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Abstract 
The realistic estimation of the ply stiffness parameters of 
polymer composite laminates is a big challenge nowadays in 
industrial practice. 
In this paper a new, innovative concept is introduced that 
is based on the backward use of Classical Laminate Theory 
(CLT). The innovation in this new concept is (amongst oth-
ers): possibility to infer the stiffness constants from the sim-
ple mechanical tests of specimens with multidirectional ply 
stack-up identical to the part to design. In addition the new 
method is manifested in a form of a compact equation that 
surely returns the measured deformation of the tested speci-
men on laminate level. The mathematical background of this 
concept is slightly more complex than what the conventional 
techniques offer, however its explicit form allows to code it 
in any automatic systems (e.g. user script) that can be run in 
Finite Element environment or as part of the software of a 
mechanical testing frame. 

Keywords 
stiffness, CLT, orthotropic, mechanical test, composite laminate

1 Introduction
The (mainly Finite Element Method – FEM) based design 

and analysis of composite laminates consisting of fiber rein-
forced polymer (FRP) plies requires to know the stiffness char-
acteristics of each individual ply. Using these the deformation 
and thus, the stress state of the part can be estimated that helps 
to assess it from strength point of view.

In engineering practice the ply specific stiffness is approxi-
mated by a bespoke orientation dependent material model (e.g. 
orthotropic, transversely isotropic or isotropic) and from the 
ply behavior the stiffness and deformation of the whole lami-
nate can be forecast by using an appropriate plate theory (e.g. 
Kirchhoff plate theory [1, 2], Reissner-Mindlin theory [1] etc.). 
The hierarchy between the individual building blocks of the 
laminate level material model is shown in Fig. 1.

Fig 1 Estimation process of composite laminate stiffness

As it follows from Fig. 1 the literature and industry knows 
numerous ways to estimate the stiffness of a composite lami-
nate. There are techniques predominantly used in the scientific 
world that attempt to handle the problem in micromechanical as 
well as molecular scale. The molecular dynamics (MD) methods 
provide promising results in researching the mechanical behav-
ior of non-oriented nanocomposites. However, these approaches 
can mainly be exploited when the effect of nano-sized particles 
(e.g. carbon nanotubes – CNT [3-5] or graphene nanosheets 
GNS [5]) on the base matrix material is quantified, therefore 
these are useful when relative trends need to be understood.
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These techniques have only relevance from composite 
standpoint if the micromechanical or molecular models of the 
individual constituents are linked with an appropriate micro-
mechanical FEM or analytical rule of mixture. In this case from 
the characteristics of the independent constituents the behavior 
of the ply can be inferred. 

When micromechanical FEM is being used, a micro scale 
Representative Volume Element (RVE) of the ply is built such 
a way that using the mechanical properties of the individual 
particles those are approximated by appropriate finite elements 
and the interactions between them are defined by realistic con-
strain equations [3, 6]. A somewhat more simple approach is to 
estimate the stiffness of the composite ply from the constitu-
ents’ properties with the aid of the rule of mixture (ROM). Such 
widely used models are for instance the Halpin-Tsai and the 
Voigt-Reuss [7] models. The research works described in [3, 6] 
and [8] are good examples for this.

The approaches mentioned above due to their complexity 
need validation via mechanical testing of appropriate speci-
mens. This is partly the reason why in the industry the stiff-
ness is directly derived from ply mechanical testing instead of 
implementing any sophisticated micromechanical approaches. 
These measurements are usually well described and easily 
implementable processes covered by a wide range of interna-
tional standards that are hard-coded in the control software of 
testing frames. The most common mechanical testing types are 
collected in Table 1 along with the relevant standards.

In addition, there is another mechanical measurement tech-
nique the so called Dynamic Mechanical Analysis (DMA) 
which also provides a complete view on the static and dynamic 
stiffness (and damping) of a single ply or a whole laminate 
even as a function of temperature. About the practical use of 
DMA [9] yields a comprehensive review. 

Also in scientific world the aforementioned mechanical tests 
are widely utilized to investigate inhomogeneous composite 
ply stackups [10, 11], short fiber reinforced composites [12] or 
even nanocomposites [13].

2 Comparison of conventional and new concept
The outcome of standard mechanical tests is recorded load 

vs. strain curves (in predefined global directions). Processing 
these curves leads to the stiffness parameters sought. Thus, 
these material constants can be calculated with relatively 
simple equations laid down in the relevant standards. Table 1 
provides a non exhaustive list of typical testing types and the 
in-plane stiffness constants that can be evaluated from them.

The constants derived from the experiments listed above rep-
resent the behavior of fully uniform UD laminates with homog-
enous fiber orientation (or in some cases laminates with [0/90] 
symmetric and balanced layup). In practice, these parameters 
are then inputted to the calculations estimating the deformation 
and stresses of a composite part consisting of a multidirectional 

ply stackup. These calculations use FEM with the aid of an 
appropriately selected plate theory (e.g. CLT) as it is shown in 
Fig 1. This procedure is called as the “conventional way”.

The simplicity of the conventional way is counteracted by a 
number of drawbacks such as:

•	 the formulas included in the standards are not applica-
ble to infer the stiffness parameters for specimens hav-
ing special multidirectional ply stackup. However, in 
practice the structures and components do have such ply 
structure.

•	 It follows from above that estimating the behavior of a 
multidirectional laminate from UD tests means extrapo-
lation that always has questionable fidelity (as long as the 
calculations for the finished part are not backed up by full 
component mechanical tests).

•	 The fact that the individual stiffness parameters (E11, 
E22, G12 and ν12) come from different tests (i.e. different 
sources) always raises a question about the statistical 
conformity of these constants relative to each other. The 

Table 1 Typical standard mechanical tests to find in-plane stiffness parameters

Test type
Relevant 
ply stackup 
sequence*

Standard
Stiffness 
constant to 
derive**

Unidirectional
tensile test

[0°] UD
[90°] UD

ISO 527-1
ISO 527-2
ISO 527-4
ISO 527-5
ASTM D638
ASTM D5083

E11 or E22

ν12 or ν21

Unidirectional 
compression test 
(without notch)

[0°] UD
[90°] UD

ISO 604
ISO 14126
ASTM D695
ASTM D3410
ASTM D6641

E11 or E22

ν12 or ν21

Unidirectional tension 
of ±45° symmetric 
and balanced stackup 
specimen

[±45°] 
(symmetric 
and balanced)

ISO 14129
ASTM D3518

G12

In-plane shear test 
Iosipescu method [0°] UD

[90°] UD
[0/90°] 
(symmetric 
and balanced)

ASTM D5379 G12

In-plane shear test Rail 
shear method

ASTM D4255
ASTM D7078

G12

In-plane shear test Tube 
torsion

ASTM D5448 G12

Unidirectional 
flexural test 
(3 or 4 point bending)

[0°] UD
[90°] UD

ISO 178
ISO 14125
ASTM D7264
ASTM D2344
ASTM D6272
ASTM D790

E11 or E22

ν12 or ν21

*By convention the 0°orientation equals the fiber direction and the 90° 
direction is perpendicular to it
**E11 and E22 are the normal moduli [MPa], G12 is the shear modulus [MPa], 
ν12 and ν21 are the major and minor Poisson ratios respectively
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different test types usually mean different loading manner 
and hardware with dissimilar accuracy and quality, there-
fore the scatter (distribution) of the inferred constants var-
ies and this does not necessarily come from the natural 
“built-in” uncertainty of the material. Wrongly coupled 
stiffness constants can lead to wrong deformation predic-
tions for the part or component to design. This concern 
is especially high when the test data exhibit a significant 
scatter. The best example for this is the experimental 
evaluation of in-plane shear modulus (G12). The different 
loading manners listed in Table 1 can provide significant 
differences in the calculated G12 even if the specimens are 
extracted from exactly the same base laminate.

To remedy the issues collected above, as part of an R&D proj-
ect called NVKP-16-1-2016-0046 [14] launched within the scope 
of the National Competitiveness and Excellence Programme 
(NCEP) and supported by the National Research, Development 
and Innovation Fund (NKFIA) a new, innovative concept was 
elaborated that approaches the problem of inferring material 
constants from experiment from a different standpoint. This new 
concept is more efficient and can provide more accurate solution 
than the conventional way for the following reasons:

•	 it is capable of back-calculating the in-plane stiffness 
constants from specimen testing with almost any ply 
stackup sequence,

•	 when the ply stackup is selected wisely it can return all 
four parameters in one go from one single test.

•	 If all specimen tests are performed on the same frame in 
the same manner, the statistical concern about the confor-
mity of the parameters mentioned earlier does not exist 
and therefore the scatter (distribution) of the derived con-
stants will much more likely cover the uncertainty purely 
induced by the material itself.

•	 If the specimens to test have the same ply stackup 
sequence as what the finished product has, the new con-
cept ensures that the inferred stiffness constants will 
more accurately estimate the deformation of the product 
in operation than the conventional way. This is because 
the stiffness parameters do not need to be extrapolated to 
the laminate since the new method actually starts from 
the experienced deformation at that level.

•	 It follows from the statements above that the new concept 
provides more accurate results than the conventional one 
even if the stackup sequences between the test pieces and 
the finished product differ.

The importance of the new concept is even bigger when it 
comes to computing the stiffness of multidirectional laminates 
reinforced by non-crimped fabric (NCF). The biggest advantage 
of NCF composites is that the ply stackup sequence of those 
can be flexibly set in the design phase of the actual product 

in order to ensure the desired deformation of the structure in 
operation. This application gradually becomes more important 
as the “morphing” composites get more widespread (e.g. con-
trolled operational twisting of an airplane wing). “Morphing” 
composites have necessarily asymmetric and multidirectional 
layup. For such layups the use of the conventional method is 
rather questionable.

The new concept shown here utilizes the classical laminate 
theory (CLT) by solving it backwards in order to find the basic ply 
specific in-plane stiffness constants. The input data to it are the 
deformations and external loads taken from the mechanical tests 
conducted on plates with arbitrary layup. Since this technique is 
in fact an inverse solution of CLT it was briefly named as CLT-1.

3 The CLT-1 method
The basic assumptions that need to be adhered to in order to 

make the concept work are:
•	 all plies of the laminate have the same fiber-resin struc-

ture (e.g. all UDs or all woven fabric reinforced),
•	 the composite material can be reasonably approximated 

with an orthotropic deformation model on ply level,
•	 the engineering constants describing one layer are con-

stants through the thickness of one ply,
•	 the kinematics of the entire composite plate is approxi-

mated with the Kirchhoff plate theory [2],
•	 the stiffness of the entire composite plate is not influenced 

by external restrains (i.e. it can deform freely due to the 
external forces), or the reaction forces and moments act-
ing at the restrains are known.

The method is initiated from the basic system of equations 
of CLT (including thermal expansion) [1]:
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Notations to the equations above:
tk – thickness of the ply with index “k” [mm],

(2)

(1)
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zk  – coordinate of the middle plane in thickness direction of 
the ply with index “k” measured from the laminate middle 
plane as zero level [mm].
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where:
Aij – element of the laminate stiffness matrix for tension,
Bij – element of the tension-flexure coupling matrix,
Dij – element of the laminate stiffness matrix for bending.
N – number of plies building the laminate,
Qij k
   – element of the stiffness matrix of the ply with index 
“k” in the global coordinate system [MPa],
εxx

tot-0, εyy
tot-0, εxy

tot-0 – membrane strain components in the global 
coordinate system acting in the middle plane of the laminate,
κx, κy, κxy – curvature components of the middle plane of the 
laminate in the global coordinate system [1/mm],
[εxx

T]k, [εyy
T]k, [εxy

T]k, – thermal strain components of the ply 
with index “k” in the global coordinate system,
Nx, Ny, Nxy – external force components per unit length (in the 
width direction of the laminate) in the global coordinate system 
[N/mm],
Mx, My, Mxy – external moment components per unit length (in 
the width direction of the laminate) in the global coordinate 
system [Nmm/mm].

The structure of the laminate along with the notation of the 
geometrical parameters measured from the middle plane of the 
laminate are highlighted in Fig. 2.

Fig 2 Parameters describing the geometry of a composite laminate

Splitting the matrix equation in (1) into individual equations 
as well as substituting the (3)-(4) equations into it leads to the 
following system of equations:
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Similarly, splitting the matrix equation in (2) into individual 
equations as well as substituting the (4)-(5) equations into it 
leads to the following system of equations:
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In Eqs. (6)-(11) the formulation for the introduced extra 
variables is as follows:
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The extra variables detailed in Eqs. (12)-(17) need to be 
evaluated for each ply in the laminate once the ply specific 
thermal strains have been evaluated. 
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The thermal strains in a given direction are to be calculated 
as the product of the thermal expansion coefficient (CTE) in the 
given global direction and the temperature difference. The CTE 
values in the local ply specific material coordinate system can 
be evaluated from designated experiments. Finally, the CTE 
vector of [α11, α22, α12] in the local coordinate system has to be 
modified with a rotation transformation to represent the CTEs 
in global coordinate system.

The components of the ply specific stiffness matrices con-
sidered in the global coordinate system (denoted as Qij k

   in 
Eqs. (6)-(11)) can be expressed with the ply stiffness parame-
ters representing the actual local material coordinate system. 
To do this, the rotation transformation of the local stiffness 
matrix is required that is expressed by the following matrix 
equation [15]:
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where [Tσ(Θk)] and [Tε(Θk)] are the rotation transformation 
matrices of the stress and strain vectors of the given ply 
respectively and Θk is the orientation of ply with index “k” 
compared to the global x axis. [Q]k is the stiffness matrix of 
the ply with index “k”. The structure of the transformation 
matrices is detailed in [15].

After expressing the Qij k
   components as a function of the 

stiffness parameters in the local ply specific material coordi-
nate system (Qij) with the aid of Eq. (18) and substituting those 
expressions into Eqs. (6)-(11) leads to a system of equations 
that can be transformed into a matrix form:
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In Eq. (19) the matrix denoted as [T] contains all informa-
tion about the layup structure and measured deformation of the 
laminate in question, therefore it has named as Stackup Specific 
Deformation (SSD) matrix. The 4 element vector denoted as 
[Q] in this equation collects all in-plane stiffness parameters of 
a ply in the local material coordinate system that are supposed 
to be the same as per the initial assumptions. Without giving the 
details of the derivation the elements of SSD matrix are to be 
calculated as follows:
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In the equations above the following ply orientation depen-
dent variables were introduced:

ak k= ( )cos ,θ 4

bk k k= ⋅( ) ( )⋅2
2 2

sin cos ,θ θ

ck k= ( )sin ,θ 4

d c ak k k k k= ( ) ( )+ = +sin cos ,θ θ4 4

ek k k= ( )⋅sin cos ,θ θ 3

fk k k= ( ) ⋅sin cos .θ θ3

The linear system of equations in (19) can then be solved 
in one step by inverting the SSD matrix. The outcome of this 
will be the [Q] vector that in fact contains all four independent 
stiffness parameters of the ply.
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Lastly the individual stiffness parameters can be evaluated 
from [Q] vector like this:

G Q
12 66
= ,

v Q
Q12

12

22

= ,

v v Q
Q21 12

22

11

= ⋅ ,

E Q v v
11 11 12 21

1= ⋅ − ⋅( ) ,

E Q v v
22 22 12 21

1= ⋅ − ⋅( ).

4 The SSD matrix
In classical sense from mathematical point of view invert-

ing the SSD matrix is not possible since it is not a symmetric 
nXn type matrix (by having 4 columns and 6 lines). However, 
there is a technique called “pseudo-inversion” that can return 
a matrix which provides an nXn dimension unity matrix if the 
original gets multiplied with it from the left or an mXm dimen-
sion unity matrix if from the right.

Only one of the aforementioned two cases can work at a 
time when it comes to pseudo-inverting a non-symmetric 
matrix. When the matrix to invert is a full column rank matrix 
(which is the case here for a 6X4 dimension SSD matrix with 
no full zero rows or columns) the formulation to find the pseu-
do-inverse is the following:

T T T T[ ] = [ ] [ ]( ) [ ]⋅ ⋅+ −T T1

where [T]T denotes transposing. The conditions for a matrix 
to be pseudo-invertible are defined by the Moore-Penrose law. 
When pseudo-invertibility is possible, building SSD matrix 
and the vector of external loads can be easily automated when 
the deformations of the laminate are known. From that, as it 
is described above, obtaining the in-plane stiffness data is one 
additional step only (see (50)). If a large number of tests are 
performed, the method described here needs to be repeated that 
gives a data pool for all derived constants. This enables to do 
rigorous statistical assessment on the parameters as well that 
provides reliable information on the variability of the parame-
ters in question.

5 Summary and outlook
The concept introduced in this paper (CLT-1) is capable of 

deriving the ply specific in-plane stiffness parameters of a lami-
nate in one step by using recorded load vs. deformation diagrams 
from simple mechanical specimen tests via inverse solution of 
classical laminate theory (CLT). The method assumes that one 
ply of a composite laminate can be reasonably approximated 
by orthotropic deformation model. When selecting the stackup 
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sequence of the specimen to test wisely it is possible to obtain all 
four in-plane stiffness parameters from one single experiment. 
This new method due to its compactness can deliver more reli-
able results than the UD test based conventional methods since 
it is able to find the constants for test specimens having a ply 
stackup identical to the product to design and it does not require 
multiple different type tests with different fidelity to derive 
all four constants. With this method the questionably accurate 
in-plane shear tests can be replaced by simple tensile or flex-
ural experiment of test plates with appropriately chosen stackup 
sequence. The new procedure largely increases the fidelity of 
the inferred stiffness data for NCF composites that will likely be 
the base material for morphing structures of the future.

A key element of this new method is the so called Stackup 
Specific Deformation (SSD) matrix. The analysis of SSD matrix 
and in light of that the assessment of the practical usability of this 
concept along with the validation with real experiments will take 
place in 2018 as part of the NVKP-16-1-2016-0046 [14] project.
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