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Abstract

Wire electro discharge machining (WEDM) is a versatile non-traditional machining process that is extensively in use to machine the 

components having intricate profiles and shapes. In WEDM, it is very important to select the optimal process parameters so as to 

enhance the machine performance. This paper emphasizes the selection of optimal parametric combination of WEDM process while 

machining on EN31 steel, using grey-fuzzy logic technique. Process parameters such as servo voltage, wire tension, pulse-on-time and 

pulse-off-time were considered while taking into account several multi-responses such as material removal rate (MRR) and surface 

roughness (SR). It was found that pulse-on-time of 115 µs, pulse-off-time of 35 µs, servo voltage of 40 V and wire tension of 5 kgf 

results in a larger value of grey fuzzy reasoning grade (GFRG) which tends to maximize MRR and improve SR. Finally, analysis of variance 

(ANOVA) is applied to check the influence of each process parameters in the estimation of GFRG.

Keywords

WEDM, machining parameters, multi-objective optimization, Grey-fuzzy logic, ANOVA

1 Introduction
Non-traditional machining (NTM) processes are being 
extensively used in the automobile, dies, aerospace and 
tool making industries which strictly aim for high accu-
racy and surface finish irrespective of its hardness. 
WEDM, an electro-thermal metal removal process, is 
widely being used in automotive, aerospace and nuclear 
industries, to machine irregular shapes, precise and 
complex designs in various electrically conductive dif-
ficult-to-machine materials. WEDM is a unique class of 
traditional electrical discharge machining (EDM) process, 
where the electrode in form of a wire (made of thin brass, 
copper, or tungsten of diameter 0.05–0.3 mm) which 
moves continuously. The movement of the electrode is 
controlled numerically to obtain the desired shape, size 
and accuracy of the workpiece. The wire is kept in ten-
sion to avoid inaccurate shapes by means of a mechanical 
device. Material removal in WEDM process takes place 
by means of erosion resulting from repetitive, rapid and 
discrete spark discharges between the wire and the work-
piece while being immersed in a dielectric fluid (deionized 
water / kerosene). The spark produced melts and vaporizes 

a small portion of workpiece which are then flushed away 
by dielectric fluid [1]. It has several machining parameters 
such as ignition pulse current, applied voltage, idle time, 
pulse duration, servo speed, wire speed, wire tension and 
injection pressure for dielectric, which adversely affects 
its performance measures such as MRR, cutting speed, 
and SR etc. [2]. Machining parameters plays an important 
role in obtaining high precision machining with quality 
responses. The selection of these machining parameters 
is vital as improperly selected parameters might result in 
serious consequences like wire breakage, short-circuiting 
of wire. Hence, there is a demand for research that could 
generate a systematic mathematical approach to obtain the 
best parametric combination in order to achieve higher 
machining performance of WEDM process.

These types of multi-criteria decision making (MCDM) 
problems could be solved using well-known techniques 
such as grey relational analysis (GRA), artificial neural 
network (ANN), response surface methodology (RSM), 
genetic algorithm (GA) and many more. Researchers have 
also developed various hybrid MCDM techniques and 
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applied successfully in several decision making problems. 
Chatterjee and Chakraborty [3] proposed a hybrid design of 
experiments (DoE) and technique for order preference by 
similarity to ideal solution (TOPSIS) methodology in devel-
oping a mathematical meta-model for the determination 
of technological value of cotton fiber. Also, Chakraborty 
and Chatterjee [4] applied the hybrid DoE-TOPSIS method 
for the selection of cotton fabrics. Chatterjee et al. [5] pro-
posed a meta-model integrating DoE and evaluation based 
on distance from average solution (EDAS) and success-
fully applied to a material selection problem.

Recently, a number of literatures are also reported 
in parametric optimization of various NTM processes. 
Scott et al. [6] formulates and solves a multi-objective opti-
mization problem in order to select the optimal parametric 
combination for a WEDM process. Spedding and Wang [7] 
presents a mathematical model describing a WEDM process 
using RSM and ANN considering pulse width, time between 
two pulses, injection set-point and wire tension as the input 
parameters to obtain maximum cutting speed, minimum 
SR and surface waviness as the responses. Spedding and 
Wang [8] applied ANN to optimize and obtain the process 
parametric combinations of WEDM process through time 
series techniques. Sarkar et al. [9] developed a machining 
strategy which yields maximum process criteria in WEDM 
using a cascade of forward and back propagation neural 
network. Chakraborty and Das [10] proposed a multivar-
iate quality loss function approach for simultaneous opti-
mization of three NTM processes namely electro chemical 
machining (ECM), EDM and WEDM processes. Hewidy 
et al. [11] presented a mathematical model that correlates 
the inter-relationships of various WEDM process parame-
ters, such as wire tension, water pressure, peak current and 
duty factor on MRR, SR and wear ratio. However, Kung 
and Chiang [12] presented two mathematical models for 
MRR and SR in order to study the machinability on alumi-
num oxide-based ceramic material using WEDM process. 
They also study the effects of wire speed, pulse-on-time, 
peak current and duty factor on the measured responses. 
Yuan et al. [13] developed a multi-objective optimization 
technique in order to obtain the optimal parametric combi-
nation of a WEDM process considering mean pulse- on / off-
time and peak current as the input parameters while consid-
ering MRR and SR as responses. Goswami and Kumar [14] 
developed a model to study the rough cut and trim cut 
behavior of WEDM process in order to obtain high MRR 
and low SR and wire wear ratio. Shukla and Singh [15] uses 
firefly algorithm (FA) in an attempt to obtain the optimal 

parametric combination of to two significant process, EDM 
and abrasive water jet machining (AWJM). Surya et al. [16] 
applied ANN to a WEDM process in machining of Al7075 
based in-situ composite to optimize the responses.

Fuzzy-logic finds its applications in various fields of 
research having uncertain environment. Presently, a num-
ber of multi-criteria decision making techniques integrated 
with fuzzy-logic have become quite popular for decision 
making in various fields of manufacturing. Jović et al. [17] 
applied adaptive neuro-fuzzy technique (ANFIS) to deter-
mine the most influencing input parameter in straight turn-
ing of mild steel (A500 / A500M-13) and AISI 304 stain-
less steel in order to monitor the chip shapes. Julong [18] 
introduced grey system which emerges to be a powerful 
tool in the field of optimization that deals with incomplete, 
poor and vague data. Researchers have been effectively 
using grey relational technique in optimizing various mul-
tiple objectives problems in different fields of engineer-
ing [19, 20]. The application of fuzzy logic with grey rela-
tional analysis (GRA) further improves the performance 
and effectiveness in solving various MCDM problems. 
Chakraborty et al. [21] applied grey-fuzzy logic approach 
in a cotton fibre selection problem. Das et al. [22] applied 
GRA and fuzzy logic to solve a multi- response problem of 
CNC milling to optimize cutting force and surface rough-
ness. Chakraborty et al. [23] adopted grey relational anal-
ysis aided with fuzzy logic for obtaining the optimal para-
metric combination of three NTM processes, i.e. AWJM, 
ECM, and ultrasonic machining (USM) processes.

EN31 steel finds its applications in manufacturing of ball 
and roller bearings, beading rolls, punches, spinning tools 
and dies which makes it important from industrial perspec-
tive [24]. Past researchers has already attempted to obtain 
the optimal parametric combinations of various machin-
ing process while machining on EN31 steel. Mohanty 
and Nayak [25] has applied Taguchi method to optimize the 
MRR and SR as response parameters. Ugrasen et al. [26] 
developed a model to estimate the optimal machining per-
formances of WEDM process using multiple regression 
analysis (MRA), group method data handling technique 
(GMDH) and ANN in machining of EN31 so as to obtain the 
optimal responses of accuracy, surface roughness and volu-
metric material removal rate. Diyaley et al. [27] has applied 
the combination of preference selection index (PSI) and 
TOPSIS to obtain the parametric combination of WEDM 
process while machining of EN31 steel. From the extensive 
review of literatures it can be concluded that, there is a keen 
interest among researchers to adopt different MCDM tool 
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in parametric optimization of various machining process. 
Though, GRA has become quite popular, still it is unable to 
eliminate any vagueness and intangible factor present in the 
experimental data set. Thus, in this paper GRA aided with 
fuzzy logic is adopted and applied to obtain the optimal 
combination of process parameters so as to optimize the 
responses, while machining on EN31 steel using WEDM 
process. Four input parameters, each with three levels each 
is considered for experiments, while considering MRR and 
SR as the responses. ANOVA is also applied to determine 
the significance of each input process parameters over the 
machining process. Lastly, the results are verified with a 
confirmation test run considering the obtained optimal 
parametric combinations.

2 Experimental details
2.1 Work material
EN31 is a high carbon alloy steel with high hardness 
along with compressive strength and resistance to abra-
sion. Due to its high resistance against wear, EN31 finds 
its application in areas subject to severe wear, abrasion 
or high surface loading. It is mostly used in industries 
for the production of components like axle, roller bear-
ings, spindle etc. Due to its poor machinability, in this 
paper EN31 steel is selected as the work material so as to 
study it machinability using WEDM process. The work 
specimen selected is a round bar with 14.8 mm diameter. 
EN31 is having a hardness of 63 HRC, tensile strength of 
750 N/mm2, modulus of elasticity of 215000 N/mm2 and 
the chemical composition is shown in Table 1.

2.2 Experimental setup
The experiments are conducted using WEDM process. 
Brass wire having 0.25 mm diameter is taken as the elec-
trode and de-ionized water as di-electric fluid are used during 
machining. A pictorial view of the experimental setup is 
provided in Fig. 1. There are a number of input parameters 
out of which pulse-on-time (Ton ) (in μs), pulse-off-time (Toff ) 
(in μs), servo voltage (SV) (in volts), wire tension (WT) (in  
kgf) are considered to be the variable parameters and the 
parameters kept constant are shown in Table 2.

MRR (in gm/min) and SR (in μs) are measured as the 
machining output parameters. MRR is calculated with the 
difference in the weight before and after the machining 
process with respect to the machining time and is given 
by Eq. (1). Each set of combination was run for three 
times in order to reduce human errors. Finally, the aver-
age of the three is noted.

MRR
m m
t

i f=
−

 (1)

where mi and mf are the weights before and after the 
machining process in grams, and t is time taken for 
machining in minutes.

SR is measured using Mitutoyo Surftest J210, where 
the stylus of the surf test was made to run over the two 
machined surfaces one after the other at three different 
positions along the direction of lay, with the average value 
being considered for further analysis.

Table 1 Chemical composition of EN31 steel

Element Content (%)

Silicon oxide (SiO) 25

Chromium (Cr) 1.46

Carbon (C) 1.08

Manganese (Mn) 0.53

Nickel (Ni) 0.33

Molybdenum (Mo) 0.06

Phosphorous (P) 0.022

Sulphur (S) 0.015

Iron (Fe) Rest

Table 2 Constant input parameters during machining

Constant parameters Value

Electrode Brass wire of diameter 0.25 mm

Servo feed 0.315 m/min

Indicated power 230 mA

Wire feed 5-8 m/min

Di-electric De-ionized water

Fig. 1 Pictorial view of experimental setup
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2.3 Design of experiment by Taguchi method
Taguchi design emerges to be an eminent approach in 
the field of optimization to optimize the input process 
parameter of a machining process based on the simula-
tion experiments, physical experiments and experimental 
outputs [28]. A full factorial design plan usually consid-
ers all the possible combination of input process parame-
ters. But, sometimes with the increased number of input 
parameters and their levels it is often become impossible 
to execute. Taguchi's orthogonal array uses a considerable 
subset of these combinations, exploiting the properties 
of fractional factorial design defining the best combina-
tion of process parameters. Thus, for a four-factor-three-
level design the maximum possible combination is 34 or 
81 experiments. In order to reduce the number of experi-
ments L9 orthogonal array with 9 numbers of experiments 
is selected with the input parameters being pulse-on-time 
(Ton ), pulse-off-time (Toff ), servo voltage (SV), and wire 
tension (WT). The parameters with their levels selected 
for conducting the experiments are shown in Table 3. 
The range of the process parameters are so selected that 
they would fall within the industrially acceptable range. 
The output MRR and SR are calculated for all the 9 exper-
iments and are shown in Table 4 respectively.

3 Methodology
3.1 Grey relational analysis (GRA)
Unlike Taguchi method, which is meant for optimizing 
single response optimization; the grey relational analy-
sis can optimize multiple responses, usually conflicting in 
nature [29]. GRA follows the following three steps.

In the first step, the measured output parameters of SR 
and MRR are to be normalized to a range between zero 
and one. Normalization of the response parameters is done 
since the range as well as the unit of one response can dif-
fer from the others. If the characteristic of the response is of 
"higher-the-better", Eq. (2) is used, whereas, if the response 
is of "lower-the-better" characteristics, Eq. (3) is used.

x k
x k x k
x k x k

i m k

i
i i

i i

* ( )
( ) min ( )

max ( ) min ( )
,
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=
−
−
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=
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 (3)

where, x ki ( )  are the observed and x ki
* ( )  are the normal-

ized data for the ith experiment and kth response respec-
tively. Post normalization, the grey relational coefficient 

(GRC) for the response parameters are calculated that 
expresses the relationship among the ideal with the nor-
malized data. GRC value can be estimated using Eq. (4).
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ζi

i
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k

( )
( )

min max

max

=
+
+

∆ ∆
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where, Δ0i(k) is the difference between x ki
0 ( )  and 

x ki
* ( )  ( x ki

0 ( )  is the ideal sequence). The distin-
guishing coefficient (ζ) takes a value between 0 and 
1, generally ζ = 0.5 is preferred. It is mainly used 
to expand or compress the range of GRC values. 
∆min

min min ( ) ( )= ∀ ∈ ∀ −j i k x k x kj0
 is the smallest value 

of Δ0i; whereas ∆max
max max ( ) ( )= ∀ ∈ ∀ −j i k x k x kj0

 is the 
largest value of Δ0i. A higher GRC value for an experi-
ment indicates that it is closer to the optimal solution with 
respect to a particular response.

The grey relational grade (GRG) can be estimated by 
averaging the GRC values corresponding to individual 
experiment and can be calculated using Eq. (5).

γ ξi ik

n

n
k= ( )=∑1

1
 (5)

where, n resembles the number of response parameters. 
The corresponding experiment number with higher value 
of GRG indicates the input parameters for that experiment 
is best choice of combination among the 9 parametric 
combinations for the said application.

Table 3 Machining parameters and their levels

Control 
parameters

Levels

1 2 3

Ton 110 115 120

Toff 30 35 40

SV 20 30 40

WT 5 6 7

Table 4 Experimental output performance

Exp. No. Ton Toff SV WT MRR SR

1 110 30 20 5 0.05141 2.6

2 110 35 30 6 0.04705 2.2

3 110 40 40 7 0.05509 2.7

4 115 30 30 7 0.10407 3.6

5 115 35 40 5 0.1009 2.2

6 115 40 20 6 0.08251 3.5

7 120 30 40 6 0.09706 2.7

8 120 35 20 5 0.07747 2.6

9 120 40 30 7 0.05555 2.4
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3.2 Fuzzy logic in grey relational analysis
Many decision making problems are difficult to deal with, 
because of their inadequate information. Fuzzy set the-
ory [30] was developed to deal with such type of decision 
making problems that too in an efficient way and to come up 
with a reasonable conclusion for these problems. It mainly 
converts the imprecise linguistic terms, such as highest 
and lowest to understandable numerical values by consid-
ering different fuzzy membership functions [31]. This the-
ory states, "If in an environment of discourse A, where F  
being a fuzzy subset of say X, can be specified by a mem-
bership function f aF ( ) , that drafts each and every element  
"a" in A to a real number N within the interval [0, 1]. 
The function value f aF ( )  represents the grade of mem-
bership of "a" in F . Larger the value of f aF ( )  stronger 
will be the grade of membership for "a" in F ".

The use of "higher-the-better" and "lower-the-better" 
performance characteristics in GRA produces some uncer-
tainty within the results derived. Fuzzy logic can be effec-
tively used in these cases in controlling these uncertain-
ties. Integrating fuzzy logic with GRA can help in solving 
complex multi-response optimization [32]. The fuzzy logic 
system includes a fuzzifier, data base, fuzzy membership 
functions, rule base, fuzzy inference engine and defuzzi-
fier. The membership functions considered for this study 
will be the inputs aided to the fuzzifier so as to fuzzify the 
input GRC values which contain some amount of uncer-
tainty with respect to the considered attributes. Then the 
inference engine analyses the fuzzy rules being developed, 
to bring out a fuzzy value as output. The defuzzifier reads 
the output value and finally converts the value to an under-
standable numerical value which is grey fuzzy reasoning 
grade (GFRG). A fuzzy rule base consists of a set of if-then 
control rules which were developed that shows the infer-
ence relationship within the input GRC and output GFRG 
and can be shown as follows:

Rule If and

then else

Rule I

1

2

1 1 2 1 3 1 4 1

1

: , , , ,

,

:

x a x b x c x d
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= = = =

=
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, , , ,
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1 2 3 4= = = =
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where, ai , bi , ci and di are the fuzzy subsets which are being 
defined by a membership functions, i.e. µai , µbi , µci and µdi 
respectively and ei is the grey-fuzzy output. Mamdani infer-
ence engine is normally considered which performs fuzzy 

reasoning with the developed rules while acknowledging 
max-min inference to generate a fuzzy value, µC G

0
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(7)

where, ˄ and ˅ represents the minimum and maximum 
operation. Finally, while defuzzification process, the 
fuzzy multi-response output, µC G

0
( )  is converted to a 

crisp value of GFRG (G0 ).

G
G G

G
C

C
0

0

0

=
( )
( )

∑
∑

µ

µ
.  (8)

The corresponding experiment number with the highest 
GFRG value represents that the parametric combination of 
that experimental trial is the best choice when compared 
to the other experimental trials.

3.3 ANOVA method
After calculation of GFRG, ANOVA is applied to find out 
the importance of each input parameters over the machining 
process and their significance over the response parameters.

4 Results and discussion
4.1 Grey relational analysis
The response parameters derived from the 9 experiments 
are adopted to calculate the grey relational coefficients as 
discussed in Section 3.1. The data are initially normalized 
and brought to a range between 0 and 1 by using Eq. (2) 
in case of MRR which is of "higher-the-better" character-
istics and Eq. (3) in case of SR, which is of "lower-the-bet-
ter" characteristics. The response parameters are normal-
ized and provided in Table 8. After normalization the grey 
relational coefficients for each response parameters are 
calculated using Eq. (4) and the GRG using Eq. (5) as dis-
cussed earlier and are shown in Table 5 respectively. The 
largest value of GRG 0.95 signifies that experiment num-
ber 5 is having the optimal combination of input parameter 
to give maximum MRR and minimum SR.

The response table for grey relational grade is shown 
in Table 6. These values are obtained by averaging the 
GRG values at the corresponding level of input machining 
parameter. The max–min column with highest value for 
pulse-off-time identifies it as the most important param-
eter among the four input parameters. From the table, it 
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can be noted that for optimal response values of MRR and 
SR, the input process parameters pulse-on-time, pulse-off-
time must be maintained at level 2, while the servo voltage 
at level 3 and the wire tension at level 1 respectively.

The response graph has been plotted for the calculated 
grey relational grade and is shown in Fig. 2. From the 
graph it can be seen that all the three machining param-
eters have a grey relational grade above 0.5. In the graph 
the slope of the curve for pulse-off-time is higher than 
the rest which indicates it to be the most influential pro-
cess parameter for the considered machining process. In 
this graph, the symbol Ton1, Ton2 and Ton3 in the x-axis 
represents the three levels of pulse-on-time. Similarly the 
symbols Toff1, Toff2, Toff3 represents that of pulse-off-
time, SV1, SV2, SV3 and WT1, WT2, WT3 represents that 
of servo voltage and wire tension respectively. However, 
to improve the quality of response parameters as well as 
to decrease the uncertainty in the observed data, fuzzy-
logic is applied.

4.2 Grey-fuzzy reasoning analysis
The grey-fuzzy analysis is carried out in MATLAB (2013a) 
toolbox for generating the grey fuzzy output. In this 
paper, triangular membership function are considered for 
the two grey relational coefficients of MRR and SR, each 
with five membership functions considered as lowest, 
low, medium, high and highest as shown in Fig. 3, while 

for the grey relational grade nine membership functions 
are considered as lowest, very low (VLow), low, medium 
low (MLow), medium, medium high (MHigh), high, very 
high (VHigh) and highest as shown in Fig. 4 respectively. 
Thus, the multi-objective parametric optimization prob-
lem becomes a two-input-one-output fuzzy logic unit 
with structure as presented in Fig. 5.

Table 5 Normalized data, grey relational coefficient and  
grey relational grades

Exp. No.
Normalized Data GRC

GRG
MRR SR MRR SR

1 0.0763 0.7143 0.3512 0.6364 0.4938

2 0 1 0.3333 1 0.6667

3 0.1412 0.6429 0.368 0.5834 0.4757

4 1 0 1 0.3333 0.6667

5 0.9444 1 0.8999 1 0.9500

6 0.6217 0.0714 0.5693 0.35 0.4597

7 0.8772 0.6429 0.8029 0.5834 0.6932

8 0.5337 0.7143 0.5174 0.6364 0.5769

9 0.1491 0.8571 0.3701 0.7777 0.5739

Table 6 Response table for GRG

Level 1 Level 2 Level 3 Max-Min Rank

Ton 0.5454 0.6921 0.6147 0.1467 3

Toff 0.6179 0.7312 0.5031 0.2281 1

SV 0.5101 0.6358 0.7063 0.1962 2

WT 0.6736 0.6065 0.5721 0.1015 4

Fig. 2 Response graph for GRG

Fig. 3 Input membership functions for MRR and SR

Fig. 5 Structure of two input and one output fuzzy logic

Fig. 4 Output membership functions for GFRG
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A set of nine rules are developed representing the rela-
tion between the GRC values with the GFRG values in 
order to activate the fuzzy inference system (FIS) which 
are used to obtain the GFRG values for all 9 experiments. 
The graphical representation of the nine rules developed 
can be seen in rule viewer as shown in Fig. 6. The three 
columns in the rule viewer represent two input GRC val-
ues of MRR and SR and one output GFRG. One of such 
developed fuzzy rule is provided below.

If MRR = Lowest and Ra = Medium, then GFRG = Lowest.
The location of each triangle in the columns in Fig. 5 

indicates the decisive fuzzy set for each of the input and 
output values. In each triangle the height of the darkened 
area for that fuzzy set resembles the fuzzy membership 
value. From this figure it can be observed that, the input 
GRC values of 0.3512 and 0.6364 for MRR and Ra respec-
tively for the first experiment results in defuzzied GFRG 
value of 0.508. In the same way, for all the 9 experiments 
the GFRG values are computed, as shown in Table 7. 
From the table, it can be confirmed that the experiment 
number 5 has the highest value of GFRG which indicates it 
to have the best optimal parametric combination that gives 
maximum MRR and minimum SR.

Table 8 represents the response table for GFRG. 
These values are calculated by averaging the correspond-
ing GFRG value of each input parameters. The max–
min column signifies that the servo voltage is the most 
influencing input parameters followed by pulse-off-time 
among the four parameters. It was found that the opti-
mal combination obtained from Table 8 is the same as 
that obtained in Table 6 which confirms that to obtain the 
best response values of MRR and SR, the input parame-
ters pulse-on-time, pulse-off-time must be maintained at 

level 2, while the servo voltage at level 3 and the wire ten-
sion at level 1. Fig. 7 shows the response graph plot for the 
calculated GFRG which shows that all the three machin-
ing input parameters have a GFRG value above 0.5. In the 
graph as shown in Fig. 6, the slope of the curve for pulse-
off-time is higher than the rest which indicates it to be the 
most influential parameter for the machining process.

4.3 Analysis of variance (ANOVA)
To understand the importance of each input process param-
eters over the responses, the GFRG obtained are subjected 
to ANOVA process. The role of each input factor on the 
multiple performance characteristics can be analysed using 
ANOVA which is done at 95 % confidence. Fisher's f-test 
is adopted to find out the change in which the machining 
process parameter holds a significant effect on the multi-
ple performance characteristics. Larger f-value and smaller 
p-value signifies that the change of that process parame-
ter holds a stronger influence on the response parameters. 
ANOVA is applied to the results obtained from grey fuzzy 

Fig. 6 Rule viewer

Table 7 Grey-fuzzy reasoning grade

Exp. No. GFRG

1 0.508

2 0.644

3 0.531

4 0.644

5 0.926

6 0.481

7 0.705

8 0.582

9 0.558

Table 8 Response table for GFRG

Level 1 Level 2 Level 3 Max-Min Rank

Ton 0.5610 0.6837 0.6150 0.1227 3

Toff 0.6190 0.7173 0.5233 0.1940 2

SV 0.5237 0.6153 0.7207 0.1970 1

WT 0.6720 0.6100 0.5777 0.0943 4

Fig. 7 Response graph for GFRG
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reasoning analysis and are tabulated in Table 9. It can be 
seen from the table that the degrees of freedom (DoF) for 
residual error comes zero as it doesn't have enough data. 
Normally this happens if 4 input parameters with 3 levels 
are considered for experiments with L9 orthogonal array 
for analysis. Hence the need for ANOVA pooling arises.

ANOVA pooling is a usual practice of revising and re‐
estimating the result in order to neglect a factor which is of 
very less significant. It is done by relating the insignificant 
factor with the residual error. Pooling is mainly considered 
because of two reasons. Firstly, when more number of fac-
tors is considered for an experiment, it is probable that half 
of those factors would be more influential than the others. 
Secondly, statistical predictions encounter two mistakes 
one being alpha and the other being beta. Alpha mistakes 
happens when we call something is important though it is 
not. Beta mistake is the adverse in which significant fac-
tors are unknowingly ignored. If a factor fails the test of 
significance it is needed to be pooled. It is mandatory for 
the DoF of residual error to have a nonzero value in order 
to perform the test of significance. Pooling starts with the 
factors having less influence on the response parameters. 
Here, pulse-off-time is seen to be the least influencing fac-
tor; hence it is pooled as shown in Table 10.

From the ANOVA table it is observed that the pulse-on- 
time, servo voltage and wire tension has p-value less than 
0.5 which confirms these parameters to be statistically sig-
nificant and thus have a positive contribution in determin-
ing GFRG. It can be also concluded that servo voltage is 
the most influencing parameter as it has the highest f-value 

and least p-value in compared to others, followed by wire 
tension and pulse-on-time.

In order to define the relationship between the input 
machining parameters and the obtained GFRG, the follow-
ing regression equation is developed. Based on the regression 
model the corresponding surface plots are developed pre-
sented in Fig. 8 which also supports the above observations.

GFRG T T
SV

on off= − × − ×

+ × +

11 9232 0 139081 0 383945

0 109619 0 6050

. . .

. . 771 0 00451429

0 02005

× +

× − ×× ×

WT
T T T WTon off off

.

. .

 (9)

Existing well known techniques are available that can 
be effectively applied in obtaining the parametric combi-
nation of WEDM process. However, in GRA, the derived 
results are solely depend upon the original data set, and is 
easy to calculate and simple to apprehend, and is flexible 
to deal with several types of MCDM problems. In addi-
tion to that the distinguishing coefficient (ζ ), in Eq. (3), 
can be selected based upon a decision maker's judgment. 
Moreover, the adoption of fuzzy logic with GRA elim-
inates any vagueness and intangible factor present in 
the experimental data set, thus making it one of the best 
MCDM approach.

Table 9 Analysis of variance for GFRG (before pooling)

Source DoF Seq SS Adj SS Adj MS f-value p-value

Ton 2 0.0227 0.0227 0.0113 * *

Toff 2 0.0565 0.0004 0.0002 * *

SV 2 0.0583 0.0642 0.0321 * *

WT 2 0.0096 0.0096 0.0048 * *

Error 0 * * *

Total 8

Table 10 Analysis of variance for GFRG (after pooling)

Source DoF Seq SS Adj SS Adj MS f-value p-value

Ton 2 0.0227 0.0227 0.0113 53.78 0.018

SV 2 0.0583 0.1102 0.0551 261.33 0.004

WT 2 0.0657 0.0657 0.0328 155.75 0.006

Error 2 0.0004 0.0004 0.0002

Total 8 0.1471
Fig. 8 Surface plots showing the effects of different WEDM process 

parameters on GFRG value

(a) (b)

(c) (d)

(e) (f)
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4.4 Confirmation test
A confirmation test is performed so as to check the 
enhancement in the quality of response values. The pre-
dicted GFRG can be calculated using Eq. (10).

G G G Gp p i m
i

N

= + −( )
=
∑

1
 (10)

where, Gp is the predicted GFRG, Gm is the mean GFRG 
for the 9 experiments, Gi  is the mean GFRG of the cor-
responding optimal ith response and N is the total number 
of input parameters.

The confirmation experiment done with the same 
experimental setup reveals that the MRR is increased from 
0.0514 gm/min to 0.1065 gm/min, SR reduces from 2.6 μm 
to 2.3 μm as shown in Table 11. Thus the obtained input 
parametric combinations improve the GFRG from 0.508 
to 0.9240, which equals to 81.89 % of improvement.

5 Conclusion
In this present work, machining of EN31 steel is car-
ried out with four machining input parameters as pulse-
on-time, pulse-off-time, servo voltage and wire tension, 
and the response parameters as MRR and SR in WEDM 
process. Taguchi's L9 orthogonal array is used for design 
of experiments to perform machining operation on the 
work material. It was found that pulse-on-time of 115 µs, 

pulse-off-time of 35 µs, servo voltage of 40 V and wire 
tension of 5 kgf is the optimal combination for the input 
machining parameters. ANOVA results admit that servo 
voltage is the most influencing parameter which adversely 
affects the response parameters. The adopted approach 
is quite simple and easy to apprehend, and is unaffected 
with respect to any additional parameter, eliminating any 
vagueness and intangible factor present in the experimen-
tal data set. Moreover, the developed surface plot will help 
a process engineer to easily identity a desired parametric 
combination as per the requirements.
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