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Abstract
Stabilization of turning processes with a digital proportional-

derivative feedback controller is analyzed. A one-degree-of-
freedom model of the turning process is considered. The con-
trol force is assumed to be acting directly on the tool. The
sampling effect and the delay of the digital controller are in-
volved in the model. The governing equation is a periodic delay-
differential equation, which includes a continuous point delay
due to the regenerative effect of the material removal process
and a discrete delay (i.e., a term with piecewise constant argu-
ment) due to the sampling effect of the controller. The principal
period of the system is the sampling period. The stability anal-
ysis is performed using different implementations of the semi-
discretization method. A series of stability diagrams are pre-
sented for different proportional and derivative control gains.
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1 Introduction
In the last two decades machining technology went through

a rapid development. The tendency shows an increase in the
speed of manufacturing, hence a decrease in manufacturing
time. High-speed manufacturing developed the need for the dy-
namical investigation of the cutting process.

Experience has shown, that at certain manufacturing param-
eters, self-excited vibration of the tool arises. The most com-
monly accepted explanation for this phenomena is the so-called
regenerative effect which was first discussed by Tobias [11],
Tlusty [10] and Kudinov [4]. The point of this regenerative ef-
fect is that the cutting force is a function of the chip width which
depends on not only the actual position of the tool but also on
its position one turn before. Therefore, the mathematical de-
scription of the cutting processes results in Delay-Differential
Equations (DDEs). Stability properties of the machining pro-
cess are depicted by so-called stability lobe diagrams which plot
the maximum stable axial depths of cut versus the spindle speed.

During cutting, self-excited vibrations of the tool are copied
on the surface of the workpiece, which makes it wavy and wors-
ens its quality. The time of the machining operation is influ-
enced by the depth of cut, the spindle speed and the feed rate.
The maximum available depths of cut for certain spindle speeds
can be obtained from the stability lobe diagrams. One way to
reduce the manufacturing time is the increase of the depth of
cut. Several methods exist to increase the stable domains in the
stability diagrams and to suppress regenerative chatter. Such
methods are the vibration absorber [8], impedance modulation
[6] and spindle speed variation [7]. In each type of the cutting
processes the increment of the damping ratio results in a growth
of the stability domain. However, this increment is limited by
the physical properties of the machine tool.

In control technology proportional-derivative (PD) con-
trollers are widely used to stabilize linear unstable systems.
Here, the proportional gain P works as an artificial stiffness and
the differential gain D is a kind of artificial damping. PD control
requires the measurement of the tool position and velocity. If
the measurement and the feedback is continuous and delay-free,
then the system can be described by Ordinary Differential Equa-
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tions (ODEs), and the stability analysis can be performed by
standard techniques, like the Routh-Hurwitz criteria. However,
in real applications, mostly digital controllers are used, where
both the measurement and the feedback are non-continuous and
delayed.

is usually modelled with a simple, linear into account the re-
generative effect hence it leads to a DDE. For a non-linear lin-
earised system is well known from the literature, this is

This study deals with the theoretical investigation of the sta-
bility of the turning process under the effect of a digital PD con-
troller. The application point of the control force is at the end
of the cutting tool. The model is a linear 1 DOF model. The
stability of this system is analysed numerically using the semi-
discretization method [2].

2 Mechanical Model
The 1 DOF mechanical model of turning is shown by Fig. 1.

The tool is assumed to be ideally elastic relative to the tool
holder, with dominant mode parallel to the feed direction (x).
The modal mass of the workpiece is m, the stiffness and damp-
ing are k and c respectively. The governing equation is

mẍ(t) + cẋ(t) + kx(t) = F(t) − Q(t). (1)

The cutting force is given in the form

F(t) = Kwhq(t), (2)

where w is the depth of cut, h(t) is the chip thickness at time
instant t and q is the cutting-force exponent. Parameter K de-
pends on further technological parameters, and it is considered
to be constant in the present analysis. Note that other formulas
for the cutting force are also used in the literature [1],[3]. If the
spindle speed is constant, then the time delay within one turn is
τ = 60/Ω, where spindle speed Ω is given in [rpm]. The chip

Fig. 1. Sketch of the mechanical model

thickness is
h(t) = v f τ + x(t − τ) − x(t), (3)

where v f is the feed velocity. If the control force is delay-free
and continuous, than it can be given as

Q(t) = Px(t) + Dẋ(t), (4)

where P is the proportional and D is the differential gain. Thus
the governing equation can be written in the form

mẍ(t) + cẋ(t) + kx(t) =

Kw(v f τ + x(t − τ) − x(t))q − Px(t) − Dẋ(t). (5)

This non-linear equation can be linearised around its trivial equi-
librium point x0. The linearised equation reads

mξ̈(t) + cξ̇(t) + kξ(t) =

Kw(v f τ)q−1(ξ(t − τ) − ξ(t)) − Pξ(t) − Dξ̇(t), (6)

where ξ = x − x0 describes the displacement around the equi-
librium point. After the introduction of the specific cutting
force coefficient H = Kw(v f τ)q−1/m, and specific control gains
kp = P/m and kd = D/m, the governing equation can be rewrit-
ten in the form

ξ̈(t) + 2ζωnξ̇(t) + ω2
nξ(t) =

H(ξ(t − τ) − ξ(t)) − kpξ(t) − kd ξ̇(t). (7)

It can easily be seen that kp increases the stiffness and kd in-
creases the damping of the system. Without control the stabil-
ity diagram of (7) is a well known lobe diagram, which can be
seen on Fig. 2. The boundaries of the stable region can be de-
termined by the D-subdivision method [9]. In parametric form
these boundaries are

Ω =
30ω

jπ − arctan
(
ω2 − ω2

n

2ζωnω

) , j ∈ N, (8)

H =
(ω2 − ω2

n)2 + 4ζ2ω2
nω

2

2(ω2 − ω2
n)

. (9)

3 Digital control
The application of digital control with Zero-Order-Holder

(ZOH) model [5] gives the equation

ξ̈(t) + 2ζωnξ̇(t) + (H + ω2
n)ξ(t) =

Hξ(t − τ) − kpξ(t j−1) − kd ξ̇(t j−1), (10)

where t ∈ [t j, t j+1), with ∆t = t j+1 − t j is the sampling period
of the controller. This equation is a DDE with parametric exci-
tation in the time delay, since the term ξ(t j−1) can be written as
ξ(t−ρ(t)), where ρ(t) = ∆t− t j+ t, t ∈ [t j, t j+1) is a sawtooth-like
time-periodic time delay. The period of the parametric excita-
tion is the sampling period ∆t of the controller. The first-order
representation reads

ẋ(t) = Ax(t) + Bx(t − τ) + Cx(t j−1) (11)
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Fig. 2. Stability domain of the turning process without control force for ζ=0.05

where

x(t) =
 ξ(t)
ξ̇(t)

 , A =
 0 1
−2ζωn −H − ω2

n

 ,
B =

 0 0
H 0

 , C =
 0 0
−kp −kd

 .
(12)

The system is analysed by the semi-discretization method,
which gives a finite dimensional approximation for the infinite
dimensional problem. The sketch of the discretization for the
case of zeroth-order one-point method is shown in Fig. 3.

Fig. 3. Sketch of the semi-discretization method

3.1 One-point methods
One-point methods approximate the delayed value of the

function with values taken from one discrete past time instant.
The approximation of (11) for the time interval t ∈ [ti, ti+1) can

be given generally as

ẋ(t) = Ax(t) + D(t)xi−r + Cxi−p, (13)

where D(t) is a weighting matrix which depends on the method
and the order of the approximation. Short hand notation is used
for x(ti−r) = xi−r and respectively for the similar terms.
Here h = ti+1 − ti is the step size of the discretization, which is
determined as τ = ti − ti−r = rh, where integer r is the resolution
of the time delay. Integer p is the resolution of the sampling
period determined as ph = ∆t. Integer κ = r/p is the ratio of the
time delay and the sampling period.
The sketch of the zeroth- and the first-order one-point methods
are shown in Fig. 4.

Fig. 4. Sketch of the zeroth- and the first-order one-point methods

The initial condition for (13) equation is x(ti) = xi, which pro-
vides the continuity of the displacement and velocity functions
at time instant t = ti. Using the method variation of constants
the solution for (13) is

x(t) = eA(t−ti)xi +

∫ t−ti

0
eA(t−ti−s)

(
D(s)xi−r + Cxi−p

)
ds. (14)

Hence the relation between the two end points of the discretiza-
tion step is

xi+1 = Pxi + R1xi−r + RCxi−p, (15)
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where

P = eAh,

R1 =

∫ h

0
eA(h−t)D(t)dt,

RC = −A−1
(
I − eAh

)
C. (16)

Equation (15) implies the following difference equation
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. (17)

In simpler form this reads as

Xi+1 = G1Xi, (18)

where Xi is an augmented state vector, and G1 is the coefficient
matrix for this first step. If the control force were zero, the inves-
tigation of the eigenvalues of G1 would be enough to determine
the approximate stability chart of (10). However from Fig. 3
it is visible that the upper difference equation describes only the
special case when the control force changes its value. To deter-
mine the approximate stability chart of (10) for a general case,
the investigation of this periodic DDE is needed for a whole time
period of the parametric excitation. The difference equation be-
tween the two ends of one sampling period is

Xi+p = ΦXi, (19)

where Φ = Gp Gp−1...Gk...G2 G1 is the transition matrix (mon-
odromy matrix) over the principal period ∆t = ph. Hence the
condition of stability is that the magnitude of each eigenvalue of
Φ must be less then 1, formally

|Φ| < 1. (20)

Until the end of the sampling period the control force keeps its
value, thus the approximate differential equation for the second
discretization step is

ẋ(t) = Ax(t) + D(t)xi−r+1 + Cxi−p (21)

where t ∈ [ti+1, ti+2). After solving this differential equation sim-
ilarly to (13), the difference equation between the endpoints of

the second discretization step has the form
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. (22)

In this coefficient matrix (denoted by G2) only the upper line is
changed compared to G1: sub-matrix RC "jumped" one column
right. With the induction of this phenomena the behaviour of G
matrices for different discretization steps is shown by Fig. 5.

Fig. 5. Top row of G matrices for one point methods

3.1.1 Zeroth-order
This method uses only the delayed function values as past

values. The weighting matrix has the form

D =
 0 0

H 0

 . (23)

3.1.2 First-order
It is visible from the structure of G matrices that the first time

derivatives of ξ are introduced to the matrix only because the ve-
locity is present in the control force. Without these derivatives
G matrices can be reduced to half sizes, hence the presence of
the derivatives drastically increase the computational time. With
higher order methods computational time can be saved on an in-
direct way, by increasing the convergence of the numerical ap-
proximation. In this case, it is reasonable to apply higher order
methods because of the "unused" first derivatives. This first or-
der method uses not only the delayed function values but also
their derivatives at past time instants. The weighting matrix is

D(t) = H
 0 0

1 t

 . (24)

3.2 Two-point methods
Two-point methods take the past values from two past time in-

stants for the approximation of the delayed function. The sketch
of the applied two-point methods is shown in Fig. 6. The ap-
proximation of (10) for the time interval t ∈ [ti, ti+1) generally
can be given as
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Fig. 6. Sketch of the applied two-point methods

ẋ(t) = Ax(t) + D1(t)xi−r + D2(t)xi−r+1 + Cxi−p, (25)

where the value of D1(t) and D2(t) weighting matrices depend
on the order of the approximation and on the weighting between
the past values. Similarly to (13) the solution of (25) can be
determined by the method of variation of constants. The relation
between the two endpoints of the discretization step is

xi+1 = Pxi + R1xi−r + R2xi−r+1 + RCxi−p, (26)

where

P = eAh, R1 =
∫ h

0 eA(h−t)D1(t)dt,

R2 =
∫ h

0 eA(h−t)D2(t)dt, RC = −A−1
(
I − eAh

)
C.

(27)

The coefficient matrices G for the two-point methods have a
similar form as in the case of one point methods. The only differ-
ence is that on the right end of the top row one more sub-matrix
appears. The behaviour of matrices G is shown in Fig. 7.

Fig. 7. Top row of G matrices for tw-point methods

3.2.1 Zeroth-order
This method simply takes the average of the function values

in two past time instants. The weighting matrices are

D1 = D2 =

 0 0
H/2 0

 . (28)

3.2.2 First-order
This method joins the function values in two past time instants

with a strait line. Thus it uses linear interpolation between the
two past values of the function. The weighting matrices are

D1(t) = H(1 − t/h)
 0 0

1 0

 ,
D2(t) = Ht/h

 0 0
1 0

 . (29)

3.2.3 Second-order
This method approximates the function values between two

past time instants by using not only the past values of the func-
tion but also the first derivatives of it. The approximation is
done by the linear weighting of the tangentials calculated from
the past values and derivatives. The weighting matrices are

D1(t) = H(1 − t/h)
 0 0

1 t

 ,
D2(t) = Ht/h

 0 0
1 t − h

 . (30)

3.2.4 Third-order
This method approximates the function values between two

past time instants with a third order polynomial. The coefficients
of the polynomial are calculated by using the past values and
derivatives. The weighting matrices are

D1(t) = H

 0 0

1 − 3
(

t
h

)2
+ 2

(
t
h

)3
t
(
1 − 2 t

h +
(

t
h

)2
)  ,

D2(t) = H

 0 0

3
(

t
h

)2
− 2

(
t
h

)3
t
(
− t

h +
(

t
h

)2
)  .

(31)

4 Results
Fig. 8 presents the stability boundaries for a turning process

without any control. The negative depth of cut values are also
presented. The exact stability boundaries are shown by black
color. It can be seen that the higher the order of the approxima-
tion, the more accurate the stability boundaries.

Figs 9-10 present a series of stability diagrams for different
(both negative and positive) proportional and derivative control
gains for κ = 2 and 20. In these diagrams the exact stability
boundaries of the turning process without any control are pre-
sented by gray color. Note that κ = r/p = τ/∆t, that is, it
describes the ratio of the regenerative delay τ and the sampling
period ∆t.

The stability diagrams were obtained numerically by analyz-
ing the eigenvalues of the transition matrixΦ for a series of fixed
parameters.
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5 Conclusions
It can be seen in Fig. 8 that by increasing the number of steps

of the semi-discretization method the calculated map approxi-
mates the real stability chart with higher accuracy. Higher order
methods give better approximation at a given resolution of the
time delay. It can be observed that the stability regions change
with the ratio of the time delay and sampling period (κ). With
certain control parameters for given κ values the stability region
of the turning process can be increased by digital control.

Overall, it can be stated that the relation between the stabil-
ity properties and the values of the proportional and the deriva-
tive gains is not trivial. For certain parameter combination, even
negative control gains may stabilize the system, while for other
parameters, positive control gains may destabilize the system.
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Fig. 8. Stability chart for the turning process without control force obtained by different approximation methods for different r values, ζ=0.05
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Fig. 9. Stability charts for different control parameters obtained by third-order two-point method, κ=2, r=20, ζ=0.05
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Fig. 10. Stability charts for different control parameters obtained by third-order two-point method, κ=20, r=20, ζ=0.05
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