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Abstract
This paper addresses the problem of locating the optimal pres-
sure measurement points in a hydraulic system to help system 
management, calibration/validation of hydraulic models and 
measurement planning. Two approaches are discussed in the 
present work. The first method splits the hydraulic system by 
means of community concept borrowed from graph theory and 
uses merely the topology of the network. The resulting sub-
systems will have minimum number of external and maximum 
number of internal connections and leaves the choice of locat-
ing the single pressure measurement location per subsystem 
to a higher-level decision. The second technique is based on 
the sensitivity analysis of the hydraulic network and places the 
measurement points at the most sensitive locations, while try-
ing to preserve the spatial diversity of the layout, i.e. prevent-
ing the accumulation of the measurement points within a small 
area of high sensitivity. The performance of both techniques is 
demonstrated on real-size hydraulic networks. The proposed 
sampling layouts are compared to classic D-optimality, A-opti-
mality and V-optimality criterion.

Keywords
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1 Introduction
Pressure data collection in water distribution systems 

(WDS) is essential for proper management of the system. The 
knowledge of pressure values generally drives the operational 
actions, such as leakage, infiltration and demand control [1]. 
An urban water distribution system usually contains hundreds 
or thousands of nodes and pipes, but the limited resources do 
not allow the deployment of pressure loggers at every potential 
measurement location (typically fire hydrants). Hence, one has 
to decide where to mount the finite number of pressure sensors, 
out of the vast number of potential locations. The measurement 
layout should be optimal in the sense that it gives the “most 
possible” information about the actual state of the network, 
however, defining the optimality condition (i.e. the objective to 
maximise) is non-trivial.

Numerous researchers addressed the problem of opti-
mal sampling layout design. One important branch of the 
researches focuses on capturing the presence of contamina-
tion (e.g. due to terrorist attack) as early as possible, see [2]. 
Another approach aims to use the measurement for the cali-
bration of a hydraulic simulation model, notably pipe rough-
ness values and/or demand patterns. For such purposes, Wal-
ski [3] suggested to monitor the pressure at nodes with high 
base demand and on the perimeter of the skeletonised network. 
Lee and Deininger [4] developed a unique coverage-based 
approach to select sampling points to monitor water quality. 
Yu and Powell [5] describe the problem as a multi-objective 
optimization, and used dynamic covariance matrix analysis to 
locate good sampling points. Bush and Uber [6] derived three 
methods based on the analysis of the Jacobian matrix from the 
D-optimally criterion. De Schaetzen [7] proposed three new 
algorithms, two out of these were based on the shortest path 
concept while the third approach was based on the maximiza-
tion of Shannon’s entropy. Kapelan et al. [8] developed three 
methods based on D- and A-optimality criterion and on the 
model prediction uncertainty, which was previously used by 
Lansey et al. [9]. Behzadian et al. [10] used multi-objective 
genetic algorithm and adaptive neural network to design a 
good sampling layout.
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This paper utilizes graph theory to split the WDS into sub-
graphs (communities) that are isolated in the sense that they 
have maximum number of inner connections but minimal num-
ber of inter-community connections. After the split, the most 
sensitive node of each community is chosen for pressure log-
ging. We compare these results against the layouts obtained by 
the objectives developed in [7] using sensitivity and Shannon’s 
entropy, and the classic FOSM [6] models, respectively. We 
report on the performance of these techniques in the case of 
four real WDSs with moderate size (few hundreds of nodes). 

One of the strengths of the proposed approach is that it pro-
vides measurement districts and leaves the final decision to 
be made at higher level. Further, in contrast to the classical 
FOSM based approaches, instead of computing sensitivities 
for grouped roughness parameters; all pipes were treated sep-
arately. When using pipe cluster with grouped parameters, the 
number of pipes in the groups may affect the final sampling 
design. Since, parameter groups with plenty of pipes may be 
overrepresented against parameter groups containing only 
a few pipes. In addition, by means of our in-house software 
“STACI”, we are able to obtain the elements of the sensitivity 
matrix analytically as described in [11]. The drawback of our 
approach is the slow computation of communities. The parti-
tioning is obtained by maximizing a measure called modularity 
that is known to be a combinatorial NP problem [12], thus the 

computational effort escalates with the network size. How-
ever, we implemented a genetic algorithm that can accelerate 
the partitioning, and makes the community finding feasible for 
these medium-sized networks.

The investigated real-life systems belong to the WDS of 
Sopron, a town Hungary and are typically providing pota-
ble water for a few thousands of citizens. The networks are 
depicted in Fig. 1, where the blue circles with letter P and the 
pool symbols denote the feeding pump stations (modelled with 
constant pressure) and the reservoirs, respectively. Networks a, 
b, c, and d, contain 488, 700, 549, and 283 nodes, and 461, 634, 
505 and 257 pipes, respectively. The topology and the pipeline 
data (length, diameter, and coordinates) were exported directly 
from the GIS system of the Sopron Waterworks. The demand 
data represents an average monthly value and was extracted 
from the Waterworks’ billing database.

The rest of the paper is organized as follows. We start with 
presenting the mathematical toolbox: community structure 
of graphs, the hydraulic simulation software, the sensitivity 
analysis, Shannon’s entropy, evolutionary algorithms, and 
FOSM models. In the next section, we present the proposed 
approaches in case of a hypothetical test WDS. Then we inves-
tigate the performance of these techniques in case of real-life 
medium-sized networks. Finally, the test results are reported 
and we summarize the study.

Fig. 1 The test networks, zones of Sopron Waterworks, Hungary. The blue circles with letter P denote the feeding pump stations (modelled with constant 
pressure) and the pool symbols are the reservoirs.
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2 Mathematical tools
2.1 Dividing the network into disjoint networks

We start off with presenting a technique that is capable of 
splitting the WDS into subsystems with minimum number of 
external connections (between the subsystems) and maximum 
internal connectivity (within one subsystem). Note that this 
technique uses the topology only, (i.e. no information on pipe 
length, diameter, flow rate, pressure, etc. is used). Thus the 
results will be independent of the hydraulic state of the system, 
which might be useful in the case of WDSs with highly varying 
hydraulic parameters (e.g. during morning/evening peaks and 
nightly low-load periods) but is clearly disadvantageous for 
WDSs where the pressures and flow directions are relatively 
constant over a long time interval. Using purely the topology, 
we lose pieces of engineering information, since e.g. the main 
supply pipes with high base demand and costumer pipes with 
low base demand are considered with equal relevance. It is 
worth mentioning that using weight-based modularity allows 
us to consider specific network characteristics [13] and design 
communities for specific purposes.

Let us now describe the algorithm. The technique is based 
on the slightly modified Newman-algorithm [14-17] from the 
theory of large networks. The main idea is to define strongly 
connected disjoint regions in the network which are weakly 
connected. This is achieved by maximizing a measure, called 
the modularity, which is denoted by Q; larger Q values rep-
resent better partitioning. Maximizing Q is usually achieved 
by ‘fine-tuning’ algorithms (see [18]) however, we found that 
even the fine tuning in itself did not give satisfactory result. 
Hence, after the fine-tuning stage we apply a genetic algorithm 
to reach proper partitioning.

To formulate Q, the definition of the graph representing the 
hydraulic system is needed. For this, the nodes of the graph are 
the network nodes (the possible measurement points) of the sys-
tem, and two nodes in the graph are connected only when they 
are connected in the WDS via a pipe (or by another edge ele-
ment, e.g. valve, pump, etc.). For the mathematical formulations 
and the numerical computations the adjacency matrix A of the 
graph and the degree ki of the ith node are needed. An A(i, j) 
element of A is 1 if nodes i and j are connected in the graph 
and 0 otherwise. Since the graph is undirected, Ai is symmet-
ric. The degree ki of node i is the number of edges connected 
to it and can easily be determined from the adjacency matrix: 
k A i, j A i, ji j j
= ( ) = ( )∑ ∑ . The total number of the edges in 

the graph can also be calculated from A: N A i, je ji
= ( )∑∑1 2 .

With the above definitions the modularity Q of a given par-
tition is defined as
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Here, δ is the Kronecker delta, and c(i) is the community 
(subgraph) of node i, i.e. for node pairs of the same community 

we have δ = 1 and for pairs of different communities we have 
δ = 0. The second term behind the sum (ki kj / (2Ne )) is simply the 
probability that nodes i and j are connected. The division by 2Ne 
is only for the normalization of the value of Q. Therefore Q is 
large if the number of connections within a community is larger 
than the average degree of the nodes over the whole network. 
Now the aim of the algorithm is to find a partitioning of the 
network which maximizes the modularity Q. Since this problem 
is known to be an NP-hard problem [12], it is suspected that the 
best division cannot be found in polynomial time, i.e. the com-
putational time will escalate as the graph size increases. 

If a network is divided into just two communities, one can 
define the vector S to represent the nodes in the two groups. 
Let S(i) = 1 when node i is in the first group, and S(i) = −1 oth-
erwise. With S the modularity Q defined by (1) can be rewritten 
in a more convenient way [17]

Q
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where B is the modularity matrix, whose elements are

B A
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Ni j i j
i j

e
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2

In the present paper the maximization of Q is achieved in 
three steps. First, using Newman’s spectral algorithm an initial 
division of the network is given. Second, this division is further 
improved with a so called fine-tuning step employing the Ker-
righan-Lin algorithm [18]. Finally, in order to further increase 
the value of Q a genetic algorithm is used in which the fine-tun-
ing method is regularly used. This way we split the graph into 
two subsystems. If more subsystems are needed, we restart the 
computations on one of the previously found communities. 

Now our aim is to find the S that maximizes Q and contains 
only 1 or −1 values. One way of achieving this is to use the 
largest eigenvector of B: assuming that S can be written as a 
linear combination of the orthonormal eigenvectors uj of B, i.e. 
S =∑ α j jj

u and using that α j j= ′Su , we have
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where  βi  is the eigenvalue of B corresponding to the eigenvector 
ui . From the right-hand side of (4) it is straightforward to see 
that a good guess of the division would be to choose S according 
to the term of the largest eigenvalue βn . To do that we write 
S(i) = −1 if  un(i) < 0, and S(i) = 1 otherwise.

Our numerical experiments with real-life WDSs show that 
the above method does not give a good division (see Fig. 2a for 
such example), but it can be used as an initial guess, that needs 
to be further improved. Newman suggested that to improve the 
quality of the division (i.e. to further increase Q) one should 
use the Kernighan-Lin algorithm [18], often referred to as 

(1)

(2)

(3)

(4)
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fine-tuning method. This technique systematically moves each 
node at the boundary of the two subsystems to the opposite 
community and the new value of Q is computed. When all the 
nodes have been moved, we pick the one that has resulted in 
the largest change in Q. In every step only one node is moved 
and the new value of Q is calculated, and one node can only be 
moved once. When every node has been moved the configura-
tion that has the largest Q is kept, but only if it is larger than the 
original Q. This whole procedure is repeated until no further 
increase in Q can be reached (see also [19]).

We found that even applying the above fine-tuning method 
did not provide an acceptable result in many cases (see Fig. 2b) 
but is extremely time-consuming for large networks. In order 
to overcome this problem and to speed up the computation, we 
embedded the above technique into a genetic algorithm (GA). 
For the GA computations, binary coding was used; i.e. the gene 
length was equal to the number of nodes Nn and each gene val-
ues (-1, 1) represent the community, where a given node is con-
cerned. The computations were performed using the built-in 
GA solver of MATLAB with default settings. Apart from the 
population size, which was set to 10 individuals. The com-
putations were performed on up to 100 generations, then the 
fine-tuning process was ran on the best individual. If the sepa-
ration was not complete, the above steps were repeated until we 
obtained two disjoint region. The result of such an optimization 
is depicted in Fig. 2c.

2.2 Hydraulic simulations
In this section we briefly summarize the hydraulic model 

and its solution technique. We used the in-house software 
“STACI” developed in C++ at the Dept. of Hydrodynamic Sys-
tems, which, similar to EPANET [20], solves the nodal mass 
conservation equations, given by

δ j j
j

im D∑ = ,  for all nodes

and the general edge equations

h h f ms e j− = ( ) ,  for all edges.

In Eq. (5), mj  is the mass flow rate (kg/s) through the jth 
edge connected to the actual node and Di (kg/s) is the demand 
at the ith node. As all edges are directed (to define the positive 
direction of flow), δj = 1 if the actual edge terminates at the node 
(i.e. positive flow of the jth edge is an inflow to the node) and 
δj = −1 if it starts at the edge (i.e. positive flow of the jth edge is 
an outflow from the node).

Equation (6) describes a general edge element connecting 
two nodes, e.g. a pipe, a pump or a valve. hs and he are the heads 
p gρ( )( )  at the starting and terminating nodes of the pipe, 

respectively, and mj  is the mass flow rate through the edge. The 
edge equations are formulated in terms of head (mwc, metres 
of water column) rather than in terms of pressure (Pa) because 
this way, after combining them with the nodal equations (5), the 
resulting system is well-conditioned (numerically). 

Combining the nodal and edge equations – (5) and (6) – we 
end up with a system of Nn + Ne nonlinear algebraic equations 
(Nn,e are the number of nodes and edges, respectively) for the Nn 
number of unknown nodal heads and Ne number of edge mass 
flow rates. Formally, this can be re-written as

0 F x= ( ).

where F is a N Nn e+( )×1  (column) vector of the equations and 
the x = ( )h h h m m mNm Ne

T
1 2 1 2
, , , , ,… � � … �  is the unknown vector.

The above system is solved by means of the damped New-
ton-Raphson technique. During numerical implementation, 
rather than inverting the Jacobian, we solve the linear system

Fig. 2 Result of the community splitting a.) without fine-tuning, b.) with fine-tuning and c.) with genetic algorithms.

(5)

(6)

(7)
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J x x F xn n( ) = ( )δ ω

for δx x x= −+n n1 , where the relaxation parameter 0 1< ≤ω   
is adopted during the iteration process. Moreover, we employ 
the sparse structure of the Jacobian and use the UMFPACK 
sparse linear solver (for details, see [21]) to obtain the solution 
efficiently.

2.3 Sensitivity analysis
Sensitivity analysis provides information on to what extent 

the hydraulic parameters (nodal pressures and pipe flow rates) 
change if a parameter is varied, i.e. we wish to compute ∂ ∂x µi , 
where µi is the actual parameter. In our case, we considered the 
pipe roughness and the nodal demand sensitivities, since these 
are the key uncertain parameters, when modelling a WDS. 
Roughness is usually estimated using engineering tables and 
proposed relationships based on pipe diameter, material and 
age. Water demand is inherently a stochastic variable [30] and 
it depends on many factors, such as climate, household size, 
urban density, water use policies and price.

Notice that instead of using finite differences (as 
in [6, 22, 23]), there is a more convenient way to perform the 
computation. As the hydraulic solver will solve

0 F x= ( ( ), ),µ µi i

(where we emphasized the dependence of the solution vector 
x on µi and also the explicit appearance of µi in the hydraulic 
equations), upon differentiating the above equation with re-
spect to µi , we obtain

0 =
∂
∂

∂
+
∂
∂

→ −
∂
∂

=
∂
∂

F
x
x F J x F
µ µ µ µi i i i

,

where the Jacobian was already computed during the Newton 
iteration and ∂ ∂F µi  is the derivative of the system with re-
spect to the sensitivity parameter. If the sensitivity parameter 
is the demand, only the corresponding continuity equation (5) 
must be differentiated, while if we compute roughness sensitiv-
ities, Eq. (6) must be differentiated that can also be performed 
analytically. In both cases, these will be the only non-zero ele-
ments of the ∂ ∂F µi  vector. 

In what follows, we use the following notations for the 
roughness sensitivities:

S
p

i N j Nij
i

j
n eλ λ, , , .=

∂
∂

∈[ ] ∈[ ]1 1

and for demand q m=  ρ  variation:

S
p
q

i j Nq ij
i

j
n, , , .=

∂
∂

∈[ ]1

where pi and qi are the pressure and demand at the ith node, 
λj is the friction coefficient of the jth pipe, Nn and Ne are the 
number of the nodes and pipes, respectively.

The nodes with high sensitivities are affected mostly by the 
hydraulic behaviour of the network; thus, when trying to identify 
measurement points one might choose the most sensitive ones 
[22]. Let Xk denote the discrete set of k monitoring point loca-
tions, then the objective function to maximize (see also [7]) is

F a a S j Nk j
j

N

j i X i j
k

1

1

1X( ) = = ( ) ∈[ ]
=

∈∑ , max , , ,, ,ζ

where ζ is the parameter (friction coefficient λ or demand q) 
and N equals to Ne (number of pipes, in the case of roughness 
sensitivity) or Nn (number of nodes, in case of demand sensi-
tivity). To put it simple, for k sensor location candidate nodes, 
we pick the corresponding rows from the sensitivity matrix and 
then pick the column-wise maximum values. This ensures that 
if two nodes are “very” sensitive to the same pipe roughness, 
only one of them will be picked and hence the present pipe will 
not be overrepresented in the measurement. An upper bound 
F1,max can be defined, by allowing all the nodes to be chosen 
(k=Nn ) and the lower bound is F1,min = 0.

Fig. 3 and Fig. 4 depict the relative roughness and demand 
sensitivity (the sensitivity values of a given node summed over 
all parameters, relative to the highest one) of the test systems 
from Fig. 1, respectively. As it can be seen, the sensitivities 
(isolevels) correlate reasonably: the high and low sensitivity 
regions are located in the same segment of each network. 

As expected, being constant-head nodes, the sensitivity of 
the inlet node (pumping station modelled by constant pressure) 
and of the reservoir (prescribed water level) are zero. It is 
clearly seen that there are regions of high sensitivity, meaning 
that if we used purely (13) to find the measurement locations 
(e.g. simple ranking methods such as in [22]), we would end 
up with all the sensors accumulating in a relatively small 
area, which is not useful, as explained in [3]. Therefore, in the 
next section we introduce a second objective that ensures the 
diversity of the measurement locations.

2.4 Shannon’s entropy
Shannon introduced the entropy [24, 25] as a probabilistic 

measure of uncertainty or information. To understand the infor-
mation aspect of entropy consider a random vector  X  contain-
ing  N  elementary events. Each x j ∈X  event has a probability 
of occurrence ρ ρ( )x j j=  and the union of all  xj  gives the cer-
tain event. In information theory, the Shannon entropy defined as

H j j
j

N

( ) ln ,X = − ⋅
=
∑ρ ρ

1

which is closely related to the diversity in ecology: ρj is of-
ten the proportion of individuals belonging to the jth species 
in the dataset of interest. Then the Shannon entropy quantifies 
the uncertainty of predicting the species of an individual that 

(8)

(9)

(10)

(11)

(12)

(13)

(14)



56 Period. Polytech. Mech. Eng. K. Klapcsik, R. Varga, Cs. Hős

is taken at random from the dataset [26-28]. Now, the second 
cost function is based on the entropy function (14) and ensures 
the diversity of the measurement locations (see [7] for details)

F
a

a
k j j

j

N

j
j

jj

N2

1
1

( ) ln , .X = − =
=

=

∑
∑

ρ ρ ρ

Jayne’s maximum entropy principle [26, 27] proposes to 
choose the distribution function, which maximizes Shannon’s 
entropy and consistent with a given set of constraints. 
The entropy function (15) defines the sampling set Xk with 
the most evenly spread of pipe roughness or nodal demand. 
The entropy reaches its maximum value in case of uniform 
probability ρj = 1/N, thus an upper bound can be defined as 
F2,max = ln(N). The lower bound F2,min is assumed to be zero.

2.5 Optimization by means of evolutionary algorithms
We are now in the position of formulating the optimization 

problem, which will maximize the sensitivity condition (13) 
and the Shannon entropy (15) using a multi-criterion distance 
based technique to find candidate solutions. Although this is a 
typical multi-objective problem, we shall handle the problem 
as a single-objective one, where the relative importance of the 

two objectives is set by weights (see e.g. [7]). Let wi denote the 
weight of the ith objective and Fi,max its maximum value, then 
the objective to minimize is

f w
F F

Fk i
i k i

ii

X
X

( ) = ( ) −









=
∑ ,max

,max

.

2

1

2

This programming approach defines the closest solution (by 
some distance measure) to an ideal (usually infeasible) solution 
(F1,max, F2,max). The objective is to define the sampling set that 
has the minimum values of (16). It is worth mentioning that the 
problem to identify k measurement locations among Nn nodes 
in the WDS has

N
k

N
k N k

n n

n









 = −( )

!
! !

possible candidates. For example, a system with 549 nodes (WDS 
c. in Fig. 1 with 5 pressure sensors, this gives approx. 408 billion 
possible layouts. This means that the complete enumeration is 
impossible for real-size networks; which, together with the fact 
that the decision variables are integers (ID of the node), led us to 
the use of a genetic algorithm (GA) again to solve the problem 

Fig. 3 The relative roughness sensitivities (isolevels), and the optimal layouts of 2 (blue circels) 4 (red crosses) and 6 (green dots) devices  
based on roughness sensitivity optimization.

(15) (16)

(17)
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Fig. 4 The relative demand sensitivities (isolevels), and the optimal layouts of 2 (blue circels) 4 (red crosses) and 6 (green dots) devices  
based on demand sensitivity optimization.

efficiently. Here, the gene is defined as the discrete set of the k 
monitoring points: Xk kx x x= [ ]1 2

, , , where  xp  is a monitoring 
point location (row of a given sensitivity matrix). Each monitoring 
point can be chosen only once, thus x x p q kp q≠ ∀ ∈[ ], , ,1   . The 
GA computations were performed up to 500 generations, with the 
following parameters: population size of 50, stochastic uniform 
selection, Gaussian mutation where the scale and shrink values 
were 1, and scattered crossover was set. 

2.6 Parameter estimation and calibration of 
hydraulic models

Before any hydraulic model can be used, they need to be 
calibrated. The identification of good sampling points in a 
WDS is necessary to ensure that the accuracy of the calibrated 
model is reasonable. The design of the good sampling layout 
throughout the calibration process was used widely in previ-
ous papers, see e.g. [6, 8, 10, 29]. In the present paper we 
used this approach as a reference to compare with the above 
described sampling design approach.

During the measurements, errors (i.e. uncertainties) in pres-
sure propagate to the calibration parameters (diameter, rough-
ness, etc.) resulting uncertain model prediction. The goal is 
to determine the sampling set with the lowest uncertainty in 

model parameters or predictions. The estimation of the parame-
ter and prediction uncertainties is based on the First Order Sec-
ond Moment (FOSM) [6] theory. The first order approximation 
of the parameter matrix:

Cov J Ja
T= ⋅( )−σ 2

1

where  σ 2  is the error variance of the pressure measurements, 
J is the Jacobian matrix of the derivatives:

∂
∂

∈ ⋅[ ] ∈[ ]y
a

i k N j Ni

k
t a, ,... , ,... ,1 1

where yi are the model predictions (pressures), ak is the esti-
mated model parameter (here, the cluster of pipes with the same 
roughness coefficient); k, Nt and Na is the number of devices, 
observations in time, and estimated parameters, respectively.

Now, the main objective is to minimize the uncertainty of 
estimated parameters using A-optimality (minimize) 

F
N

CovA
a

a ii
i

Na
=

=
∑1 1 2

1

, ,

or D-optimality (maximize) criterion

FD a
Na

= ( )( )− ( )
det .Cov 1

1 2

(18)

(19)

(20)

(21)
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By using the calibrated parameters with uncertainty (18) in 
the hydraulic simulations, the errors propagate to the prediction 
in pressures. The model prediction variance-covariance matrix 
can be estimated by means of the first order approximation:

Cov J Cov Jz z a z
T= ⋅ ⋅

where Jz is the Jacobian matrix of the derivatives at the model 
prediction of interest:

∂
∂

∈[ ] ∈[ ]z
a

i n j ni

k
z a, ,... , ,... ,1 1

where zi is the model prediction value (e.g.: pressures at pre-
defined locations) and Nz is the number of such predictions. 
Then, V-optimality criterion is used to minimize the model pre-
diction uncertainty:

F
N

CovV
z

z ii
i

Nz
=

=
∑1 1 2

1

, .

Note that, in order to estimate the parameters, the number 
of observations N k Nt0 = ⋅  must be greater than the number of 
the calibrated parameters Na , otherwise the matrix ( )J JT  will 
be badly conditioned. This means that we cannot use the same 
Jacobian (or sensitivity matrix) as in Eq. (11). If we would 
handle all pipe roughness in a WDS as a single parameter, the 
number of observations would be greater than the number of 
pipes Ne , resulting an infeasible method. For example, if the 
network contains 500 pipes and one has to deploy 5 devices, at 
least a one hundred observation in time is required to solve the 
calibration problem. Therefore, a common practice to reduce 
the number of calibrated parameters is to group pipe roughness 
coefficients [10], and increase the number of demand condi-
tions [8]. Then, the elements of Jacobian matrix are approxi-
mated by using finite difference method [9].

3 Motivating example
The aim of this section is to demonstrate the above described 

methodologies in case of an artificial network depicted in 
Fig. 5. The network contains Nn = 8 nodes and Ne = 10 pipes. 
The system is fed by a pump modelled by constant head (45 m) 
and by a reservoir (bottom level 160 m, water level 2m) con-
nected to node 1 and 3, respectively. The network node and 
pipe data are given in Table 1 and Table 2, respectively.

The first step of the approach is to divide the network into 
subsystems. Here, we will divide the network into only two 
communities. To obtain an initial guess, the eigenvalue approach 
(4) is applied. By computing the eigenvectors of the modularity 
matrix B, based on the resulting S vector the two communities, 
contain nodes 1, 2, 3, 4, 5 and nodes 6, 7, 8, respectively. The 
corresponding modularity is Q = 0.155. The modularity value 
will be increased by using the fine-tuning method. Node 4, 5, 
6 and 7 are located at the boundary of the subsystems. These 
nodes are systematically moved to the opposite community 

then the new Q value is computed. When every node is picked, 
the node that has resulted the largest increase in the Q value is 
moved to the opposite community. Moving node 4 then node 
5 increases the modularity value up to Q = 0.195 then Q = 0.22, 
respectively. Further Q increase cannot be reached for this net-
work. Thus, the final communities are composed by nodes 1, 2, 
3 and 4, 5, 6, 7, 8, respectively. It should be mentioned, the ini-
tial communities are connected by four edges, while the finals 
are connected only by two edges. Thus, after the fine tuning the 
external connections are decreased that was one of the condi-
tions of the subdivision. 

Fig. 5 An artificial test network.

Table 1 Node Data

Node Elevation (m) Demand (m3/h)

1 118 0

2 125 40

3 133 30

4 123 25

5 124 20

6 117 15

7 112 15

8 111 20

Table 2 Pipe Data

Pipe Diameter (mm) Length (m) H-W Coeff.

1 250 200 120

2 200 400 130

3 150 400 110

4 150 800 110

5 200 800 130

6 150 1000 110

7 200 8200 130

8 200 8000 130

9 200 200 130

10 250 500 120

(22)

(23)

(24)
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Table 3 Normalized roughness sensitivity matrix

        Pipe
Node

1 2 3 4 5 6 7 8 9 10 R i jj λ ,=∑ 1

10

1 0 0 0 0 0 0 0 0 0 0 0

2 0.4021 0.1151 0.0597 0.0168 0.0353 0.0146 2e-4 2e-4 4e-4 0 0.6443

3 0 0 0 0 0 0 0 0 0 0 0

4 0.1938 0.0555 1 0.2465 0.5174 0.2137 30e-4 31e-4 53e-4 0 2.2383

5 0.3070 0.0879 0.4891 0.1377 0.8197 0.1194 17e-4 17e-4 30e-4 0 1.9671

6 0.1974 0.0565 0.9841 0.2345 0.5269 0.2346 0.0108 0.0110 0.0191 0 2.2748

7 0.1956 0.0565 0.9920 0.2405 0.5221 0.2241 0.6437 0.6673 69e-4 0 3.5484

8 0.1956 0.0560 0.9920 0.2405 0.5221 0.2241 0.6437 0.6673 69e-4 6e-4 3.5923

Table 4 Normalized demand sensitivity matrix

            Demand
Node

1 2 3 4 5 6 7 8 Rqi jj ,=∑ 1

8

1 0 0 0 0 0 0 0 0 0

2 0 0.0437 0 0.0211 0.0334 0.0215 0.0213 0.0213 0.1622

3 0 0 0 0 0 0 0 0 0

4 0 0.0211 0 0.3533 0.1728 0.3476 0.3505 0.3505 1.5957

5 0 0.0334 0 0.1728 0.2736 0.1759 0.1743 0.1743 1.0043

6 0 0.0215 0 0.3476 0.1759 0.3681 0.3577 0.3577 1.6284

7 0 0.0213 0 0.3505 0.1743 0.3577 0.9668 0.9668 2.8375

8 0 0.0213 0 0.3505 0.1743 0.3577 0.9668 1 2.8707

Now, one can identify the sampling locations in the sub-net-
works. The simplest way is to pick the most sensitive nodes 
from both communities. The results of the sensitivity analysis 
with respect friction coefficient and nodal demand are sum-
marized in Table 3 and Table 4, respectively. The sensitivity 
values are normalized with the maximum sensitivity value for 
each case. The more sensitive node are those with higher row-
wise sum (last columns), since these are affected mostly by the 
hydraulic behaviour of the network. It is worth mentioning that 
the pipes and nodes with higher sum per column has greater 
impact on the hydraulic state of the WDS. The first community 
contains node 1, 2, and 3, however only node 2 can only be pro-
posed as a measurement point. Node 1 and 3 are constant-head 
nodes, connected to a pump station (prescribed pressure) and 
reservoir (prescribed water level). Thus, as expected, these are 
zero sensitivity nodes. In addition, these two nodes do not affect 
the hydraulic behaviour, since their sum per column is zero in 
case of demand sensitivity, see Table 4. The second community 
allows more freedom to consider sensitive nodes as potential 
measurement locations. However, the most sensitive nodes are 
picked with respect pipe roughness and nodal demand which 
are node 8 and node 7, respectively. 

To demonstrate the calculation of the objective that maxi-
mizes sensitivity and diversity, consider the case of deploying 
three measurement devices based on the roughness sensitivity 

matrix. Let Xk = [ ]2 5 6, ,  be e discrete set of devices. We pick 
the corresponding rows of the sensitivity matrix (Table 4) then 
pick the column-wise maximum (underlined in the table) val-
ues  aj .These maximum values are summarized to obtain the 
value of the first objective (13) that is F k1

2 83( ) .X ≅ . Now, 
each  ρj  can be calculated from  aj  using Eq. (15), then the 
value of second objective F k2

1 62X( ) ≅ .  can be obtained. 
With using equal cost function weighting w1 = w2 = 0.5, and 
F

1
4 19

max
.≅  and F

2
10 2 30

max
ln .= ( ) ≅ , the combined objec-

tive (16) is f kX( ) ≅ 0 31. . The above computation is the 
same in terms of demand sensitivities. Searching for the min-
imum results in the optimal layout of three devices, that is the 
set of nodes 2, 5 and 8; and the corresponding objective is 
f kX( ) ≅ 0 11. . Using demand sensitivities, similar node set is 
identified as optimal measurement points, however, instead of 
node 8, we pick node 7 as the third sample point. 

The classical FOSM based approaches requires to use 
grouped pipe roughness coefficients. From the above Pipe Data 
(see Table 2) three aggregate groups of pipes can be composed 
for H-W roughness coefficients 110, 120 and 130. 

The elements of Jacobian are the nodal-pressure (19) deriv-
atives with respect the roughness parameters, which was 
approximated by finite differences. The roughness value of 
each pipe in a given group was increased by 10 percent, then 
the pressures (heads) were computed at the nodes by means of 
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“STACI”. After that, the approximate values of the derivatives 
was calculated using forward finite difference method. The 
obtained H-W-roughness parameter-group sensitivity matrix 
for one loading condition (given in Table 1) is summarized 
in Table 5. Since these methods are based on the calibration 
of the unknown pipe roughness groups, for the feasible cali-
bration at least three observations are required. Therefore the 
minimum number of pressure sensors for one loading condi-
tion is three. The optimal layouts of these three sensors are 
the set of nodes 2, 4 and 5 using A-Optimality (20) criterion, 
while D-Optimality (21) and V-Optimality (24) criterions sug-
gest the same node set 2, 4, and 8 as optimal locations.

Table 5 Jacobian matrix of grouped pipe roughness coefficients

Node H-W 110 H-W 120 H-W 130

1 0 0 0

2 4e-4 0 0

3 0 0 0

4 0.0197 28e-4 62e-4

5 35e-4 44e-4 0.0101

6 0.0196 28e-4 66e-4

7 0.0197 28e-4 0.0240

8 0.0197 34e-4 0.0240

4 Real Life Case Studies
In this section we use the above described methodologies to 

locate the best sampling locations on the test WDSs shown in 
Fig. 1. First we investigate the effect of the number of sensors 
on the cost function (16) with equal weights. Then, we com-
pare the different optimization methods: (a) the roughness and 
(b) demand sensitivity based optimizations of the objective 
function (16), (c) A-optimality (20), (d) D-optimality (21), (e) 
V-optimality (24) criterion, respectively. We also investigate 
the effect of cost function weighing with varying w1 between 

0 and 1, while the sum of the weights was kept constant 
(w1 + w2 = 1). Finally, the results of partitioning are presented, 
and within each zone the node with the highest sensitivity is 
picked as a sampling location.

4.1 Optimal layouts with equal weights
Fig. 6 depicts the value of the objective function (16) as 

a function of the number of sensors k, using equal weights. 
Subplots a. and b. correspond to the roughness and demand 
sensitivity approaches, respectively, while the red square, 
blue circle, green downside and black upside triangles denote 
WDSs a., b., c. and d., respectively, from Fig. 1. The figure 
shows a convergence in both cases for each WDS: beyond a 
certain limit, the objective of the optimal solution cannot be 
improved significantly, i.e. adding more sensors above a limit 
provides only a little amount of extra information, giving rise 
to an optimal sensor number.

The optimal layout for different number of measurement 
devices with the same cost function weighting (w1 = w2 = 0.5) 
are shown in Fig. 3 and Fig. 4 based on roughness and demand 
sensitivities respectively, for 2 (blue circles), 4 (red crosses) 
and 6 (green dots) devices. Comparing the corresponding 
maps in the figures one can observe slightly different locations 
in the case of the two sensitivity matrices. In the case of sys-
tems a., c. and d. the sensors are placed in similar locations, 
however, for system b. the proposed sampling points are dif-
ferent. It is interesting to note that the technique is robust in 
the sense that upon adding new sensors, the old ones did not 
move significantly.

4.2 Comparison of different optimization methods
The resulting layouts of different optimization methods are 

compared in Fig. 7 using four pressure loggers. The blue and 
red triangles denote the layouts obtained by means of rough-
ness (11) and demand (12) sensitivity approach with maxi-
mization of Shannon entropy (16) using equal (w1 = w2 = 0.5) 

Fig. 6 The optimal values of the objective function with respect the number of measurement devices. Red square-WDS a., blue circle-WDS b., green downside 
triangle-WDS c., black triangle-WDS d., see Fig 1. Subplot a.) and b.) correspond to the roughness and demand sensitivity approaches, respectively.
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cost function weighting, while the green, yellow and magenta 
markers denote the measurement locations obtained by means 
of D-optimality (21), A-optimality (20) and V-optimality (24) 
criterion, respectively.

The Jacobian matrix (19) of the derivatives of Network a., 
b., c., and d., was calculated using Na = 4, 5, 6 and 4 grouped 
pipe roughness coefficients, respectively, while the number of 
observations in time Nt was increased to five by artificially pre-
scribing demand scenarios considering the scaling properties 
[30] of water demand statistics. The standard deviation of pres-
sure loggers was assumed to σ = 1m.

In general, the comparison shows good agreement between 
the different methodologies in case of all investigated WDSs. 
The located sampling points spread evenly across the net-
works, however, slight differences between measurement lay-
outs can be recognized. 

One of the reasons is probably that there are usually 
many combinations of near optimal solution (i.e. sampling 
layout) with similar fitness values in a large-size optimization 
problem. We can also conclude that the distribution of the 
sampling points is relatively uniform, but in some cases the 
FOSM based approaches result almost identical locations, (see 
e.g.: Network b., A-optimality.). This is probably due to that 
the number of observations N k No t= ⋅ = ⋅ =4 5 20   (spatial 

and temporal) is higher, than the minimally required for 
calibration process. 

Finally, the measurement locations are usually located away 
from the pump stations, reservoirs (see Fig. 1), and transmission 
pipes, respectively. This confirms the suggestion of Walski [3] 
that has also been verified in previous studies [8, 10].

4.3 The effect of cost function weighting and 
community structure

The effect of cost function weighting was also investigated. 
The first weight w1 was varied between 0 and 1 such that the 
sum of the weights was kept constant (w1 + w2 = 1). In Fig. 8 and 
Fig. 9 the optimal layouts of 4 measurement devices with three 
different cost function weightings (w1 = 1, 0.5, 0) are given 
for roughness-based and demand-based sensitivity matrices, 
respectively, denoted by brown, blue, and red triangles. From 
the result of computations, it was observed regardless of the 
sensitivity approach, that the technique is insensitive to the 
weighing in the range of w1 = 0.1…0.9. In this range the result-
ing layouts are almost equivalent or very similar to the one 
with cost function weighting w1 = 0.5 . It should be noted that 
the demand-based approach tends to place the devices to dead 
ends and also, in the case of w1 = 0 (purely Shannon-based 
objective) one can observe poor results as all the measurement 

Fig. 7 Comparison of the layouts obtained by means of different methodologies.
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Fig. 8 The optimal measurement layouts of four sensors as a result of roughness sensitivity approach with 3 cost function (16)  
weightings, and the communities with the most sensitive nodes.

devices are deployed very close to each other and along the 
main supply route, see Fig. 9. By comparing Fig. 8 and Fig. 9 
we can conclude that both sensitivity approaches result in a 
similar distribution of measurement devices. 

Finally, the partitioning of the four test networks into four 
disjoint sectors was performed with the method of modularity 
maximization explained earlier. The results are shown in Fig. 8 
and Fig. 9 with differently coloured domains corresponding dif-
ferent communities, and the node with the highest roughness and 
demand sensitivity in each community is denoted by yellow trian-
gles (“Max”). It should be noted the sensitivities increase almost 
gradually in a given direction. This actually explains why the 
nodes at the boundaries of communities are picked in a few cases. 
Although it is the simplest approach to assign one pressure logger 
(per community), it is also possible to use other methodologies 
to locate one or more sampling point in each measurement zone.

Comparing the partitioning with the results of the different 
function weighting one can conclude that for both the rough-
ness and demand sensitivity approaches it is not true that in 
every sector one sensor is placed. However, in the case of equal 
cost functions (blue triangles) the sensors are almost evenly 
spread between the sectors.

5 Summary
In this paper the problem of optimal measurement layout 

design was investigated on real-life water distribution systems. 
First, a method was presented that provides a partitioning of the 
network based only on its topology. The described algorithm is a 
slightly modified version of the Newman algorithm augmented 
with fine tuning embedded in a genetic algorithm to maximize 
modularity. Then the measurement layout design problem was 
formulated as a single-objective optimization, where the objec-
tive was to maximize the linear combination of the overall sen-
sitivity and Shannon’s entropy. Roughness and demand sensi-
tivity approaches were used for the optimization, which were 
performed by means of a standard genetic algorithm.

As a result a convergence was observed in the sense that 
upon adding new sensors, beyond a certain limit (different for 
each investigated network) the optimal value of the objective 
function was not improved significantly. This means that there 
exists an optimal number of pressure sensors, which provides a 
reasonable compromise between measurement effort and accu-
racy. This method was found to be robust, regardless of the sen-
sitivity approach: upon adding a new sensor, it did not change 
the location of the previously mounted sensors. The effect of 
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Fig. 9 The optimal measurement layouts of four sensors as a result of demand sensitivity approach with 3 cost function (16)  
weightings, and the communities with the most sensitive nodes.

cost function weighing was also investigated. The results show 
that the distribution of the pressure sensors are similar in a wide 
range of cost function values (w1 = 0.1…0.9).

Finally, the partitioning of the test networks into four sectors 
was compared with the distribution of four pressure sensors 
with different cost functions. In the case of equal cost func-
tions, in almost every case, three sensors out of the four were 
placed in different sectors. 

Acknowledgement
This research has been supported by the Hungarian Scien-

tific Research Fund OTKA, under grant no. K 106141.

References
[1] Ridolfi, E., Servili, F., Magini, R., Napolitano, F., Russo, F. "Artificial 

neural networks and entropy-based methods to determine pressure dis-
tribution in water distribution systems." Procedia Engineering. 89, pp. 
648-655. 2014.

 https://doi.org/10.1016/j.proeng.2014.11.490
[2] Xu, J., Fishcbeck, P. S., Small, M. J., VanBriesen, J. M., Casman, E. 

"Identifying sets of key nodes for placing sensors in dynamic water dis-
tribution networks." Journal of Water Resources Planning and Manage-
ment. 134(4), pp. 378-385. 2008.

 https://doi.org/10.1061/(ASCE)0733-9496(2008)134:4(378)

[3] Walski, T. M. "Technique for calibrating network models." Journal of 
Water Resources Planning and Management. 109(4), pp. 360-372. 1983. 

 https://doi.org/10.1061/(ASCE)0733-9496(1983)109:4(360) 
[4] Lee, B. H., Deininger, R. A. "Optimal locations of monitoring stations 

in water distribution system." Journal of Environmental Engineering. 
118(1), pp. 4-16. 1992.

 https://doi.org/10.1061/(ASCE)0733-9372(1992)118:1(4)
[5] Yu, G., Powell, R. S. "Optimal design of meter placement in water dis-

tribution systems." International Journal of Systems Science. 25(12), pp. 
2155-2166. 1994.

 https://doi.org/10.1080/00207729408949342
[6] Bush, C., Uber, J. "Sampling design methods for water distribution mod-

el calibration." Journal of Water Resources Planning and Management. 
124(6), pp. 334-344. 1998.

 https://doi.org/10.1061/(ASCE)0733-9496(1998)124:6(334)
[7] De Schaetzen W. B. F., Walters, G. A., Savic, D. A. "Optimal sampling 

design for model calibration using shortest path, genetic and entropy al-
gorithms." Urban Water. 2(2), pp. 141-152. 2000.

 https://doi.org/10.1016/S1462-0758(00)00052-2
[8] Kapelan, Z., Savic, D., Walters, G. A. "Multiobjective sampling design 

for water distribution model calibration." Journal of Water Resources 
Planning and Management. 129(6), pp. 466-479. 2003.

 https://doi.org/10.1061/(ASCE)0733-9496(2003)129:6(466)

https://doi.org/10.1016/j.proeng.2014.11.490
https://doi.org/10.1061/(ASCE)0733-9496(2008)134:4(378)
https://doi.org/10.1061/(ASCE)0733-9496(1983)109:4(360)
https://doi.org/10.1061/(ASCE)0733-9372(1992)118:1(4)
https://doi.org/10.1080/00207729408949342
https://doi.org/10.1061/(ASCE)0733-9496(1998)124:6(334)
https://doi.org/10.1016/S1462-0758(00)00052-2
https://doi.org/10.1061/(ASCE)0733-9496(2003)129:6(466)


64 Period. Polytech. Mech. Eng. K. Klapcsik, R. Varga, Cs. Hős

[9] Lansey, K. E., El-Shorbagy, W., Ahmed, I., Araujo, J., Haan, C. T. "Cal-
ibration assessment and data collection for water distribution networks." 
Journal of Hydraulic Engineering. 127(4), pp. 270-279. 2001.

 https://doi.org/10.1061/(ASCE)0733-9429(2001)127:4(270) 
[10] Behzadian, K., Kapelan, Z., Savic, D., Ardeshir, A. "Stochastic sampling 

design using a multi-objective genetic algorithm and adaptive neural net-
works." Environmental Modelling & Software. 24(4), pp. 530-541. 2009. 

 https://doi.org/10.1016/j.envsoft.2008.09.013
[11] Bhave, P. R. "Optimal Design of Water Distribution Networks." Alpha 

Science International, Pangbourne England. 2003.
[12] Brandes, U., Delling, D., Gaertler, M., Görke, R., Hoefer, M., Nikoloski, 

Z., Wagner, D. "On Finding Graph Clusterings with Maximum Modulari-
ty." In: Graph-Theoretic Concepts in Computer Science, 33rd International 
Workshop, WG 2007, Dornburg, Germany, June 21-23, 2007, pp. 121-132. 

 https://doi.org/10.1007/978-3-540-74839-7_12
[13] Giustolisi, O., Ridolfi, L. "New Modularity-Based Approach to Segmenta-

tion of Water Distribution Networks." Journal of Hydraulic Engineering. 
140(10), 04014049. 2014.

 https://doi.org/10.1061/(ASCE)HY.1943-7900.0000916
[14] Newman, M. E. J. "Fast algorithm for detecting community structure in 

networks." Physical Review E. 69(6), 066133. 2003.
 https://doi.org/10.1103/PhysRevE.69.066133
[15] Newman, M. E. J. "Finding community structure in networks." Physical 

Review E. 74(3), 036104. 2006.
 https://doi.org/10.1103/PhysRevE.74.036104
[16] Newman, M. E. J. "Modularity and community structure in networks." 

Proceedings of the National Academy of Sciences. 103(23), pp. 8577-
8582. 2006.

 https://doi.org/10.1073/pnas.0601602103
[17] Newman, M. E. J. "Spectral methods for network community detection 

and graph partitioning." Physical Review E. 88(4), 042822. 2013. 
 https://doi.org/10.1103/PhysRevE.88.042822
[18] Kerninghan, B. W., Lin, S. "An efficient heuristic procedure for partition-

ing graphs." Bell System Technical Journal. 49(2), pp. 291-307. 1970.
 https://doi.org/10.1002/j.1538-7305.1970.tb01770.x
[19] Sun, Y., Danila, B., Josi, K., Bassler, K. E. "Improved community struc-

ture detection using a modified fine-tuning strategy." EPL (Europhysics 
Letters). 86(2), 28004. 2009. 

 https://doi.org/10.1209/0295-5075/86/28004

[20] Rossman, L. A. "EPANET 2 Users Manual." U.S. Environmental Protec-
tion Agency report EPA/600/R-00/057, 2000.

[21] Davis, T. A. "Algorithm 832: Umfpack v4.3-an unsymmetric patter mul-
tifrontal method." ACM Transactions on Mathematical Software. 30(2), 
pp. 196-199. 2004.

 https://doi.org/10.1145/992200.992206
[22] Morosini, A. F., Costanzo, F., Veltri, P., Savic, D. "Identification of mea-

surement points for calibration of water distribution network models." 
Procedia Engineering. 89, pp. 693-701. 2014.

 https://doi.org/10.1016/j.proeng.2014.11.496
[23] Greco, M., Giudice, G. "New approach to water distribution network cal-

ibration." Journal of Hydraulic Engineering. 125(8), pp. 849-854. 1999.
 https://doi.org/10.1061/(ASCE)0733-9429(1999)125:8(849)
[24] Shannon, C. E. "A mathematical theory of communication." The Bell 

System Technical Journal. 27(3), pp. 379-423. 1948.
 https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
[25] Shannon, C. E. "A mathematical theory of communication." ACM SIG-

MOBILE Mobile Computing and Communications Review. 5(1), pp. 
3-55. 2001.

 https://doi.org/10.1145/584091.584093
[26] Jaynes, E. T. "Information theory and statistical mechanics." The Physi-

cal Review. 106(4), pp. 620-630. 1957.
 https://doi.org/10.1103/PhysRev.106.620
[27] Jaynes, E. T. "On the rationale of maximum-entropy methods." Proceed-

ings to the IEEE. 70(9), pp. 939-952. 1982.
 https://doi.org/10.1109/PROC.1982.12425
[28] Kesavan, H., Kapur, J. N. "The generalized maximum entropy princi-

ple." IEEE Transactions on Systems, Man and Cybernetics. 19(5), pp. 
1042-1052. 1989.

 https://doi.org/10.1109/21.44019
[29] Kapelan, Z. S. Savic, D. A., Walters, G. A. "Optimal sampling design 

methodologies for water distribution model calibration." Journal of Hy-
draulic Engineering. 131(3), pp. 190-200. 2005.

 https://doi.org/10.1061/(ASCE)0733-9429(2005)131:3(190)
[30] Vertommen, I., Magini, R., da Conceição Cunha, M., Guercio, R. "Water 

Demand Uncertainty: The Scaling Laws Approach." In: Ostfeld, A. (ed.) 
Water Supply System Analysis-Selected Topics. (pp. 105-129.), InTech, 

 https://doi.org/10.5772/51542

https://doi.org/10.1061/(ASCE)0733-9429(2001)127:4(270)
https://doi.org/10.1016/j.envsoft.2008.09.013
https://doi.org/10.1007/978-3-540-74839-7_12
https://doi.org/10.1061/(ASCE)HY.1943-7900.0000916
https://doi.org/10.1103/PhysRevE.69.066133
https://doi.org/10.1103/PhysRevE.74.036104
https://doi.org/10.1073/pnas.0601602103
https://doi.org/10.1103/PhysRevE.88.042822
https://doi.org/10.1002/j.1538-7305.1970.tb01770.x
https://doi.org/10.1209/0295-5075/86/28004
https://doi.org/10.1145/992200.992206
https://doi.org/10.1016/j.proeng.2014.11.496
https://doi.org/10.1061/(ASCE)0733-9429(1999)125:8(849)
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://doi.org/10.1145/584091.584093
https://doi.org/10.1103/PhysRev.106.620
https://doi.org/10.1109/PROC.1982.12425
https://doi.org/10.1109/21.44019
https://doi.org/10.1061/(ASCE)0733-9429(2005)131:3(190)
https://doi.org/10.5772/51542

	1 Introduction
	2 Mathematical tools
	2.1 Dividing the network into disjoint networks
	2.2 Hydraulic simulations
	2.3 Sensitivity analysis
	2.4 Shannon’s entropy
	2.5 Optimization by means of evolutionary algorithms
	2.6 Parameter estimation and calibration of hydraulic models

	3 Motivating example
	4 Real Life Case Studies
	4.1 Optimal layouts with equal weights
	4.2 Comparison of different optimization methods
	4.3 The effect of cost function weighting and community structure

	5 Summary
	Acknowledgement
	References

