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Abstract

In this study, a non-classical approach was developed to analyze nonlinear free and forced vibration of an Axially Functionally Graded 

(AFG) microbeam by means of modified couple stress theory. The beam is considered as Euler-Bernoulli type supported on a three-

layered elastic foundation with Von-Karman geometric nonlinearity. Small size effects included in the analysis by considering the length 

scale parameter. It is assumed that the mass density and elasticity modulus varies continuously in the axial direction according to 

the power law form. Hamilton's principle was implemented to derive the nonlinear governing partial differential equation concerning 

associated boundary conditions. The nonlinear partial differential equation was reduced to some nonlinear ordinary differential 

equations via Galerkin's discretization technique. He's Variational iteration methods were implemented to obtain approximate 

analytical expressions for the frequency response as well as the forced vibration response of the microbeam with doubly-clamped 

end conditions. In this study, some factors influencing the forced vibration response were investigated. Specifically, the influence of 

the length scale parameter, the length of the microbeam, the power index, the Winkler parameter, the Pasternak parameter, and 

the nonlinear parameter on the nonlinear natural frequency as well as the amplitude of forced response have been investigated.

Keywords

nonlinear vibration, Functionally Graded Material (FGM), nonlinear elastic foundation, modified couple stress theory, He's variational 

method

1 Introduction
Experiments show that ignoring the internal length scale, 
which is the case in the classical continuum mechanics, 
in micro and nano structures can result in inaccurate struc-
tural predictions. To overcome this problem, a number of 
theories like couple stress theory and strain gradient the-
ory [1–5] have been developed. In the couple stress theory, 
the effect of couple per unit area along with the effect of 
normal and shear forces is considered [6]. Yang et al. [7] 
developed a modified couple stress theory by use of 
a symmetrical couple stress tensor. Vibration analysis of 
micro-structures has attracted a lot of researchers in the 
last decade. Plenty of papers has been published on mirco-
beams [8–13], microbars [14, 15] and micro plates [16, 17] 
taking the length-scale parameters into account.

Functionally Graded Materials (FGMs), possessing 
spatial distributed properties, have been firstly devel-
oped for some special applications such as rocket engine 

components, aerospace structures, and turbine blades. 
The earliest FGMs were introduced by Japanese scien-
tists in the 1980s, as high temperature resistant materi-
als used in aerospace structures. Recently, these materials 
have got lots of applications in electrical devices, energy 
transformations, bio-engineering, and optics, among other 
fields [18]. Variation of mechanical properties through an 
FG beam makes its analysis difficult. Different techniques 
have been adopted to derive the equations and solving 
them to study FG beams. Chakraborty et al. [19] intro-
duced a beam element to study the thermo-elastic behavior 
of FG beam structures. A unified approach was proposed 
by Li [20] for prediction of the static and dynamic behavior 
of FG beams with the rotary inertia and shear deformation 
included. Benatta et al. [21] presented a higher order the-
ory for short FG symmetric beams under three-point bend-
ing. Aydogdu and Taskin [22] studied the free vibration of 
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simply supported FG beams. They implemented Navier 
type solutions to obtain frequencies. Şimşek [23] stud-
ied the nonlinear dynamics of an FG beam with a mov-
ing harmonic load. Kocaturk et al. [24] investigated on the 
non-linear static behavior of a cantilever Timoshenko FG 
beam under a non-follower transversal uniformly distrib-
uted load. Although FG structures are intensively stud-
ied by a lot of researchers, there exists limited number of 
publications on Axially Functionally Graded materials 
(AFG) in which the material constituents and the mechan-
ical properties change axially. Huang and Li [25] studied 
the free vibration of non-uniform AFG beams. Shahba and 
Rajasekaran [26] studied the free vibration of Euler–
Bernoulli AFG beams by means of differential transform 
method. Akgöz and Civalek [27] studied vibration behav-
ior of a non-uniform AFG Euler–Bernoulli microbeam 
with various boundary conditions using the modified 
strain gradient and couple stress theories. Huang et al. [28] 
proposed a new method of analyzing the vibration of 
AFG Timoshenko beams with non- uniform cross-sec-
tion. The size-dependent static and vibration behavior of 
micro-beams made of FGMs are analytically investigated 
on the basis of the modified couple stress theory in the 
elastic range by Asghari et al. [29]. The results showed 
that the static deflection and natural frequencies devel-
oped by the modified couple stress theory have a signifi-
cant difference with those obtained by the classical beam 
theory when the ratio of the beam characteristic size to the 
internal material length scale parameter is small [29].

Recently, a number of researchers tried to study 
the nonlinear vibration analysis of FG structures. 
Moeenfard et al. [30] applied He's homotopic pertur-
bation method to study the nonlinear free vibration of 
a Timoshenko microbeam. Ramezani [31] contributed 
to the field by examining the nonlinear free vibrations 
of a microscale Timoshenko beam employing the multi-
ple scales method. Rajabi and Ramezani [32] introduced 
a microscale nonlinear beam model on the basis of strain 
gradient elasticity with surface energy. Bending response 
of non-homogenous microbeams embedded in an elas-
tic medium was investigated by Akgöz and Civalek [33], 
based on modified strain gradient elasticity theory in con-
junctions with various beam theories. It was observed that 
the effect of shear deformation may become more import-
ant for lower slenderness ratios. In addition, it can be said 
from the results that the small scale effect is more import-
ant when the thickness of the microbeam approaches 
to material length scale parameter [33].

In 2014, Bayat et al. [34] implemented an analytical vari-
ational approach for vibration analysis of an electrostati-
cally-actuated microbeam. Şimşek [35] studied nonlinear 
free vibration of nano-beams based on Eringen's nonlocal 
elasticity theory using He's variational method. In another 
paper, he also studied the nonlinear static and free vibra-
tion of homogenous Euler-Bernoulli microbeams resting 
on a three-layered nonlinear elastic foundation within the 
framework of the modified couple stress theory [36]. A sim-
ple nonlocal finite element model was developed for buck-
ling analysis of protein microtubules in [37]. Euler-Bernoulli 
beam model was used as continuum model of microtubules. 
The results indicate that the effect of nonlocal parameter 
is to reduce the buckling load of microtubules for all type 
boundary conditions, in general [37].

Buckling analysis of linearly tapered micro-columns 
based on strain gradient elasticity studied by Akgoz and 
Civalek [38]. Bernoulli-Euler beam theory was used 
to model the non-uniform micro column. It was showed that 
the differences between critical buckling loads achieved 
by classical and those predicted by non-classical theories are 
considerable for smaller values of the ratio of the micro-col-
umn thickness (or diameter) at its bottom end to the addi-
tional material length scale parameters and the differences 
also increase due to increasing of the taper ratio [38].

Jia et al. [39] examined the effect of length-scale parame-
ters on the nonlinear vibration behavior of an FG microbeam. 
Ebrahimi and Zia [40] studied the large- amplitude nonlinear 
vibration of FG Timoshenko beams made of porous material. 
Considering surface effect, Ansari et al. [41] conducted exact 
solution for the nonlinear forced vibration of FG nanobeams 
in the presence of surface effects. Additionally, Şimşek [42] 
studied the nonlinear free vibration of AFG microbeams 
with different boundary conditions based on the modified 
couple stress theory and Von-Karman's geometric nonlin-
earity. Farokhi et al. [43] studied the nonlinear dynamics of 
a geometrically imperfect microbeam numerically on the 
basis of the modified couple stress theory. They showed that 
the natural frequencies of the system increases with increas-
ing either the initial imperfection or the dimensionless 
parameter η. The nonlinear analysis, on the other hand, 
revealed that the system exhibits both hardening and soft-
ening behaviour, depending on the amplitude of the initial 
curvature (imperfection) [43].

Asghari et al. [44] studied a size-dependent formula-
tion for Timoshenko beams made of a FGM and showed 
that modeling beams on the basis of the couple stress the-
ory causes more stiffness than modeling based on the 
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classical continuum theory, such that for beams with small 
thickness, a significant difference between the results 
of these two theories is observed [44]. In [45] a micro-
scale free vibration analysis of Composite Laminated 
Timoshenko Beam (CLTB) model was developed based 
on the newmodified couple stress theory.  It was observed 
that the present beam model can capture the scale effects 
of micro-structures. The numerical results given by the 
CLTB model and the CLBB model showed that the natural 
frequency of the nonclassical beam model is always higher 
than that of the classical beam model [45].

Most recently, Shafiei et al. [46] investigated on non-
linear vibration of AFG tapered microbeams. For vari-
ous boundary conditions, they derived the equations 
of motion and solved them via generalized differential 
quadrature method. Variation of first and second fun-
damental frequencies due to system parameters is stud-
ied. In [47] nonlinear vibration analysis of a simply sup-
ported AFG beam subjected to a moving harmonic load 
as an Euler-Bernoulli beam utilizing Green's strain ten-
sor. The results indicate that these parameters have a con-
siderable effect on both nonlinear natural frequency and 
response amplitude [47]. In another study, free and forced 
vibration analysis of FG doubly clamped micro-beams 
was investigated based on the third order shear deforma-
tion and modified couple stress theories [48]. The numer-
ical results indicated that if the thickness of the beam is 
in the order of the material length scale parameter, size 
effects are more significant [48].

The present paper seems to be the first attempt to address 
the nonlinear free and forced vibration of an AFG 
microbeam on a nonlinear elastic foundation with dou-
bly-clamped boundary condition, based on the modified 
couple stress theory and Von-Karman's geometric nonlin-
earity. A simple power law function is employed to predict 
the varying material properties of the AFG microbeam 
along its axis. The nonlinear governing equations and 
boundary conditions were derived using Hamilton's prin-
ciple. Galerkin's method, He's variational method, and 
He's variational iteration method were employed to deter-
mine the nonlinear natural frequency and forced vibration 
response of the AFG microbeam.

2 Backgrounds
2.1 Problem definition
Consider a functionally graded doubly-clamped microbeam 
with geometric dimensions of length L, width h and thick-
ness h, as indicated in Fig. 1. The microbeam is composed 
of an Axially Functionally Graded material including metal 

and ceramic phases based on a nonlinear elastic founda-
tion. The beam properties vary linearly in the axial direc-
tion according to a simple power law function. This prob-
lem aims in finding the characteristics of nonlinear free and 
forced vibration, including natural frequencies and nonlin-
ear forced vibration response. The effect of the length scale 
parameter, the length of the microbeam, the power index, 
the Winkler parameter, the Pasternak parameter and the non-
linear parameter on results are also investigated. A uniform 
harmonic load of q(x, t) q0 sin ωt is applied on the upper sur-
face of the beam in forced vibration analysis.

2.2 Modified couple stress theory
In the modified couple stress theory proposed by Yang 
et al. [7], the strain energy in an isotropic linear body 
occupying a volume Ω can be written as:

U m ds ij ij ij ij= +( )∫
1

2
σ ε χ Ω

Ω

,  (1)

where σ is the stress tensor, ε is the strain tensor, m is the 
deviarotic part of of the couple stress tensor, and χ is the 
symmetric curvature tensor. These tensors are given by [7]:

σ λ ε δ µεij ij ijtr= ( ) + 2  (2)

m lij ij= 2 2µ χ  (3)

ε ij
i

j

j

i

u
x

u
x

=
∂
∂

+
∂

∂










1

2
 (4)

χ
θ θ

ij
i

j

j

ix x
=

∂
∂

+
∂

∂










1

2
,  (5)

where u is the displacement vector, λ ν
ν ν

=
+( ) −( )

E
1 1 2

, 

µ
ν

=
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E

2 1
, l is the material length scale parameter and 

θ is the rotation vector that can be expressed as:

θ = ( )1

2
curl u .  (6)

Fig. 1 AFG micro-beam based on a three-layered nonlinear 
elastic foundation
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The displacement component of an initially straight 
beam on the basis of Euler-Bernoulli beam theory can be 
written as:

u x z t u x t z w x t
xx , , ,
,
;( ) = ( ) − ∂ ( )

∂
 (7)

u x z ty , , ;( ) = 0  (8)

u x z t w x tz , , , ;( ) = ( )  (9)

where u and w are the axial and transverse displacements 
of any point on the neutral axis, respectively. The Von-
Karman's nonlinear strain-displacement relationship 
based on assumptions of large transverse displacements, 
moderate rotation, and small strain for straight beams are 
given by [47–49]:
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where εxx is the longitudinal strain. The components of 
the rotation vector can be achieved by using Eq. (6) as:

θ θ θy x z
w x t
x

= −
∂ ( )
∂

= =
,
, .0  (12)

Inserting Eq. (12) into Eq. (5) yields the following 
expression for non-zero components of the symmetric cur-
vature tensor:
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The strain energy induced by the nonlinear elastic 
medium can be written as:
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where kL , kp , kN are the spring constants of the Winkler elas-
tic medium, Pasternak elastic medium, and nonlinear elastic 
medium, respectively. The kinetic energy is given by:
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where:

A b h= ⋅  (16)

I bh=
1

12

3
.  (17)

The work done by external force q(x, t) is given by:

V q x t wdx
L

= ( )∫ , .

0

 (18)

2.3 Modeling Axially Functionally Graded materials
It is assumed that material properties of the microbeam, 
such as Young's modulus (E) and mass density (ρ) vary 
linearly in the axial direction according to a power law 
function which can be described by [39]:
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where ΛR and ΛL are the corresponding material prop-
erties of the microbeam at the right and the left end of 
the microbeam and n is a non-negative number that 
defines the material variation profile along the length of 
the microbeam. It should be noted that the material length 
scale parameter l in this study.

3 Derivation of governing equations of dynamic 
equilibrium
Hamilton's principle can be expressed as:

δ T U U V dts el

T
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where T is the kinetic energy, Us is strain energy, Uel is 
the strain energy induced by the nonlinear elastic medium, 
and V is the work done by external applied forces. 

Substituting Eq. (1), Eq. (14), Eq. (15) and Eq. (18) into 
Eq. (22), the governing equations and the corresponding 
boundary conditions can be achieved as:
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The corresponding boundary conditions are defined 
at x = 0 and x = L as follows:

E x A u
x

w
x

u( ) ∂
∂

+
∂
∂

















 = =

1

2
0 0

2

or δ ,  (25)

E x I A l w
x

w
x

( ) +






∂
∂

=
∂
∂







 =

2
0 0

2

2

2
or δ ,  (26)

− ( ) ∂
∂

+
∂
∂

















 +

∂
∂

( ) +






∂
∂




E x A u

x
w
x x

E x I A l w
x

1

2 2

2

2

2

2




−
∂
∂

= ( ) ∂
∂ ∂

=k w
x

x I w
x t

wp ρ δ
3

2
0or .

 (27)

As can be seen from above equation, the governing 
equations are coupled with respect to the displacements 
u and w. To reduce the equations to a single equation 
in terms of w, the in-plane inertia can be neglected [15, 16]. 
Further, Eq. (25) can be rewritten as:
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Integrating Eq. (28) with respect to x gives:
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where c is the integration constant to be calculated 
with respect to the boundary conditions. It is assumed that 
the microbeam has fixed supports in the axial direction. 
Thus, the boundary conditions related to the axial direc-
tion can be expressed as: 
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Integrating both sides of Eq. (30) from 0 to L cosidering 
above boundary conditions gives:
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The governing equation is derived in terms of w by sub-
stituting Eq. (31) into Eq. (24) as follows:
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4 Solution of governing equations
In this section, governing equations are solved by means 
of the semi-analytical method of Galerkin. The displace-
ment function w(x, t) can be expanded into a finite series 
as follows:

w x t w x t, ,( ) = ( ) ⋅ ( )α  (33)

where α(t) is an unknown time-dependent coefficient to be 
determined, and w x( )  is the basis function which must 
satisfy the kinematic boundary conditions. Transverse 
mode shapes of the doubly-clamped beam are as follows:
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where β is maximum amplitude. Substituting the approx-
imate solution in Eq. (33) into Eq. (32), then multiplying 
both sides of the resulting equation by w x( )  and integra-
tion over the domain (0, L) yields the following equation:
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where dot sign stands for derivation with respect to time. 
The coefficients a1 , a2 and Q in Eq. (35) can be expressed as:

a I Al

E x
x

w x w x E x w

L

1

2

0

2

2

2 4

2
= − − +














∂ ( )
∂

( ) ( )





 + ( )

∫

( ) ( ) xx w x dx

k w x dx k w x w x dx

x

L

L

P

L

( ) ( )( )









− ( ) + ( ) ( ) 




( )

∫ ∫ ( )2

0

2

0

/ ρ AAw x dx I x
x
w x w x dx

x Iw x w x d

L L
2

0

1

0

2

( ) −
∂ ( )
∂

( ) ( )




− ( ) ( ) ( )

∫ ∫ ( )

( )

ρ

ρ xx
L

0

∫





 (36)
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Q t a t( ) =
3
sin ,ω  (38)

in which
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g A
L
E x w x dx

L

1

1
2

0
2

= ( ) ( )( )( )∫ ,  (40)

where w w w1 2 3( ) ( ) ( )
, , ,  and w 4( )  are the first, second, third, 

and fourth derivatives of w  with respect to the axial coor-
dinate x, respectively.

4.1 Approximate analytical solution for nonlinear 
free vibration
The microbeam is subjected to the following initial 
conditions:

α β α0 0 0( ) = ( ) =, ,

 (41)

where β is the maximum vibration amplitude of 
the microbeam. For free vibration analysis, Eq. (35) can 
be rewritten in a compact form as:

α α αt a t a t( ) + ( ) + ( ) =
1 2

3
0.  (42)

Based on He's method [50], using the semi-inverse 
method, Eq. (42) can be expressed as:

J a a dt

T

α α α α( ) = − + +





∫

1

2 2 4

2 1 2 2 4

0

4

 ,  (43)

where T is the period of the nonlinear oscillator. It is assumed 
that the approximate solution can be expressed as [42]:

α β ωt tn( ) = cos ,  (44)

where β and ωn are the amplitude and natural frequency of 
the nonlinear oscillator, respectively. Substituting Eq. (44) 
in Eq. (43), and considering the transformation θ = ωnt, 
one can obtain:

J

a a

n
n

n

β ω
ω

β ω θ β θ θ

π

,

sin cos cos

( ) =

− + +

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( ) ( ) ( )

∫
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2 2 4

0

2

2 2 2 1 2 2 2 4


dt.

 (45)

According to the Ritz method, the stationary conditions 
∂
∂

=
J
β

0  and ∂
∂

=
J

nω
0 , should be satisfied to obtain ωn . 

However, this approach generally gives inaccurate results 

for nonlinear oscillators [51]. He modified this condition 

into a simple form ∂
∂

=
J
β

0 . The stationary condition 
∂
∂

=
J
β

0 , results in:

∂
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= − + ( )(
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a d
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0

2 2
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2
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3 4
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 (46)

After some mathematical amendment, Eq. (46) takes 
the following form:

ω
θ β θ θ

θ θ

π

πn

a a d

d

2

1

2

2

2 4

0

2

2

0

2

=
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( )( )

( ) ( )∫

∫

cos cos

sin

.  (47)

The nonlinear natural frequency ωNL can be found by per-
forming the integral expression in Eq. (47), as follows:

ω βNL a a= +





1 2

23

4
.  (48)

Using Eq. (48), the following approximate solution can 
be found for α(t):

α β βt a a t( ) = +





cos .

1 2

23

4
 (49)

4.2 Forced vibration analysis
As it is stated in problem description, the beam is only 
under harmonic side loading in forced vibration analysis. 
Based on Eq. (35) and Eq. (41), the nonlinear equation of 
motion and initial conditions in forced vibration are:

α α α ωt a t a t a t( ) + ( ) + ( ) − =
1 2

3

3
0sin  

α β α0 0 0( ) = ( ) =, ,  

where ω is the forced vibration frequency. According to 
the variational iteration method [50, 51], the correction 
functional can be written as follows:

α α λ α τ α τ τ τn n n n

t

t t L N g d+
( ) = ( ) + ( ) + ( ) − ( ) ∫1

0

,  (50)

where λ is a Lagrange multiplier [52], L is a linear operator, 

N is a nonlinear operator, and g is a known function. 
The multiplier can be obtained as λ τ τ( ) = −( )( )1

1

1a
a tsin  

which results in the following variational iteration formula:

α α τ

α τ
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α τ α τ
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a d
3
sin .ωτ τ

 (51)

The following form is assumed as an approximate 
solution [37]:

α β γ
0 1
t a t( ) = ( )cos ,  (52)
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where γ( a2 ) is a non-zero unknown function of a2 
with γ(0) = 1 [51]. The substitution of Eq. (52) into Eq. (35) 
results in the following residual:

R a a
a

a t

a a t a

0 1

2 2

2

1

1

2

3

1 3

1
3

4

4
3

= −( ) +
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


 ( )

+ ( ) −

β γ
β
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β
γ

cos

cos sinωωτ .

 (53)

By the variational iteration formula (51), we have:

α α τ τ τ
1 0

1

1 0

0

1t t
a

a t R d
t

( ) = ( ) + −( )( ) ( ) ∫ sin .  (54)

Generally speaking, the residual Eq. (53) is not equal 
to zero. The right-hand side of this equation would vanish, 
if α0 (t) is a solution of Eq. (35). We may ensure the vanish-
ing of the factor of cos a t

1
γ( )  by setting [51]:

γ β= +







1

3

4

2

1

2a
a

.  (55)

By implementing formula Eq. (47), we obtain:
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2 1
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(57)
in which γ is defined in Eq. (55).

5 Numerical results
In this section, free and forced vibration of a slender 
microbeam of height h = 10−6, width b = 3 × h, length 
L = 10 × h and l = 1 × h is presented. Mechanical proper-
ties of the desired FG material are shown in Table 1.

In order to verify the extracted formulation the FGM 
variability, foundation effect as well as size effect was set 
to zero in the developed code. The first natural frequency 
had a difference about 1 % compared to a classical doubly 
clamped aluminum beam.

5.1 Free vibration
The nonlinear natural frequency ωNL versus l for different 
values of power index is shown in Fig. 2. The default val-
ues of kNL , kP , kL are assumed 3, 2 and 1 N/m2, respectively. 
By increasing the value of n, the overall nonlinear natural 
frequency ωNL is decreased. Despite of the value of power 
index, an increasing trend is observed for the ωNL for higher 
length scale parameters. The variation of nonlinear natural 
frequency ωNL versus l for different values of L is shown 
in Fig. 3. As the value of L increases, the nonlinear natural 
frequency of ωNL is decreased. Fig. 4 depicts the influence 
of kL on the nonlinear natural frequency for the selected 
values of the length scale parameter. As seen from this 
figure, an increase in the value of kL leads to an increase 
in the nonlinear natural frequency. Fig. 5 shows the effect 
of pasternak medium stiffness on the nonlinear natural 

Table 1 Mechanical properties of the microbeam

EL 
( N/m2 )

ER 
( N/m2 )

ρL 
( kg/m2 )

ρR 
( kg/m2 ) vL vR

ω 
( rad/s )

70e9 393e9 2700 3960 0.346 0.252 2

Fig. 2 Variations of ωNL versus l with respect to variations of n

Fig. 3 Variations of ωNL versus l with respect to variations of L
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frequency according to length scale parameter l. As the 
value of kP increases, the nonlinear natural frequency of 
ωNL is also increased. The variation of nonlinear natural 
frequency ωNL versus l is shown for different values of kNL 
in Fig. 6. Again, increasing the value of kNL makes the non-
linear natural frequency to increase.

5.2 Forced vibration
Time history of the maximum deflection WMax is shown 
for different values of l in Figs. 7 and 8. As the value of l 
increases, period times of system is reduced. 
Fig. 9 depicts the maximum deflection of WMax versus 
time by changing the value of n assuming 

k N
m

k e N
m

k N
mNL P L= = + =3 2 12 1, , . As the value of n 

Fig. 4 Variations of ωNL versus l with respect to variations of kL

Fig. 5 Variations of ωNL versus l with respect to variations of kP

Fig. 6 Variations of ωNL versus l with respect to variations of kNL

Fig. 7 The maximum deflection versus t with respect to l = .14e − 6

Fig. 8 The maximum deflection versus t with respect to l = .19 × 10−6
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increases, the maximum deflection of the system is 
increased. The maximum deflection of WMax is shown 
versus time by changing the value of L 

considering k N
m

k e N
m

k N
mNL P L= = + =3 2 12 1, ,  in Fig. 10. 

The time history of the maximum deflection by changing 
the value of length scale parameter with 

k N
m

k e N
m

k N
mNL P L= = + =3 2 12 1, , , is shown in Fig. 11. 

As the value of l increases, the maximum deflection of 
the system is decreased.

5.3 Results
As shown in Figs. 2, 3, and 5, the length of the microbeam 
l, the power index n, and the spring constant kP had 

significant effect on the natural frequency of the nonlinear 
system. With small changes in these parameters, the non-
linear natural frequency of a nonlinear system underwent 
major changes. On the other hand, Figs. 4 and 6 showed 
that the effect of parameters kL (linear spring constant) 
and kNL (nonlinear spring constant) on the nonlinear natu-
ral frequency was not too much. Figs. 7 and 8 showed that 
increasing the material length scale parameter l reduced 
the periodicity of the system. The shapes in Figs. 9, 10 
and 11 revealed that increasing the parameters n and L 
increased the maximum deflection, while increasing l 
reduced the maximum deflection.

6 Conclusion
In this study, a non-classical approach was developed 
to analyze nonlinear free and forced vibration of an Axially 
Functionally Graded (AFG) microbeam by means of 
modified couple stress theory. The beam is considered 
as Euler-Bernoulli type supported on a three-layered 
elastic foundation with Von-Karman geometric nonlin-
earity. Small size effects included in the analysis by con-
sidering the length scale parameter. Hamilton's principle 
was implemented to derive the nonlinear governing par-
tial differential equation concerning associated boundary 
conditions. The nonlinear partial differential equation was 
reduced to some nonlinear ordinary differential equations 
via Galerkin's discretization technique. He's Variational 
iteration methods were implemented to obtain approxi-
mate analytical expressions for the frequency response 
as well as the forced vibration response of the microbeam 
with doubly-clamped end conditions. In this study, some 
factors influencing the forced vibration response were 

Fig. 9 The maximum deflection versus t with respect to variations of n

Fig. 10 The maximum deflection versus t with respect to variations of L

Fig. 11 The maximum deflection versus t with respect to variations of l
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