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Abstract
This article presents the analytical strain solution of the rate-

form non-associative elastic-plastic constitutive model using the
Drucker–Prager yield criterion with linear isotropic hardening.
The strain solution is obtained using constant stress rate as-
sumption. The solution for the deviatoric radial loading case
is also presented. In addition, the strain solution for the case,
when the stress state is located at the apex of the yield surface,
is also derived.
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1 Introduction
The structure of a particular rate-form elastic-plastic consti-

tutive equation strongly depends on the yield criterion used in
the formulation. The Drucker–Prager yield criterion is a widely
used criterion for materials, where the hydrostatic pressure af-
fects the plastic deformation. Experimental results indicated
that using non-associative flow rule with combination of the
Drucker–Prager yield criterion gives a more accurate approach
in the constitutive modelling. In addition, the elastoplastic con-
stitutive model can be extended by including the hardening be-
havior of the material.

In the stress-driven case, the loading is given by a prescribed
stress input and the corresponding strain response is sought.
This strain solution can be obtained in a numerical way, but
the importance of an analytical solution is obvious. Obtaining
the analytical strain solution for a general stress input is usually
very complicated or even impossible. If constant stress rate in-
put is considered, then the governing equations have much sim-
pler structure, which allows us to obtain the strain solution in
an analytical way. For the associative von Mises elastoplastic-
ity model with combined linear hardening rule, Kossa and Sz-
abó [6] presented the exact strain solution applying the solution
method proposed by Krieg and Krieg [7]. The analytical strain
solution for the non-associative Drucker–Prager elastoplasticity
model governed by linear isotropic hardening was presented by
Szabó and Kossa [11]. The latter solution can be converted to
a simpler form by utilizing the Kriegs’ technique. This paper is
devoted to present this novel strain solution.

Section 2 briefly summarizes the derivation of the constitutive
equation for the non-associative Drucker–Prager elastoplastic
model with linear isotropic hardening. Then, Section 3 presents
the analytical solution method to obtain the corresponding strain
response for constant stress rate input. Besides the general solu-
tion, the solutions for the deviatoric radial loading case and for
the apex problem are also derived.

In order to simplify the presentation of the formulae, specific
font styles are used to represent different mathematical quanti-
ties. The convention employed for this reason is the following:
scalar-valued functions is denoted by italic light-face letters (e.g.
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p, E, G); vectors and second-order tensors are denoted by italic
bold-face letters (e.g. s, σ, ε); fourth-order tensors are written
as italic bold-face calligraphic letters (e.g. T , De). Further-
more, the following operations are employed: trA means the
trace of A; AT denotes the transpose of A; Ȧ indicates the ma-
terial time derivative of A; A−1 denotes the inverse of A; ‖A‖ is
the Euclidean norm of A; A ⊗ B represents the dyadic (or ten-
sor) product of A and B; A : B indicates the double dot prod-
uct (or double contraction) between A and B,

(
A : B = Ai jBi j

)
.

Second-order and fourth-order identity tensors are denoted by δ
and I , respectively.

2 Constitutive equation of the non-associative
Drucker–Prager elastoplasticity model governed by
linear isotropic hardening
The Drucker–Prager yield criterion is a simple modification

of the von Mises criterion, in which the hydrostatic stress com-
ponent is also included to introduce pressure-sensitivity [4]. The
yield function for this case can be written as [2, 5, 12]

F (σ, σY , α) =
1
√

2
S + 3αp − k, (1)

where S = ‖s‖, s = σ − pδ denotes the deviatoric stress, p =
trσ/3 is the hydrostatic stress, σY represents the yield stress, α is
a material parameter and k is related to the yield stress as [1,12]

k (ε̄p) =
(
α +

1
√

3

)
σY (ε̄p) . (2)

In (2), ε̄p denotes the accumulated plastic strain, which is de-
fined by the relation [1]

ε̄p =

√
2
3

∫ t

0
‖ε̇p‖ dτ. (3)

The yield surface in the principal stress space is represented
by a circular cone around the hydrostatic axis (see Fig. 1).

Fig. 1. Illustration of the Drucker–Prager yield surface in the principal stress
space

The material starts to deform plastically, when the yield sur-
face is reached. Upon further loading, the deformation produces

plastic flow. The direction of the plastic strain rate is defined
according to the non-associative plastic flow rule

ε̇p = λ̇
∂g
∂σ
, (4)

where the scalar function λ̇ denotes the plastic multiplier,
whereas g is the plastic potential function, which itself is a func-
tion of the stresses. A commonly adopted form is given by [1]

g =
1
√

2
S + 3βp, (5)

where β is an additional material parameter. The gradients of the
yield function and the plastic potential function, with respect to
σ are the following:

N =
∂F
∂σ
=

s
√

2S
+ αδ, Q =

∂g
∂σ
=

s
√

2S
+ βδ. (6)

If the material behavior, in the plastic region of the uniaxial
stress-strain curve, is modelled with linear schematization, then
we arrive at the linear isotropic hardening rule

σY (ε̄p) = σY0 + Hε̄p, (7)

where the slope of the curve is given by the constant plastic hard-
ening modulus H.

The loading/unloading conditions can be expressed in the
Kuhn–Tucker form as [2, 8, 10]

λ̇ ≥ 0, F ≤ 0, λ̇F = 0. (8)

The general form of the linear elastic stress-strain relation for
isotropic material can be written as

σ =De : ε, (9)

where De denotes the fourth-order elasticity tensor, which can
be formulated as Doghri [3]

D
e = 2GT + Kδ ⊗ δ, (10)

where G stands for the shear modulus, K denotes the bulk mod-
ulus, whereas T is the fourth-order deviatoric tensor, T =

I − 1
3δ ⊗ δ.

The plastic multiplier can be obtained from the consistency
condition Ḟ = 0:

Ḟ =
∂F
∂σ

: σ̇ − k̇ = N :De : ε̇−

λ̇

N :De : Q + H
(
α +

1
√

3

) √
1
3
+ 2β2

 , (11)

λ̇ =
N :De : ε̇

N :De : Q + H
(
α +

1
√

3

) √
1
3
+ 2β2

=

1
h

(
2G
√

2‖s‖
s : ė + 3Kαtrε̇

)
, (12)
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where the scalar parameter h is defined as

h = G + 9Kαβ + j, j = H
(
α +

1
√

3

) √
1
3
+ 2β2. (13)

The elastoplastic tangent tensorDep is derived from the relation

σ̇ =De : ε̇e =De : ε̇ −De : ε̇p

=De : ε̇ −
N :De : ε̇

h
D

e : Q (14)

=

(
D

e −
De : Q ⊗ N :De

h

)
: ε̇. (15)

Using the result above, the elastoplastic constitutive law can
be written as

σ̇ =Dε̇, (16)

where

D
ep =De −

De ⊗ Q ⊗ N :De

h
= (17)

D
e −

1
h

(
2G2

S 2 s ⊗ s +
6KGα
√

2S
s ⊗ δ+

6KGβ
√

2S
δ ⊗ s + 9K2αβδ ⊗ δ

)
. (18)

The constitutive equation (16) can be separated into deviatoric
and hydrostatic parts as follows

ṡ = 2Gė −
2G2

hS 2

(
s : ė +

3KαS trε̇
√

2G

)
s (19)

and

ṗ = Ktrε̇ −
3
√

2KGβ
hS

(
s : ė +

3KαS trε̇
√

2G

)
. (20)

Inverse elastoplastic constitutive equation
The inverse of the constitutive law (16) is defined as

ε̇ = Cep : σ̇, (21)

where the fourth-order elastoplastic compliance tangent tensor
Cep is obtained by the inversion of (17) using the Sherman–
Morrison formula [9, 11]

C
ep =

(
D

ep)−1
= Ce +

1
j
Q ⊗ N (22)

= Ce +
1
j

(
1

2S 2 s ⊗ s +
α
√

2S
s ⊗ δ+

+
β
√

2S
δ ⊗ s + αβδ ⊗ δ

)
. (23)

Ce denotes the fourth-order elastic compliance tensor, the in-
verse ofDe [3]:

C
e =

1
2G
I −

ν

E
δ ⊗ δ =

1
2G
T +

1
9K
δ ⊗ δ, (24)

where ν is the Poisson’s ratio and E is the Young’s modulus.

The inverse constitutive law (21) can be separated into devia-
toric and hydrostatic part as follows:

ė =
1

2G
ṡ +

1
2 jS 2

(
s : ṡ + 3

√
2Sαṗ

)
s (25)

and
1
3

trε̇ =
(

1
3K
+

3αβ
j

)
ṗ +
β (s : ṡ)
√

2 jS
. (26)

3 Analytical strain solution for stress-driven case
Under stress-driven formulation, it is assumed that the total

and plastic strain fields, the stress field and the internal variables
appearing in the particular model are known at an instant time
tn ∈ [0,T ], where [0,T ] ⊂ R denotes the time interval under
consideration. Furthermore, the stress field σ is given in the
whole interval [0,T ], consequently, the loading history is de-
fined by the given stress field σ (t). Therefore, in stress-driven
problems, the strain field, the plastic strain field and the inter-
nal variables have to be determined for a given time t ∈ [tn,T ],
t > tn.

In the following, the solution is derived for the case when σ̇
is constant, thus

σ = σn + σ̇ (t − tn) ,

s = sn + ṡ (t − tn) ,

p = pn + ṗ (t − tn) . (27)

For simplicity of the presentation the dependence on variable
t is omitted in the following expressions.

Define the angle ω through the following inner product:

s : ṡ = S ‖ṡ‖ cosω. (28)

The plastic multiplier, by combining (12), (25) and (26) then
becomes

λ̇ =
‖ṡ‖
√

2 j

cosω +
3
√

2αṗ
‖ṡ‖

 . (29)

Thus, plastic loading occurs when

ṗ > −
‖ṡ‖

3
√

2α
cosω. (30)

From (28) it follows that

Ṡ = ‖ṡ‖ cosω. (31)

Taking the time derivative of (28) and then combining it with
(31) gives

ω̇ = −
‖ṡ‖ sinω

S
. (32)

Dividing (31) with (32) yields the separable differential equa-
tion:

1
S

dS = −
1

tanω
dω (33)
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with the initial condition ω (t = tn) = ωn and S (t = tn) = S n.
Thus the parameter S can be written as a function of the angle
ω:

S = S n
sinωn

sinω
. (34)

By substituting this solution back into expression (32) we arrive
at the separable differential equation

1
sin2 ω

dω = −
‖ṡ‖

S n sinωn
dt, (35)

which has the solution

ω = arctan
(

S n sinωn

S n cosωn + ‖ṡ‖ (t − tn)

)
. (36)

Combining (27), (36) and (25) we can express s in terms of the
angle ω as

s = sn +
S n

‖ṡ‖
sin (ωn − ω)

sinω
ṡ. (37)

Inserting (37) and (34) into (25), the deviatoric strain rate can be
written in the form

ė =
1

2G
ṡ +
‖ṡ‖ cosω sinω

2S n j sinωn
sn +

1
2 j

sin (ωn − ω) cosω
sinωn

ṡ

+
αtrσ̇ sinω
√

2 jS n sinωn
sn +

αtrσ̇
√

2 j ‖ṡ‖
sin (ωn − ω)

sinωn
ṡ. (38)

Integrating both sides, using (35), yields the solution for the de-
viatoric strain as

e = en + Asn + Bṡ, (39)

where the parameters Ae and Be, after simplification, become

A =
1
2 j

ln
(

S
S n

)
+
αtrσ̇
√

2 j ‖ṡ‖
ln


tan
ωn

2

tan
ω

2

 , (40)

B =
(t − tn)

2

(
1
G
+

1
j

)
+
αtrσ̇ (S − S n)
√

2 j ‖ṡ‖2
−

S n sinωn

‖ṡ‖

(
A

tanωn
+
ωn − ω

2 j

)
.

(41)

Inserting (28) and (31) into expression (26) results in the differ-
ential equation

1
3

trε̇ =
(

1
3K
+

3αβ
j

)
ṗ +

β
√

2 j
Ṡ , (42)

which can be simply integrated yielding the solution

1
3

trε =
1
3

trεn +

(
1

3K
+

3αβ
j

)
ṗ (t − tn) +

β (S − S n)
√

2 j
. (43)

Finally, the total strain solution is computed by combining (39)
and (43).

Solution in the case of deviatoric radial loading
The solution reduces to simpler form in the case when ωn =

0 or ωn = π or ‖ṡ‖ = 0. These scenarios correspond to the
deviatoric radial loading case, when we can write that

S = S n + q ‖ṡ‖ (t − tn) , s =
S
S n

sn, (44)

where q is defined by

q =


1 if ωn = 0,
−1 if ωn = π,

0 if ‖ṡ‖ = 0.
(45)

Inserting (44) into (25) and (26) gives

ė =
1

2G
ṡ +

3αṗ
√

2S n j
sn + q

1
2 j

ṡ, (46)

1
3

trε̇ =
(

1
3K
+

3αβ
j

)
ṗ + q

β ‖ṡ‖
√

2 j
. (47)

Thus, the solutions for the strains will be

e = en +
3αṗ (t − tn)
√

2S n j
sn +

(
1

2G
+ q

1
2 j

)
(t − tn) ṡ, (48)

1
3

trε =
1
3

trεn +

(
1

3K
+

3αβ
j

)
ṗ (t − tn) + q

β ‖ṡ‖
√

2 j
(t − tn) . (49)

Stress input required to reach the apex
It is obviously follows that the apex can be reached only due

to deviatoric radial loading. Denote caσ̇ (t − tn) the stress input
required to reach the apex. From (27) it is clearly follows that

ca =
S n

‖ṡ‖ (t − tn)
. (50)

Solution at the apex
When the initial stress state is located at the apex, then it is

obvious that the new stress state leaves the apex when ‖ṡ‖ > 0.
From (29) it follows that plastic loading initiates if

‖ṡ‖ > −3
√

2αṗ, (51)

otherwise elastic unloading occurs. The solutions (48) and (49)
can be used by inserting q = 1 into these expressions yielding

e = en +

(
1

2G
+

1
2 j

)
(t − tn) ṡ, (52)

1
3

trε =
1
3

trεn +

(
1

3K
+

3αβ
j

)
ṗ (t − tn) +

β ‖±ṡ‖
√

2 j
(t − tn) . (53)
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4 Conclusion
This paper presented a novel analytical strain solution for the

non-associative Drucker–Prager elastoplasticity model with lin-
ear isotropic hardening. The solution is valid under constant
stress rate assumption, which can be represented as a linear
stress path input in the stress space. The analytical strain so-
lutions were obtained for the deviatoric radial loading case, and
for the special scenario, when the initial stress state is located in
the apex of the yield surface. The new solutions can be used to
obtain reference solution for particular elastoplastic problems.
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