 585020672 702754634 20.12 13.63

10 1046998976 1155049957 10.32 1026296000 1155049957 12.55 2.33
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5 Conclusion and perspectives
In order to facilitate the slotted cylinder spring design, 

three statistically indeterminate structural mechanics model-
ling approaches were presented and compared one with others 
using standard statistical quantities. Assumption according to 
which "the point of the slotted cylinder spring situated at 450 of 
the symmetrical plane hasn’t a relative rotation around the neu-
tral axis, but just moves in the axial direction" was confirmed 
by CAD modeling. Together with this assumption, the absence 
of bending deflection at the application point allowed formu-
lating a couple of boundary conditions necessary to solve a lin-
ear system of six equations written for the two d.o.f. proposed 
model. As it was expected, the analysis of the results of calcu-
lation based on sample data shows clearly that such model is of 
higher precision and accuracy. The precision expressed by the 
Von Mises stress standard deviation is about 2.21% relatively 
to the experimental data and 0.51% relatively to Solidworks 
simulation. As perspective, the implementation of the new 
method in global slotted spring software should allow to calcu-
late the better value of the Von Mises stress as key parameter. 
It is planned to extend the theory over springs with more than 
two slots per section and to clarify the analytical relationship 
between the Von Mises stresses and the radius of the fillet link-
ing the slotted cylinder spring rings and it supports. A large 
study is foreseen based on experimental plan method in which 
the failure state and the fracture point or zone of such springs 
will be observed for a large number of manufactured slotted 
cylinder springs. 
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